JPS59152389A - Preparation of sulfenimine derivative - Google Patents

Preparation of sulfenimine derivative

Info

Publication number
JPS59152389A
JPS59152389A JP58025231A JP2523183A JPS59152389A JP S59152389 A JPS59152389 A JP S59152389A JP 58025231 A JP58025231 A JP 58025231A JP 2523183 A JP2523183 A JP 2523183A JP S59152389 A JPS59152389 A JP S59152389A
Authority
JP
Japan
Prior art keywords
group
formula
general formula
substituted
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58025231A
Other languages
Japanese (ja)
Other versions
JPH0561355B2 (en
Inventor
Shigeru Torii
滋 鳥居
Hideo Tanaka
秀雄 田中
Nobuhito Tada
多田 信仁
Junzo Nogami
野上 潤造
Michio Sasaoka
笹岡 三千雄
Takashi Shiroi
城井 敬史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Otsuka Kagaku Yakuhin KK
Original Assignee
Otsuka Chemical Co Ltd
Otsuka Kagaku Yakuhin KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Otsuka Kagaku Yakuhin KK filed Critical Otsuka Chemical Co Ltd
Priority to JP58025231A priority Critical patent/JPS59152389A/en
Publication of JPS59152389A publication Critical patent/JPS59152389A/en
Publication of JPH0561355B2 publication Critical patent/JPH0561355B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Cephalosporin Compounds (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To prepare the titled compound useful as a synthetic intermediate of antibiotic substance, in high yield, by the electrolytic reaction of beta-lactam compound with a disulfide in a water-containing organic solvent in the presence of a halide salt. CONSTITUTION:The objective compound of formula IV is prepared by the electrolytic reaction of the beta-lactam compound of formula I [>Y is group of formula IIor III (R<1> is H or carboxyl-protecting group)] with the disulfide of formula R<2>-S-S-R<2> [R<2> is (substituted) heterocyclic aromatic group] in a water-containing organic solvent in the presence of a halide salt (preferably a bromide salt), preferably with electrical quantity of 2-3F per 1mol of beta-lactam compound.

Description

【発明の詳細な説明】 本発明はスルフエυイ!:、7誘導体の製造法、更に詳
しくは一般式 〔式中R2は置換もしくは未置換のアリール基又は置換
もしくは未置換の複素芳香環基を示す。ンYR1は水素
原子又はカルポジ酸保護基を示す。〕で表わされるスル
フェンイミン誘導体の新規な製造法に関する。
[Detailed Description of the Invention] The present invention is useful! :, 7 derivative production method, more specifically the general formula [wherein R2 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaromatic ring group]. YR1 represents a hydrogen atom or a carposi acid protecting group. This invention relates to a novel method for producing a sulfenimine derivative represented by

上記一般式(1)で表わされるスルフェンイミン誘導体
は、文献未載の新規化合物を包含しており、該誘導体は
C−6位置換ペニシリシ又はC−7位置換セファOスポ
リシ等の抗生物質製造における重要な合成中間体として
有用である。例えば以下の反応式に示される方法に従い
、一般式(1)で表わされるスルフェンイミン誘導体は
、塩基又は酸触媒下メタノールで処理する簡単な操作で
目的のc−7位メト牛シ置換tファOスボリシ又はC−
6位メト+シ置換ベニシリシに変換できる。
The sulfenimine derivatives represented by the above general formula (1) include new compounds that have not been published in the literature, and these derivatives are used for the production of antibiotics such as C-6-substituted penicillis or C-7-substituted cepha-O sporisci. It is useful as an important synthetic intermediate. For example, according to the method shown in the reaction formula below, the sulfenimine derivative represented by the general formula (1) can be prepared by a simple procedure of treatment with methanol under a base or acid catalyst. O Suborishi or C-
It can be converted to benicilisi substituted with meth+cy at the 6th position.

