JPS59152671A - Manufacture of solar battery - Google Patents

Manufacture of solar battery

Info

Publication number
JPS59152671A
JPS59152671A JP58026238A JP2623883A JPS59152671A JP S59152671 A JPS59152671 A JP S59152671A JP 58026238 A JP58026238 A JP 58026238A JP 2623883 A JP2623883 A JP 2623883A JP S59152671 A JPS59152671 A JP S59152671A
Authority
JP
Japan
Prior art keywords
substrate
layer
silicon
laser light
oxidized silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58026238A
Other languages
Japanese (ja)
Inventor
Hiroshi Morita
廣 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58026238A priority Critical patent/JPS59152671A/en
Publication of JPS59152671A publication Critical patent/JPS59152671A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To increase the production efficiency of a solar battery by forming an oxidized silicon layer which contains the same or reverse conductive type impurity to silicon on the first surface of a silicon substrate, emitting a laser light from the first surface side to diffuse an impurity in the oxidized silicon layer to the surface of the substrate, thereby forming a junction. CONSTITUTION:An oxidized silicon layer (PSG layer) 1 which contains phosphorus by a CVD method utilizing thermal decomposition of mixture gas of silane, oxygen and phosphine is accumulated on a mirror-finished surface of a P type silicon single crystal substrate. A stainless steel cooling heat sink plate, on which a thermoelectric cooling element 4 utilizing Peltier effect is provided on the back surface side of the substrate 1 to escape the heat of the substrate, and carbon dioxide gas laser light 3 is emitted to the layer 3. As a result, phosphorus is diffused in the surface of the substrate 1, and an N type layer is formed. Then, an oxidized silicon layer 2 is etched in a grating shape, and a grid electrode of Ti/Pd/Ag deposited 3-layer film is formed by lift-off technique. An electrode 6 of Ti/Pb/Ag is formed on the entire back surface, thereby completing a solar battery.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は太陽(池の製造方法の改良に関する。[Detailed description of the invention] [Technical field of invention] This invention relates to an improvement in the method for manufacturing solar ponds.

〔発明の技術的背景および一七の問題点〕シリコン太陽
植池のa遺方去は、例えば基板にp型シリコンを用いる
場合・、表面にリンを高温で熱拡散しn+層を形成し[
pn接合をまず形成し、次に1極として導1性被膜を裏
面では全面に、表面では光の入射部分を大きくとる為に
格子状に形成、さらに反射防止膜を表面に形成する各工
程よりなっている。この内、pn接合を形成する為には
850℃以上の這気炉による熱処理が必要であるが、こ
の高温処理によりシリコン基板は熱損傷全量け、太陽1
池痔性に極めて重要な因子である基板中の少数キャリア
・ライフタイムを著しく低下させ、十分な効率の向上が
望めなかった。
[Technical Background of the Invention and Problems No. 17] For example, when p-type silicon is used as the substrate, phosphorus is thermally diffused on the surface to form an n+ layer [
First, a pn junction is formed, then a conductive film is formed on the entire back surface as a single pole, a lattice pattern is formed on the front surface to increase the incident area of light, and an anti-reflection film is formed on the surface. It has become. In order to form a p-n junction, heat treatment in a draft furnace at a temperature of 850°C or higher is required, but this high-temperature treatment eliminates all thermal damage to the silicon substrate and
The lifetime of minority carriers in the substrate, which is an extremely important factor in hemorrhoid formation, was significantly reduced, and a sufficient improvement in efficiency could not be expected.

また別の方法では熱拡散によらずに接合全形成する技術
としてイオン注入法による不純物Dシリコン基板への打
ち込へが研究さ)LCいる。この方法によルばシリコン
基板中の少数キャリア・ライフタイムの低下は少ないと
考えられるが、実際にはイオン注入層の盾品性が乱れる
ことと、注入さ几たイオンが十分に活性化されて・ハな
い為に太陽鑞池の特性が悪く1通常、注入機にアニール
全行って前記の諸欠陥を改善することが行われている。
Another method is to implant impurity D into a silicon substrate by ion implantation as a technique for completely forming a junction without using thermal diffusion (LC). Although it is thought that this method will reduce the minority carrier lifetime in the silicon substrate, in reality, the shielding properties of the ion-implanted layer may be disturbed and the implanted ions may not be sufficiently activated. Because of this, the characteristics of the solar annealing device are poor.1 Usually, the injection machine is completely annealed to improve the above-mentioned defects.

