JPS59152620A - Surface treatment of compound semiconductor - Google Patents

Surface treatment of compound semiconductor

Info

Publication number
JPS59152620A
JPS59152620A JP2717683A JP2717683A JPS59152620A JP S59152620 A JPS59152620 A JP S59152620A JP 2717683 A JP2717683 A JP 2717683A JP 2717683 A JP2717683 A JP 2717683A JP S59152620 A JPS59152620 A JP S59152620A
Authority
JP
Japan
Prior art keywords
compound semiconductor
sputtering
ion
inp
semiconductor crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2717683A
Other languages
Japanese (ja)
Inventor
Kentarou Onabe
尾鍋 研太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP2717683A priority Critical patent/JPS59152620A/en
Publication of JPS59152620A publication Critical patent/JPS59152620A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To remove impurities adsorbed on the surface of compound semiconductor crystal by sputtering the surface of the compound semiconductor crystal by low speed ions before accumulating a thin film. CONSTITUTION:An InP single-crystal wafer 2 is put into a vacuum chamber 1. After the vacuum chamber is exhausted, high purity Ar gas is introduced to keep a required pressure. Then ion gas is operated. In this process, component adsorbed on the surface are almost evaporated and scattered by sputtering action of the Ar ion and the clean InP surface can be obtained. After the sputtering is completed, the vacuum chamber 1 is exhausted again and the accumulation of a thin film is started. This method can also be applied to an In1-xGaxP1-yAsy wafer instead of the InP single crystal wafer.

Description

【発明の詳細な説明】 本発明は化合物半導体結晶の表面処理方法に関する。[Detailed description of the invention] The present invention relates to a method for surface treatment of compound semiconductor crystals.

方法として、当該半導体を高温に加熱する方法が従来一
般に用いられている。しかしこの方法は、表面に吸着し
てiる炭化水素、酸素、水蒸気等の不純物を完全に除去
するには不十分でちることが、第1図(atに示したオ
ージェ電子分光分析の結果より明らかである。この°よ
うな残留不純物のある化の不適により、オーミック性不
良、1瀧特性の劣化等の不都合を引き起こす。
A commonly used method is to heat the semiconductor to a high temperature. However, the results of Auger electron spectroscopy shown in Figure 1 (at) show that this method is insufficient to completely remove impurities such as hydrocarbons, oxygen, and water vapor adsorbed on the surface. It is obvious that the presence of such residual impurities causes inconveniences such as poor ohmic properties and deterioration of 100% characteristics.

本発明の目的は、以上のような従来法の欠点を面の吸着
不純物を十分除去する方法を提供するこ本発明によれば
、薄膜l槓に先んじて化合物半導体結晶表面を低速イオ
ンによシスバッタすること釦より化合物半導体結晶表面
上の吸着不純物を除去することが可能である。
An object of the present invention is to provide a method for sufficiently removing adsorbed impurities on a surface to overcome the drawbacks of the conventional method. It is possible to remove adsorbed impurities on the surface of the compound semiconductor crystal using the button.