(1)              (2)(3) 〔式中R2、ンYは前記に同じ。R−C−はアシル基1 を示す。〕 本発明において、R1で示されるカルボン酸保護基とし
ては、例えばベンジル基、P−ニド0フエニルメチル基
、p−メト中ジフェニルメチル基、ジフェニルメチル基
、アリル基、メチル基、2,2゜2−トリク0ルエチル
基、2−づロ七エチル基等が挙げられる。R2で示され
る置換もしくは未置換のアリール基としては、例えばフ
ェニル基、P−二トロフェニル基、P−メチルフェニル
基、P−メチルフェニル基、ペンタフ0ルフエニル基等
が挙げられる。また置換もしくは未置換の複素芳シリル
基等が挙げられる。
(1) (2) (3) [In the formula, R2 and Y are the same as above. RC- represents an acyl group 1. ] In the present invention, the carboxylic acid protecting group represented by R1 includes, for example, a benzyl group, a p-nido phenylmethyl group, a diphenylmethyl group in p-meth, a diphenylmethyl group, an allyl group, a methyl group, 2,2゜2 Examples include -trichlorethyl group, 2-dichloroethyl group, and the like. Examples of the substituted or unsubstituted aryl group represented by R2 include a phenyl group, a P-nitrophenyl group, a P-methylphenyl group, a P-methylphenyl group, and a pentafluorophenyl group. Also included are substituted or unsubstituted heteroaromatic silyl groups.

本発明の方法によれば、上記一般式(1)で表わされる
スルフェンイミン誘導体は、一般式〔式中〕Yは前記に
同じ。〕で表わされるβ−ラクタム化合物と一般式 %式%(5) 〔式中R2は前記に同じ。〕で表わされるジスルフィド
とを含水有機溶媒中ハライド塩の存在下に電解反応させ
ることによシ製造される。本発明の方法に従えば、安定
で取扱いが容易なジスルフィドから直接に目的とするス
ルフェンイミン誘導体(1)を収率よく製造することが
できる。
According to the method of the present invention, the sulfenimine derivative represented by the above general formula (1) has the general formula [wherein] Y is the same as above. ] and a β-lactam compound represented by the general formula % formula % (5) [wherein R2 is the same as above. ] in the presence of a halide salt in a water-containing organic solvent. According to the method of the present invention, the desired sulfenimine derivative (1) can be produced in good yield directly from disulfide, which is stable and easy to handle.

本発明の方法において原料として用いられる一般式(4
)で表わされるβ−ラクタム化合物と一般式(5)で表
わされるジスルフィドとの使用割合としては特に制限さ
れず広い範囲内から適宜選択することができるが、通常
前者に対し後者を0.5〜、・4借上ル、好ましくは等
モル〜1.5倍モル使用するのがよい。本発明の方法に
用いられる含水有機溶媒は、必ずしも均一溶媒である必
要はなく、好ましくは水−有機溶媒の二層からなる不均
一系溶媒が用いられる。含水有機溶媒に用いられる有機
溶媒の具体例としては、例えば塩化メチレジ、クロロホ
ルム、四塩化炭素、ジクOルエタυ等のへ0ゲシ化パラ
フィン類、ベシゼシ、トルエy1り0ルベシゼシ等の芳
香族炭化水素類、′jOじオニトリル、アt +−ニト
リル等のニトリル類、酢酸エチル、酢酸メチル、f酸エ
チル等の低級カルポジ酸エステル類、メタノール、エタ
ノール、第三級づタノール等のアルコール類、ジエチル
エーテル、テトラしドロフラジ、ジオ中サシ等のエーテ
ル類などが挙げられるが、これらの溶媒群の中から選ば
れる1種単独もしくは2種以上の混合溶媒が用いられる
。好ましくはハロゲン化バラフィシ、芳また添加される
ハライド塩としては、例えば塩素塩、臭素塩、沃素塩が
用いられるが、好ましくは臭素塩が用いられる。用いる
臭素塩の具体例としてはLiBr %NaBr 、 K
J3r、MgBr2.1)aBr2などの金属塩が挙げ
られる。添加されるハライド塩の量としては、特に限定
がなく広い範囲内から適宜選択できるが、通常β−ラク
タム誘導体(1)に対して0.1〜5倍七借上好ましく
は0.5〜2倍[ル用いるのがよい。
General formula (4) used as a raw material in the method of the present invention
) The ratio of the β-lactam compound represented by the formula (5) to the disulfide represented by the general formula (5) is not particularly limited and can be appropriately selected from a wide range, but the ratio of the latter to the former is usually 0.5 to 0.5. , 4, preferably from equimolar to 1.5 times the molar amount. The water-containing organic solvent used in the method of the present invention does not necessarily have to be a homogeneous solvent, and preferably a heterogeneous solvent consisting of two layers of water and an organic solvent is used. Specific examples of organic solvents used as the water-containing organic solvent include, for example, methylene chloride, chloroform, carbon tetrachloride, dichloromethane paraffins such as dichloromethane, aromatic hydrocarbons such as toluene, toluene, etc. Nitriles such as 'jO dionitrile and at+-nitrile, lower carbodiic acid esters such as ethyl acetate, methyl acetate, and ethyl f-acid, alcohols such as methanol, ethanol, and tertiary ditanol, diethyl ether Examples include ethers such as , tetrahydroflag, and diochusashi, and one solvent selected from these solvent groups or a mixture of two or more solvents may be used. Preferably, a halogenated salt is used, and as the halide salt to be added, for example, a chlorine salt, a bromine salt, or an iodine salt is used, and a bromine salt is preferably used. Specific examples of bromine salts used include LiBr%NaBr, K
Examples include metal salts such as J3r, MgBr2.1)aBr2. The amount of halide salt to be added is not particularly limited and can be appropriately selected within a wide range, but is usually 0.1 to 5 times the amount of β-lactam derivative (1), preferably 0.5 to 2 times. It is better to use double.