この方法にお^でも磁気炉によるアニ゛−ルが必要とさ
れるため、少数キャリアのライフタイムの低下があり、
太陽(池の効率を下げていた。そのうえ、イオン注入装
置は大がカリで高価でウェハ処理量も小さく、安価な太
陽電池生産には適して匹ない。
This method also requires annealing in a magnetic furnace, which reduces the lifetime of minority carriers.
In addition, ion implantation equipment is expensive due to its high potency, and its wafer throughput is small, making it unsuitable for producing inexpensive solar cells.

このよ□うに鑞式炉アニールにより、不純物を拡散また
は、アニールす・る方法ではシリコン基板も含めたウェ
ハ全体を1000″0橿度の高温にせねばならず、シリ
コン基板中の少数キャリアのライフタイムが処理前の半
分以下に低下しCいた。このため太陽礁池の高効率化が
困難であった。さらに、峨気炉Cのアニールでは、20
分程度処理時間がかかっ、省エネルギーの点から不利で
ある。
In this method of diffusing impurities or annealing using a soldering furnace annealing, the entire wafer including the silicon substrate must be heated to a high temperature of 1000°C, and the lifetime of the minority carriers in the silicon substrate is C decreased to less than half of that before treatment.For this reason, it was difficult to improve the efficiency of the solar reef pond.Furthermore, in the annealing of the A-reactor C, 20
The processing time is approximately 1 minute, which is disadvantageous in terms of energy conservation.

覗差炉でのアニールによる基板のダメージを解消する方
法として、基板上に不純物を含む膜を形成しておき、こ
の膜rレーザ光で照射する方法が開発され、既に出願し
た。この開発した方法によれは磁気炉加熱により不純物
拡散と行った太1V7h電池に比べて高効率の太陽4池
が得られる。
As a method to eliminate damage to the substrate caused by annealing in a sight furnace, a method has been developed in which a film containing impurities is formed on the substrate and this film is irradiated with laser light, and an application has already been filed. With this developed method, a solar 4 cell with higher efficiency can be obtained compared to a 1V7h battery in which impurity diffusion is performed by heating in a magnetic furnace.

本発明者らはこの開発した方法を追試する中で、大21
に試作したものの中。に効率が低めものが混在している
こと、すなわち品質のバラツキが多いことと確認し、そ
の原因を追求した。その詰果レーザ光照射条件の変動、
酸化シリコン膜の成膜条件変動などにより、レーザ光照
射中にシリコン基板の温度上昇変動が生じており、こ′
の温度上昇の著しかった基板の太陽゛電池は効率が悪い
−ことを見出した。
While testing this developed method, the inventors found that
Among the prototypes. We confirmed that there was a mixture of products with low efficiency, that is, there were many variations in quality, and investigated the cause. Fluctuations in the filling laser beam irradiation conditions,
Due to changes in the deposition conditions of the silicon oxide film, the temperature of the silicon substrate fluctuates during laser beam irradiation.
It was discovered that solar cells with substrates that experienced a significant temperature rise had poor efficiency.

さらに、室温から500°0までの温度を50℃の間隔
に分けて11種類の加熱基板2作り、それぞれのレーザ
光吸収係数tl−測定したところ、吸収係数は高温に加
熱したものほど大きくなり、350℃以上に加熱したも
のはP2O膜に対する吸収係数と同等になっていること
がわかった。ち、t4に少数キャリアのライフタイムラ
411定し−Cみると刀口熱前の基板のライフタイ、ム
が30μsecであるが500℃に加熱した基板のそれ
は10μsecになっている。
Furthermore, 11 types of heating substrates 2 were made by dividing the temperature from room temperature to 500°0 at intervals of 50°C, and the laser light absorption coefficient tl of each was measured.The absorption coefficient became larger as the temperature was heated to a higher temperature. It was found that when heated to 350° C. or higher, the absorption coefficient was equivalent to that of a P2O film. Looking at the minority carrier life time 411 at t4, the life time of the substrate before the sword heating is 30 .mu.sec, but that of the substrate heated to 500.degree. C. is 10 .mu.sec.