以下本発明について、InP単結晶ウェーハ表面を例に
と9図を参照しながら詳細に説゛明する。第2図は本発
明における一実施例を示す図である〇真空容器1中にお
かれたInP単結晶ウェーハ2に対向して、イオンガン
3、およびオージェ電子分光分析のための電子銃4、分
析部であるCMA5が設置されている。InP単結晶ウ
ェーハ2線ホルダー6を通してアースされている。真空
容器1はイオンポンプ7如よル高真空に排気可能でδり
、Arガスが適量導入できるような導入口8が付属して
いる。薄膜形成の為の付属装置および真空ゲージは特に
図示していない。InP単結晶ウェーハ2は真空容器l
へ投入される直前に1化学エツチング等で表面処理を施
されておシ、結晶表面には空気中からの汚染物質である
炭化水素、酸素、水蒸純度のArガスを1・〜5xIO
−5Torr 導入して圧力を保つ。次にイオンガンを
加速電圧I KV、イオン電流10mAで約10秒開動
作きせる。仁の過程で表面ニ吸着している成分はArイ
オンのスパッタ作用り目はとんどの場合蒸発飛散し、清
浄なInP表面が得られる。連れは5イオンガンの動作
と並行して動作させたオージェ分析のデータより明らか
であシ、第1図(b)に示したようにInP単結単結晶
ウェー面表面上いてCおよび0が検出されなくなる。ス
パッタ時間は、吸着量に応じて最大1分間程度までは許
容され、これ以上になるとlnP単結晶ウェーハ表面に
損傷を、与えかねないので結晶性保存の観点よシ好まし
くない。スパッタ終了後は、再び真空容器1を10−8
〜10−gTorrに排気した後、講 薄膜層積の過程に移ればよい。上記の条件はInP単結
晶ウェーハの代わり忙I” 1− X G” xP z
 −yAs y (0≦x<1.0<y<1 )  で
あっても同様に使える。
The present invention will be described in detail below with reference to FIG. 9, taking the surface of an InP single crystal wafer as an example. FIG. 2 is a diagram showing an embodiment of the present invention. An ion gun 3, an electron gun 4 for Auger electron spectroscopy, and an analysis CMA5, which is a department, is installed. It is grounded through the InP single crystal wafer two-wire holder 6. The vacuum container 1 can be evacuated to a high vacuum using an ion pump 7, and is provided with an inlet 8 through which an appropriate amount of Ar gas can be introduced. Accessories for thin film formation and vacuum gauges are not particularly shown. InP single crystal wafer 2 is placed in a vacuum container l
Immediately before being introduced into the crystal, the crystal surface is subjected to a surface treatment such as chemical etching, and the surface of the crystal is exposed to 1.~5xIO of Ar gas with a purity of hydrocarbons, oxygen, and water vapor, which are contaminants from the air.
-5 Torr is introduced and the pressure is maintained. Next, the ion gun was opened for about 10 seconds at an accelerating voltage of I KV and an ion current of 10 mA. In most cases, the components adsorbed on the surface during the cracking process evaporate and scatter due to the sputtering action of Ar ions, resulting in a clean InP surface. This is clear from the data of Auger analysis performed in parallel with the operation of the 5-ion gun, and as shown in Figure 1(b), C and 0 were detected on the surface of the InP single crystal wafer. It disappears. The sputtering time is permissible up to about 1 minute depending on the amount of adsorption, and if it is longer than this, it may damage the surface of the InP single crystal wafer, which is not preferable from the viewpoint of preserving crystallinity. After sputtering is completed, vacuum container 1 is heated to 10-8 again.
After evacuation to ~10-gTorr, it is sufficient to proceed to the process of laminating the thin film. The above conditions can be used instead of InP single crystal wafer.
-yAs y (0≦x<1.0<y<1) can be similarly used.

以上説明したように、化合物半導体結晶表面上低速イオ
ンによりスパッタし、しかる後に真空を破る過程を経る
ことなく薄膜堆積を行うことにより不純物を包含しない
半導体結晶−薄膜界面を形成することが可能である。
As explained above, it is possible to form a semiconductor crystal-thin film interface that does not contain impurities by sputtering slow ions onto the surface of a compound semiconductor crystal and then depositing a thin film without going through the process of breaking the vacuum. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスパッタ処理の有無による結晶表面汚染の程度
を比較したオージェ電子分光分析結果を示す図、第2図
は本発明の実施例における真空容器内の構成を示す図で
あるみ 図において、1・・・真空容器、2・・・化合物半導体
(InP )単結晶ウェニハ、3・・・イオンガン、4
・・・電子銃、5・・・CMA、6・・・ホルダー、7
.・、イオンポンプ、8・・・Arガス導入口。 代理人弁理士内雄   鮒 第1図 0     θ2    0.4     (16°8
1オー シエ@手 エネルキ”〜 (KeV〕第Z図
FIG. 1 is a diagram showing the results of Auger electron spectroscopy comparing the degree of crystal surface contamination with and without sputtering treatment, and FIG. 2 is a diagram showing the configuration inside the vacuum container in an example of the present invention. 1... Vacuum container, 2... Compound semiconductor (InP) single crystal wafer, 3... Ion gun, 4
...Electron gun, 5...CMA, 6...Holder, 7
..・Ion pump, 8...Ar gas inlet. Representative Patent Attorney Uchio Funa Figure 1 0 θ2 0.4 (16°8
1 O sie @ hand energy” ~ (KeV) Diagram Z

Claims (1)