電解槽としては、通常の電解反応で用いられる隔膜を有
しない単一セルが用いられるが、分離セルを用いてもよ
い。電極は市販されている電極が用いられるが、好まし
くは白金電極、炭素電極、白金で表面処理したチタシ電
極、酸化鉛電極などが用いられる。通電量としては、反
応槽の型状や溶媒の種類により必ずしも一定しないが、
β−ラクタム化合物(1)’Itルに対して通常2.5
〜15F/℃ル、好ましくは3〜6F/Eルである。ま
た電流密度は通常1rnA〜500 mAの範囲で一定
に保って行われるが、特に限定はない。また本発明では
端子電圧を2〜50Vの範囲で電解を行うこともできる
。本発明の電解反応の際の温度としては、用いる反応基
質、溶媒などにより一定しないが0〜50℃、好ましく
は5〜30℃で行われる。
As the electrolytic cell, a single cell without a diaphragm used in a normal electrolytic reaction is used, but a separate cell may also be used. Commercially available electrodes can be used as the electrodes, but platinum electrodes, carbon electrodes, platinum-surface-treated titanium electrodes, lead oxide electrodes, and the like are preferably used. The amount of current applied is not necessarily constant depending on the shape of the reaction tank and the type of solvent, but
Usually 2.5 to β-lactam compound (1)
-15F/°C, preferably 3-6F/E. Further, the current density is usually kept constant in the range of 1 rnA to 500 mA, but there is no particular limitation. Further, in the present invention, electrolysis can be performed at a terminal voltage in the range of 2 to 50V. The temperature during the electrolytic reaction of the present invention varies depending on the reaction substrate, solvent, etc. used, but it is carried out at 0 to 50°C, preferably 5 to 30°C.

得られた生成物は通常の抽出操作を行ったのちカラムク
ロマドあるいは再結晶などの方法によシ精製することが
できる。
The obtained product can be purified by a method such as column chromatography or recrystallization after performing a conventional extraction operation.