このことから、単にV−ザ光照射τ行った場合にはレー
ザ光照射条件変効、酸化シリコン膜の成膜条件変動等が
ひきかねとなって基板温度が変動し、基板温度が高目に
なったものはレーザ光吸収係数が高くなってますます高
温に加熱され最終的に少数キャリアのライフタイムの短
小いもの力;生rるものと推察される。
From this, if V-laser light irradiation τ is simply performed, the substrate temperature will fluctuate due to changes in laser light irradiation conditions, changes in silicon oxide film formation conditions, etc., and the substrate temperature will become high. It is presumed that the laser beam absorption coefficient becomes higher and the carriers are heated to higher temperatures, resulting in the shortening of the minority carrier lifetime.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような従来の欠点をなくした高効率化を
実現するための太陽1池の製置、方法全提供することを
目的とする。
The object of the present invention is to provide a complete method for manufacturing a single solar pond to achieve high efficiency without the above-mentioned conventional drawbacks.

〔発明の概要〕[Summary of the invention]

本発明はクリボン層板の第1の面上に前記シリコンと同
一または反対導1型の不純物金含有する酸化シリコン層
を形成する工程と、この基板の第2の面を放熱体に接1
独さき、貞記第1の面側からレーザ光を照射して前記酸
化シリコン層内の不純物を前記基板表面に拡散cしめて
接合を形成する工程を有することt−特徴とする太陽電
池の製造方法である。
The present invention includes a step of forming a silicon oxide layer containing gold as an impurity of the same or opposite conductivity as the silicon on a first surface of a Cribbon layer plate, and a step of contacting a second surface of the substrate with a heat sink.
A method for manufacturing a solar cell characterized by comprising the step of irradiating a laser beam from the first surface side to diffuse impurities in the silicon oxide layer to the surface of the substrate to form a bond. It is.

本発明によルばレーザ光照射によるシリコン基板の発熱
が放熱体に逃げるので基板の温度□;上昇tr、その4
青果少数キヤリアのライフタイムが低Fしないから効率
の高^太陽遣池を実現することができる。
According to the present invention, the heat generated by the silicon substrate due to laser beam irradiation escapes to the heat sink, so the temperature of the substrate □; Increase tr, Part 4
Since the lifetime of the fruit and vegetable minority carrier is not low F, it is possible to realize a highly efficient solar pond.

放熱体としては金属板がよく金属板自身を水冷空冷等で
強制的に冷却すればさらにょ匹。その他金属以外でもシ
リコン基板に接して熱云導良好な性質を示すものであれ
ばよIAo 本発明に使用するレーザ光は炭酸ガスレーザ光が良い。
A metal plate is good as a heat dissipation body, and it becomes even worse if the metal plate itself is forcibly cooled with water or air cooling. Other materials other than metals may be used as long as they exhibit good thermal conductivity when in contact with the silicon substrate.The laser beam used in the present invention is preferably a carbon dioxide laser beam.

その理由はリン、ボロン等の不純′吻を含んだ酸化ンリ
コン層は炭酸ガスレーザ光をよく吸収する小らである。
The reason for this is that the phosphorus oxide layer containing impurities such as phosphorus and boron is small particles that absorb carbon dioxide laser light well.

例えば炭酸ガスレーザの発振波長の一つであるlo、6
μInの波長に対しては基板のV−ザ光吸収係敢が10
1α]であるのに対し、P8Gl[i(フォスフオシリ
ケードグラス)の・′fニルは10’cIrL−”??
ある。そのためレーザ光の大部分はPSG膜(2ンに吸
収され、P2O膜とこルに接する基板(1)の表面層の
みが有効に加熱さル不純′吻の拡散に際し、基板は伺ら
ダメージを受けない。
For example, lo, 6, which is one of the oscillation wavelengths of a carbon dioxide laser.
For the wavelength of μIn, the V-the optical absorption coefficient of the substrate is 10.
1α], whereas the ·'fnyl of P8Gl[i (phosphosilicate glass) is 10'cIrL-"??
be. Therefore, most of the laser light is absorbed by the PSG film (2), and only the surface layer of the substrate (1) in contact with the P2O film is effectively heated.During the diffusion of impurities, the substrate is damaged. do not have.