【特許請求の範囲】 当該真空容器内で当該化合物半導体結晶表面上をイオン
スパッタすることを特徴とする化合物半導体結晶表面の
処理方法。 2、 化合物半導体結晶としてInPまたは工n1−x
Gaxp □−7ASy (0≦x < 1 + 0 
< y≦1)単結晶を用い、イオンとしてMを用いる仁
とを特徴とする特許請求の範囲第1項記載の表面処理方
法。 3、  Arイオンスパッタの条件を、Ar W囲気圧
力lないし5xlOTorrsイオン加速電圧IKV以
下、イオン電流10mA以下、スパッタ時間1分以内に
設定する仁とを特徴とする特許請求の範囲第2項記載の
表面処理方法。
[Scope of Claims] A method for treating the surface of a compound semiconductor crystal, which comprises performing ion sputtering on the surface of the compound semiconductor crystal within the vacuum vessel. 2. InP or InP as a compound semiconductor crystal
Gaxp □-7ASy (0≦x<1+0
<y≦1) The surface treatment method according to claim 1, characterized in that a single crystal is used and M is used as an ion. 3. The method according to claim 2, wherein the conditions for Ar ion sputtering are set to an Ar W ambient pressure of 1 to 5xlOTorrs, an ion acceleration voltage of IKV or less, an ion current of 10 mA or less, and a sputtering time of 1 minute or less. Surface treatment method.
JP2717683A 1983-02-21 1983-02-21 Surface treatment of compound semiconductor Pending JPS59152620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2717683A JPS59152620A (en) 1983-02-21 1983-02-21 Surface treatment of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2717683A JPS59152620A (en) 1983-02-21 1983-02-21 Surface treatment of compound semiconductor

Publications (1)

Publication Number Publication Date
JPS59152620A true JPS59152620A (en) 1984-08-31

Family

ID=12213754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2717683A Pending JPS59152620A (en) 1983-02-21 1983-02-21 Surface treatment of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS59152620A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166229A (en) * 1986-12-27 1988-07-09 Sumitomo Special Metals Co Ltd Eliminating method for surface process denatured layer on insb semiconductor wafer
CN114042684A (en) * 2022-01-12 2022-02-15 北京通美晶体技术股份有限公司 Indium phosphide wafer and mixed cleaning process thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166229A (en) * 1986-12-27 1988-07-09 Sumitomo Special Metals Co Ltd Eliminating method for surface process denatured layer on insb semiconductor wafer
JPH0530300B2 (en) * 1986-12-27 1993-05-07 Sumitomo Spec Metals
CN114042684A (en) * 2022-01-12 2022-02-15 北京通美晶体技术股份有限公司 Indium phosphide wafer and mixed cleaning process thereof
CN114042684B (en) * 2022-01-12 2022-03-22 北京通美晶体技术股份有限公司 Indium phosphide wafer and mixed cleaning process thereof

Similar Documents

Publication Publication Date Title
JP2674488B2 (en) Dry etching chamber cleaning method
EP0047002B1 (en) Plasma etching apparatus
JPH05315098A (en) Process device
JPH0555184A (en) Cleaning method
JPS59152620A (en) Surface treatment of compound semiconductor
JPH04336426A (en) Manufacture of semiconductor device
JPH09148255A (en) Cleaning method in reaction container
JPH05326477A (en) Method for removal of halogen from semiconductor substrate surface
JPH0239523A (en) Method of forming film on semiconductor substrate
JPH09263931A (en) Vacuum treatment and vacuum treating device
JP2558273B2 (en) Surface cleaning method
Thomas et al. Lattice defects and surface properties of clean germanium
JPH05198515A (en) Semiconductor treatment device and semiconductor pretreatment device
JPS59162200A (en) Cleaning of surface of silicon substrate
JPH07316809A (en) Production of thin film of aluminum nitride
Ramm et al. Dry hydrogen plasma cleaning for local epitaxial growth
JPH04199708A (en) Plasma etching method
JPH03211280A (en) Method for degassing cvd device
JP3446352B2 (en) Vacuum evacuation method for vacuum pre-chamber
JP2544129B2 (en) Plasma processing device
JPS6057634A (en) Formation of surface protective film
JPH0212914A (en) Etching device
JPH06158270A (en) Production of high yield strength film for laser
JPH1112722A (en) Magnesium oxide for vacuum-deposition
JPS643840B2 (en)