本発明の上記一般式(1)で表わされるスルフエシイミ
シ誘導体は、次の方法によりても製造される。即ち、一
般式 〔式中〉Yは前記に同じ。〕で表わされるβ−ラクタム
化合物と一般式 %式%(5) 〔式中R2は前記に同じ。〕で表わされるジスルフィド
とを含水有機溶媒中ハライド塩の存在下に電解反応させ
て一般式 〔式中R及び>yは前記に同じ。〕で表わされ、るスル
フニジアミド誘導体を得、次いで得られる一般式(6)
で表わされるスルフェンアミド誘導体を電解反応させる
ことにより、一般式(1)で表わされる本発明の化合物
が製造される。
The sulfene derivative represented by the above general formula (1) of the present invention can also be produced by the following method. That is, Y in the general formula is the same as above. ] and a β-lactam compound represented by the general formula % formula % (5) [wherein R2 is the same as above. ] in the presence of a halide salt in a water-containing organic solvent to form a disulfide represented by the general formula [where R and >y are the same as above. ] is obtained, and then the obtained general formula (6) is obtained.
The compound of the present invention represented by the general formula (1) is produced by electrolytically reacting the sulfenamide derivative represented by the formula (1).

一般式(4)のβ−ラクタム化合物と一般式(5)のジ
スルフィドとの電解反応は、通電量を少なくする以外は
上述した電解反応条件下に行なうことができる。通電量
としては、反応槽の型状や溶媒の種類によシ異なルー概
には言えないが、β−ラクタム化合物(4)1モル当シ
通常2〜10F/七ル、好ましくは2〜3 F/’fニ
ルとするのがよい。
The electrolytic reaction between the β-lactam compound of the general formula (4) and the disulfide of the general formula (5) can be carried out under the above-mentioned electrolytic reaction conditions except that the amount of current applied is reduced. The amount of current to be applied varies depending on the shape of the reaction tank and the type of solvent, but it is usually 2 to 10 F/7, preferably 2 to 3 F/7 per mole of β-lactam compound (4). It is preferable to set it as F/'fnil.

通電量が多くなると、一般式(1)で表わされるスルフ
エンイ三シ誘導体の生成量が増加する。
As the amount of current applied increases, the amount of the sulfene derivative represented by the general formula (1) increases.

次に生成する一般式(6)で表わされるスルフニジアミ
ド誘導体の電解反応は、ジスルフィドを加えない以外は
上述したスルフエシイミシ(1)(7)&成の電解条件
と同条件下に行なうことができる。
The electrolytic reaction of the sulfunidiamide derivative represented by the general formula (6) to be produced next can be carried out under the same electrolytic conditions as the above-mentioned sulfuric acid derivatives (1), (7) & formation, except that disulfide is not added.

以下に実施例を砧げる。Examples are given below.

実施例 l (4σ) (lα) 6(β)−アミノペニシラシ酸ベンジルエステル(44
) 23 ”i’ (0,076mmoL )とフェニ
ルジスルフィド22mt(0−レnm、ol )と臭化
マグネシウム23 W (0,13mmal )とを秤
りとり、ジグ0ルメタ、7(2ml)、メタノール(0
,51R7りと水(2−)とを加える。これに白金電極
(l x I−5gJ) 2枚を挿入しはげしくかきま
ぜながら室温下、l Q mAの電流を50分間通電し
て電解を行った。通電電気量は、6(β)−アミノ慣ニ
シラシ酸べ−Jジルエステル(4α)に対して4 p 
/ molに相当する。反応混合物は数分間静置したの
ち有機層をぬきとり飽和食塩水2回洗いNα2SO4上
で乾燥する。減圧下溶媒を留去したのち残渣をシリカゲ
ルクロマト(展開溶媒:へ+サシー酢酸エチル 50/
l )で産前製すると6−フエニルスルフエシイ三ノベ
ニシリシ酸ベンジルエステル(lα)25.6η(収率
82%)が得られた。
Example l (4σ) (lα) 6(β)-aminopenicillacic acid benzyl ester (44
) 23"i' (0,076 mmol), phenyl disulfide 22mt (0-lenm, ol) and magnesium bromide 23W (0,13 mmol) were weighed, and 23"i" (0,076 mmol), phenyl disulfide 22mt (0-lenm, ol) and magnesium bromide 23W (0,13 mmol) were weighed, and 23"i" (0,076 mmol) and methanol ( 0
, 51R7 and water (2-) are added. Two platinum electrodes (l x I-5 gJ) were inserted into this, and electrolysis was carried out by applying a current of l Q mA for 50 minutes at room temperature while stirring vigorously. The amount of electricity to be applied is 4 p for 6(β)-amino disilicic acid base-J diester (4α).
/ mol. After the reaction mixture was allowed to stand for several minutes, the organic layer was removed, washed twice with saturated brine, and dried over Nα2SO4. After distilling off the solvent under reduced pressure, the residue was chromatographed on silica gel (developing solvent: H + Sacy ethyl acetate 50/
1), 25.6η (yield 82%) of 6-phenylsulfene trinobenicilisic acid benzyl ester (lα) was obtained.