〔発明の実施列〕[Implementation sequence of the invention]

単請晶シリコン基板を用いた太陽1池を例Vこして説明
する。
A solar cell using a monocrystalline silicon substrate will be explained using Example V.

Is1図乃至第3図ニオイテ、(1)は面方位(100
)、厚さ200μm1比抵抗lOΩm1初期のライフタ
イム30μsecのボロンドープの片面を鏡面仕上した
p形のシリコン単結晶基板(以下単に基板という)であ
る。上記基板の鏡面仕上げ面にシラン、酸毒。
In Figures Is1 to Figure 3, (1) is the surface orientation (100
), a p-type silicon single crystal substrate (hereinafter simply referred to as a substrate) with a boron-doped surface having a mirror finish on one side, a thickness of 200 μm, a specific resistance of lOΩm, and an initial lifetime of 30 μsec. Silane and acid poison on the mirror finished surface of the above board.

ホスフィンの混合ガスの熱分解を利用す、るCVI)(
ケミカル・ベーパ・デポジション)法Kjつてリンを含
んだ酸化シリコン層(PEG膜)(2)を4000A〜
8000A堆積させる。次に基板(1)の裏側にベルチ
ェ効果を利用した熱鑞冷却素子(4)ヲ取りつけたステ
ンレス製冷却放熱板を設は基板の発熱を逃がすようにし
て酸化シリコン層(2)に炭酸ガスレーザ光(3)全照
射する。その結果基板(1)の表面にリンが拡散され、
n形層が形成される。この状+ffl r、キャリアの
ライフタイムは27〜30μsecであり、初期のライ
フタイムと変らなかった。
CVI) (using thermal decomposition of a phosphine gas mixture)
Silicon oxide layer (PEG film) (2) containing phosphorus (chemical vapor deposition) method (4000A~)
Deposit 8000A. Next, on the back side of the substrate (1), a stainless steel cooling heat sink with a hot solder cooling element (4) that utilizes the Beltier effect was installed, and a carbon dioxide laser beam was applied to the silicon oxide layer (2) to release heat from the substrate. (3) Fully irradiated. As a result, phosphorus is diffused onto the surface of the substrate (1),
An n-type layer is formed. In this state +fflr, the carrier lifetime was 27 to 30 μsec, which was the same as the initial lifetime.

その後酸化シリコン層(2)を格子状にエツチングし、
リフトオフ技術によりTi/Pd/Ag蒸ノ1三層膜の
グリッド成極(5)全形成する。裏側には全1fiTi
/Pd/Agの成極(6)を形成することにより太陽電
池が完成する。なお酸化シリコン層(2)は反射防止膜
の機能をも有する。
After that, the silicon oxide layer (2) is etched in a grid pattern,
Grid polarization (5) of the Ti/Pd/Ag three-layer film is completely formed using the lift-off technique. All 1fiTi on the back side
/Pd/Ag polarization (6) completes the solar cell. Note that the silicon oxide layer (2) also has the function of an antireflection film.

下表に実施例及び比較品のキャリアライフタイム及び光
磁変換効率を示す。
The table below shows the carrier lifetime and magneto-optical conversion efficiency of the examples and comparative products.

表 表に示す通り実施例の太陽電池は比較品(石英板上に基
板裏面を接触させてレーザ光照射を行ったもの)K比べ
てキャリアライフタイムが長く、光磁変換効率が高い。
As shown in the table, the solar cell of the example has a longer carrier lifetime and higher magneto-optical conversion efficiency than the comparative product K (one in which the back surface of the substrate was brought into contact with a quartz plate and irradiated with laser light).

以上の実施例では不純物としてリンを用いたが、不純物
としてボロンを用いたBSG 肋でも同様の効果が得ら
れる。
Although phosphorus was used as an impurity in the above embodiment, a similar effect can be obtained using BSG ribs using boron as an impurity.