JRスペクトル(CHCl3)  3500.3059
.1779.1745.1649、+582+1771
11−NMRスペクトル(CDC1鷲)δ1.44(、
r、3ff)、1.55(ε、3H)、5.21(J。
JR spectrum (CHCl3) 3500.3059
.. 1779.1745.1649, +582+1771
11-NMR spectrum (CDC1 Eagle) δ1.44 (,
r, 3ff), 1.55 (ε, 3H), 5.21 (J.

2H)、5.75(j 、 IH)、?−36(8、5
H)、7、18−7.69(m、 5H) 元素分析 C15H□803N2sとしての計算値=(
’61.13   ;  H4,89チ分析値:、 C
61,09;  H4,96チ実施例 2〜6 表1に示す条件以外は実施例1に示す方法と同様にして
行った。
2H), 5.75(j, IH), ? -36 (8, 5
H), 7, 18-7.69 (m, 5H) Elemental analysis Calculated value as C15H□803N2s = (
'61.13; H4,89 analysis value:, C
61,09; H4,96 Examples 2 to 6 The same method as in Example 1 was carried out except for the conditions shown in Table 1.

実施例 7 (4α) (lh) 6(β)−アミノベニシラシ酸ベシジルエステル(4(
E) 21.5 ”? (0,07mmol )、(2
−ベシジチアジリル)、;スルフィド24.5■(0,
073mmol)と臭化マグネシウム・6水和物26■
(0,09mmoL )とを秤りとシこれにジクロルメ
タ、y(2m/)、メタノール(0,5m/)と水(2
d)とを加える。つぎに白金電極(I X 1.5i)
 2枚を挿入しはげしくかきまぜながら、室温下、10
m、4の電流を90分間通電して電解する。反応混合物
は実施例1と同様に処理すると6−(2−ベシジチアソ
リル)スルフエンイ三ノペニシリシ酸ベシジルエステル
(i)28■(収率84%)が得られた。
Example 7 (4α) (lh) 6(β)-aminobenicillacic acid besidyl ester (4(
E) 21.5”? (0.07mmol), (2
-besidithiazylyl),; sulfide 24.5■ (0,
073 mmol) and magnesium bromide hexahydrate 26■
(0.09 mmol) and add dichlormeth, y (2 m/), methanol (0.5 m/) and water (2 m/).
d) Add. Next, platinum electrode (I x 1.5i)
Insert 2 sheets and stir vigorously for 10 minutes at room temperature.
Electrolysis is carried out by applying a current of m, 4 for 90 minutes. The reaction mixture was treated in the same manner as in Example 1 to obtain 6-(2-besidithiazolyl)sulfenysinopenicilisic acid besidyl ester (i) (28 ml) (yield: 84%).

JRスペクトル(cllct3)  l 781.17
41.1465 CrCrn −11HN?スペクトル(cnct3)1.44 (S
 、 377’)、1.54 (,9、3#)、4.6
7 (# 。
JR spectrum (cllct3) l 781.17
41.1465 CrCrn-11HN? Spectrum (cnct3) 1.44 (S
, 377'), 1.54 (,9, 3#), 4.6
7 (#.

177)、5.19 (5,2H)、5.82 (1、
l 、Z7’)、7.34 (−? 、 5H)、7.
18−7.98(m、41元素分析 C2211□9N
303S3としての計q−値:C56,25;  H4
,08% 分析値: C56,09;  H4,38チ実施例 8 (4h)            (IC)7(β)−
ア三ノセファロスポリシ酸べ、7ジルエステル(4b)
 35−535−5WCO−12)  とフェニルジス
ルフィド28w1(0,13mm01)と臭化ナトリウ
ムI 3f (0,125mm0L )とを秤シとり、
これにジクロルメタシ(2d)、メタノール(0,5m
1)と水(2mA’)とを加える。つぎに白金電極(1
,5xlCJ)2枚を挿入しはげしくかきまぜ寿からI
OmAの電流を110分通電して電解を行う。通電電気
量は7(β)−アミノセファロスポリシ酸ベシジルエス
テル(4h)に対して6p/moLに相当する。反応混
合物は実施例1と同様に処理して7−フェニルスルフエ
ンイミノセファロスポリシ酸ベンジルエステル(le)
33■(収率71チ)を得た。
177), 5.19 (5,2H), 5.82 (1,
l, Z7'), 7.34 (-?, 5H), 7.
18-7.98 (m, 41 elemental analysis C2211□9N
Total q-value as 303S3: C56,25; H4
,08% Analysis value: C56,09; H4,38 Example 8 (4h) (IC)7(β)-
Atrinocephalosporosporic acid salt, 7-dyl ester (4b)
35-535-5WCO-12), phenyl disulfide 28w1 (0.13mm01) and sodium bromide I3f (0.125mm0L),
To this, dichloromethane (2d), methanol (0.5m
1) and water (2 mA'). Next, platinum electrode (1
, 5xlCJ) and stir vigorously.
Electrolysis is performed by applying a current of OmA for 110 minutes. The amount of electricity applied was equivalent to 6 p/mol for 7(β)-aminocephalosporic acid besidyl ester (4 h). The reaction mixture was treated as in Example 1 to obtain 7-phenylsulfeniminocephalosporic acid benzyl ester (le).
33cm (yield: 71cm) was obtained.

IRスペクトル(CHCl3)  2920.1779
.1725.1585crn 1ENMRスペクトル(CDCl2) δ2. II (S 、 311>、3.15(d、 
1j7.J=18.MZ)、3.35(d、 lH,J
=1811χ)、5.19(−r 、 Iff)、5.
27 (& 、 2H) 、 7.33 (! 、 5
H)、7、12−7.63 (m 、 5H)元素分析
 C□2H□8N203S2としての計算値:C61,
43;  H4,42% 分析値: C61,52;  H4,52%実施例 9
〜12 表2に示す条件以外は、実施例8と同様にして行った。
IR spectrum (CHCl3) 2920.1779
.. 1725.1585crn 1ENMR spectrum (CDCl2) δ2. II (S, 311>, 3.15(d,
1j7. J=18. MZ), 3.35 (d, lH, J
=1811χ), 5.19(-r, Iff), 5.
27 (&, 2H), 7.33 (!, 5
H), 7, 12-7.63 (m, 5H) Elemental analysis Calculated value as C□2H□8N203S2: C61,
43; H4, 42% Analysis value: C61,52; H4, 52% Example 9
~12 The same procedure as in Example 8 was carried out except for the conditions shown in Table 2.