又放熱体として熟慮冷却素子を用いたが、水冷管を内蔵
したステンレス板、銅板−?十分放熱容量の大なる金属
板単体等を用いてもよい。
Also, I used a carefully considered cooling element as a heat sink, but a stainless steel plate or a copper plate with a built-in water cooling pipe? A single metal plate or the like having a sufficiently large heat dissipation capacity may be used.

炭酸ガスレーザの照射に当ってはレーザパルスの幅が狭
い方がシリコン基板の内部を溶融せずに酸化シリ・コン
層(psa膜、  BSG膜)とその近傍層のみを加熱
することが出来るので、基板内部の少数キャリアの寿命
の低下を防上でき、かつPNN接金作ることができるの
で好都合である。事実、TEA炭酸ガスV−ザやQスイ
ッチパルス炭酸ガスレーザのように数10ナノ秒のパル
ス幅のレーザの方がCWレーザやミリ秒オーダのパルス
炭酸ガスレーザよりも高い光磁変換効率の太陽電池が得
られた。TEA炭酸ガスレーザの照射条件の一例として
は、シリ、コン基板上での照射パワー密度が8〜16 
J/cm’ 、 パルス幅が50〜100ナノ秒の条件
でかつ一発のパルスで犬面債照射した結果、光磁変換効
率15.8%の太陽(池が得られた。
When irradiating with a carbon dioxide laser, the narrower the width of the laser pulse, the more it is possible to heat only the silicon oxide layer (PSA film, BSG film) and its neighboring layers without melting the inside of the silicon substrate. This is advantageous because it is possible to prevent a decrease in the life of minority carriers inside the substrate and to form a PNN weld. In fact, lasers with pulse widths of several tens of nanoseconds, such as TEA CO2 V-za and Q-switched pulsed CO2 lasers, can produce solar cells with higher opto-magnetic conversion efficiency than CW lasers or pulsed CO2 lasers on the order of milliseconds. Obtained. An example of the irradiation conditions for the TEA carbon dioxide laser is that the irradiation power density on a silicon or silicon substrate is 8 to 16
J/cm', pulse width was 50 to 100 nanoseconds, and as a result of single pulse irradiation, a solar cell with a magneto-optical conversion efficiency of 15.8% was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば不純物を、含有する酸化シリコン層をシ
リコン基板上に形成し、レーザ光照射により不純物拡散
き行うので少数ギヤリアライフタイム長くなり、その上
レーザ光照射中に基板の熱が放熱体に逃げるので基板の
温度は余り上昇せr、その結果さらに少数キャリアのラ
イフタイムは長くなり、光′1&洟効率の高い太陽電池
を得ることができる。
According to the present invention, a silicon oxide layer containing impurities is formed on a silicon substrate, and the impurities are diffused by laser beam irradiation, which increases the lifetime of the minority gear, and furthermore, heat from the substrate is dissipated during laser beam irradiation. Since they escape into the body, the temperature of the substrate does not rise too much, and as a result, the lifetime of the minority carriers becomes longer, making it possible to obtain a solar cell with high optical efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1乃至第3図はこの発明の一実施例を説明する図
である。 (1)・・シリコン基板 (2)・・・不純′吻を含有する酸化シリコン層(3)
・レーザ光 (4)・放熱体
FIGS. 1 to 3 are diagrams illustrating an embodiment of the present invention. (1) Silicon substrate (2) Silicon oxide layer containing impurities (3)
・Laser light (4) ・Heat sink

Claims (2)

【特許請求の範囲】[Claims] (1)  シリコン基板の第1の面上に、#記シリコン
と同一または異なる導4型の不純物を含有する酸化シリ
コン層全形成する工程と、この基板の第2・の面を放熱
体に接触させ前記第1の面側から7−ザー光を照射して
前記酸化シリコン層内の不純物tm記基板表面に拡散せ
しめて接合を形成す不工程を有することt−特徴とする
太陽鑞池の製債方法。
(1) A step of completely forming a silicon oxide layer containing a conductive type 4 impurity that is the same as or different from the # silicon on the first surface of the silicon substrate, and contacting the second surface of this substrate with a heat sink. 7-Production of a solar bonding device characterized by comprising a non-process step of irradiating laser light from the first surface side to diffuse impurities in the silicon oxide layer to the surface of the substrate to form a bond. bond method.
(2)V−ブー光はTEA CO,v−ザにょるレーザ
光であることを特徴とする特許請求の範囲第1項記載の
太陽鑞池の製造方法。
(2) The method for manufacturing a solar pond according to claim 1, wherein the V-boo light is a TEA CO, V-ZaNyoru laser light.
JP58026238A 1983-02-21 1983-02-21 Manufacture of solar battery Pending JPS59152671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58026238A JPS59152671A (en) 1983-02-21 1983-02-21 Manufacture of solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58026238A JPS59152671A (en) 1983-02-21 1983-02-21 Manufacture of solar battery

Publications (1)

Publication Number Publication Date
JPS59152671A true JPS59152671A (en) 1984-08-31

Family

ID=12187731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58026238A Pending JPS59152671A (en) 1983-02-21 1983-02-21 Manufacture of solar battery

Country Status (1)

Country Link
JP (1) JPS59152671A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262357U (en) * 1985-10-04 1987-04-17
JP2015519729A (en) * 2012-04-02 2015-07-09 ヌソラ インコーポレイテッドnusola Inc. Photoelectric conversion element and manufacturing method thereof
US9099591B1 (en) * 2008-11-07 2015-08-04 Michael H. Gurin Hybrid solar receiver
CN110836640A (en) * 2019-11-19 2020-02-25 西北工业大学 Out-of-plane displacement sensing unit and method based on near-field optical resonant cavity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262357U (en) * 1985-10-04 1987-04-17
US9099591B1 (en) * 2008-11-07 2015-08-04 Michael H. Gurin Hybrid solar receiver
JP2015519729A (en) * 2012-04-02 2015-07-09 ヌソラ インコーポレイテッドnusola Inc. Photoelectric conversion element and manufacturing method thereof
CN110836640A (en) * 2019-11-19 2020-02-25 西北工业大学 Out-of-plane displacement sensing unit and method based on near-field optical resonant cavity
CN110836640B (en) * 2019-11-19 2021-05-07 西北工业大学 Out-of-plane displacement sensing unit and method based on near-field optical resonant cavity

Similar Documents

Publication Publication Date Title
US8921968B2 (en) Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
JP6271844B2 (en) Solar cell and manufacturing method thereof
CN109983559B (en) Method for improving wafer performance for photovoltaic devices
JPS5889874A (en) Thin film solar photocell and method of producing same
JP2005191315A (en) Photoelectric converter and its manufacturing method
JP2015513784A (en) Method of forming solar cell with selective emitter
JPS58197717A (en) Preparation of semiconductor device
JP6219886B2 (en) Manufacturing method of solar cell
JP2001077386A (en) Method for manufacturing solar cell
US20030207044A1 (en) A1processing for impurity gettering in silicon
KR101085382B1 (en) Method for fabricating solar cell comprising selective emitter
KR101532721B1 (en) Spatially selective laser annealing applications in high-efficiency solar cells
CN105514207B (en) Method for preparing integrated bypass diode of multi-junction solar cell
CN112382672A (en) PERC double-sided solar cell and manufacturing method thereof
IT8023526A1 (en) PROCEDURE FOR THE ABSORPTION OF CONTAMINANTS, DEFECTS OR SIMILAR IN A SEMICONDUCTOR BODY
JPS59152671A (en) Manufacture of solar battery
JP7349509B2 (en) How to manufacture solar cells
JPH0513543B2 (en)
JP2585403B2 (en) Solar cell manufacturing method
JPS60216538A (en) Diffusing method of impurity to semiconductor substrate
US20140357009A1 (en) Process For Manufacturing A Photovoltaic Cell
US4230508A (en) Method of making semicrystalline silicon article
US4194212A (en) Semicrystalline silicon article and method of making same
JPS5956775A (en) Manufacture of solar battery
JPS5987877A (en) Manufactue of solar cell