実施例 13 (4b) (6α) CO2CH2Pル (ld) 7(β)−アミノセファ0スポリシ酸ベシジルエステル
(412) 33 W (0,2I mm6L )と(
2−ヘyゾチアゾリル)ジスルフィド11キ(0,I 
1 mmol )と臭化ナトリウムl 1.5 W (
0,1171LmOt)とを秤りとり、これに、;り0
ルメタ、7(2ゴ)、メタノール(0,5m1)と水(
2M)を加える。つぎに白金電極(IXl、5cJ)を
挿入しはげしくかきまぜなからlQmAの電流を105
分通電して電解する。通電電気量は7(β)−アミノセ
ファロスポリン酸へ′Jジルエステル(4b)に対して
6F / molに相当する。反応混合物は実施例1と
同様に処理すると7(β)−(2−ペンジチアシリル)
スルフェンアミノセファ0スポリシ酸ベシジルエステル
(6α)34.51ng(収率67チ)と7−(2−ペ
ンジチアシリル)スルフニジイミノセファOスポリシ酸
ベシジルエステル(Id)14■(収率28%)が得ら
れた。
Example 13 (4b) (6α) CO2CH2Ple(ld) 7(β)-aminocephaosporic acid besidyl ester (412) 33W (0,2I mm6L) and (
2-hezothiazolyl) disulfide 11k(0,I
1 mmol) and sodium bromide l 1.5 W (
0,1171LmOt), and add ;
Lumeta, 7 (2 go), methanol (0.5 ml) and water (
Add 2M). Next, insert a platinum electrode (IXl, 5 cJ) and, while stirring vigorously, apply a current of 1QmA to 105
Electrolyze by applying electricity. The amount of electricity applied corresponds to 6F/mol for 7(β)-aminocephalosporinic acid'J diester (4b). The reaction mixture was treated in the same manner as in Example 1 to give 7(β)-(2-pendithiacyl)
Sulfenaminocepha O sporic acid besidyl ester (6α) 34.51 ng (yield 67 ng) and 7-(2-pendithiacilyl)sulfunidiiminocepha O sporic acid besidyl ester (Id) 14 ng (yield 28 %)was gotten.

7(β)−(2−ペンジチアシリル)スルフェンアミノ
セファ0スポリシ酸ベシジルエステル(6α):IRス
ペクトル(ClIC13)  3342.298+、1
781,1722.1639crr!−1’HNMRス
ペクトル(CDC13) δ2.+1(7,3H)、3.22(d、、 Iff、
J=18ffz)、3.40C(L、IH,J=18H
1)、4.29Cc1.2E’。
7(β)-(2-pendithiacilyl)sulfenaminocephalosporic acid besidyl ester (6α): IR spectrum (ClIC13) 3342.298+, 1
781,1722.1639crr! -1'HNMR spectrum (CDC13) δ2. +1 (7,3H), 3.22 (d,, Iff,
J=18ffz), 3.40C(L, IH, J=18H
1), 4.29Cc1.2E'.

J=9Hz)、4.72−5.07 (m 、 2H)
、5.23 (z 、 2H)、7.32 (J= 、
 5H)、7、13−7.95 (711、4H)元素
分析 C22H工、N303S3としての計算値:C5
6,25;  H4,08% 分析値:(?56−52  ;  H4,lOチア−(
2−ペンジチアシリル)スルフエシイミノセファロスポ
リシ酸ベニJ!;ルエステル(ld) :JR(スペク
トル)  2920.1779.1725.1585 
cm−1 1HNMR(CDC13) δ2.1+(j、5H)、3.15C(L、 IH,x
sBz)、3−35 (d 、lH,18Hz )、5
.19(j、IH)、5.27 (、? 、 2H)、
7.33 (5,5H)、7、12−7.63 (m 
、 5H)元素分析 C2□H□8N203S2として
の計算値二〇61.+3  ;  H4,+2 係分析
値:C61,52;  H4,52%実施例 】4 (4α) (6b) 6(β)−ア三ノベニシラシ酸べ′Jジルエステル(4
α) + 24 ”? (0−4m mol )  と
2−ペンジチアシリルジスルフィドl 37v(0,4
1mm0L )  と臭化マクネシウム74v(0−1
Lmol )を秤りとり、これにジクロルメタシ(1(
1+/)とメタノール(2,5m/)と水(10mlと
を加える。つぎに白金電極(2X1.5i)2枚を挿入
し、はげしくかきまぜながら室温下、30 mAの電流
を50分間通電して電解を行った。通電電気量は、6(
β)−ア三ノペニシリシ酸ベシジルエステル(4α)に
対して3 p / moLに相当する。反応混合物は実
施例1と同様に処理すると6(β)−(2−ペンジチア
シリル)スルフエシアミノベニシラシ酸ベシジルエステ
ル(6b) 176Tq(収率92%)が得られる。
J=9Hz), 4.72-5.07 (m, 2H)
, 5.23 (z, 2H), 7.32 (J= ,
5H), 7, 13-7.95 (711, 4H) Elemental analysis Calculated value as C22H engineering, N303S3: C5
6,25; H4,08% Analysis value: (?56-52; H4,1O thia-(
2-Pendithiacilyl) sulfethiminocephalosporic acid Beni J! ester (ld): JR (spectrum) 2920.1779.1725.1585
cm-1 1HNMR (CDC13) δ2.1+ (j, 5H), 3.15C (L, IH, x
sBz), 3-35 (d, lH, 18Hz), 5
.. 19 (j, IH), 5.27 (,?, 2H),
7.33 (5,5H), 7,12-7.63 (m
, 5H) Elemental analysis Calculated value as C2□H□8N203S2 2061. +3; H4, +2 coefficient analysis value: C61,52; H4,52% Example] 4 (4α) (6b) 6(β)-Atrinobenicilacyic acid benzyl ester (4
α) + 24 ”? (0-4 mmol) and 2-pendithiasilyl disulfide l 37v (0,4
1mm0L) and magnesium bromide 74v (0-1
Weigh out Lmol) and add dichlormethane (1(
1+/), methanol (2.5 m/), and water (10 ml) were added. Next, two platinum electrodes (2 x 1.5 i) were inserted, and a current of 30 mA was applied for 50 minutes at room temperature while stirring vigorously. Electrolysis was performed.The amount of electricity applied was 6 (
β)-Aminopenicilisic acid besidyl ester (4α) corresponds to 3 p/mol. The reaction mixture is treated in the same manner as in Example 1 to obtain 6(β)-(2-pendithiacyl)sulfethyaminobenicilasic acid besidyl ester (6b) 176Tq (yield 92%).

IRスペクトル(CHCl3)  3290.3050
.3019.1780.1740.1495crn−1
’HNMRスペクトル(cnct3) δ1.46 (j 、 3j!7)、1.61 (、?
、 3H)、4.24 (d。
IR spectrum (CHCl3) 3290.3050
.. 3019.1780.1740.1495crn-1
'HNMR spectrum (cnct3) δ1.46 (j, 3j!7), 1.61 (,?
, 3H), 4.24 (d.

lH,J=10H1)、4.50(7,1M)、4.7
6CdcL、IH,J=10H1,4H1)、5.16
Cs、2M)、5.63(’、 IH,J=477z)
、7、14−7.94 (m 、 9H)元素分析 C
22H2□03N3S、としての計算値:C56,01
;  II 4−49% 分析値: C55,77;  H’1.47%実施例 
15〜19 表3に示した条件以外は実施例14の方法と同様に行っ
た。
lH, J=10H1), 4.50 (7,1M), 4.7
6CdcL, IH, J = 10H1, 4H1), 5.16
Cs, 2M), 5.63 (', IH, J=477z)
, 7, 14-7.94 (m, 9H) elemental analysis C
Calculated value as 22H2□03N3S: C56,01
; II 4-49% Analysis value: C55,77; H'1.47% Example
15-19 The same procedure as in Example 14 was carried out except for the conditions shown in Table 3.

実施例 20 (6h) (Ih) 6(β)−(2−ベシジチアジリル)スルフエシアミノ
ペニシラシ酸べ′Jジルエステル(6b)28、5 ”
Q (0,06mmol )と臭化マクネシウム・6水
和物26 m? (0,09mrnol )を秤りとり
、これにジクロルメタシ(2ml)、メタノール(0,
5d)と水(27nl)を加える。つぎに白金電極(1
,5XI Cd ) 2枚を挿入しはげしくかきまぜな
がら室温下、10mAの電流を20分間通電して電解を
行う。反応混合物は実施例1と同様に処理すると6−(
2−ベシソチアジリル)スルフエシイミノペニシラシ酸
ベシジルエステル(IA) 23my(収881%)が
得られた。
Example 20 (6h) (Ih) 6(β)-(2-besidithiazylyl)sulfethyaminopenicilasic acid benzyl ester (6b) 28,5''
Q (0.06 mmol) and magnesium bromide hexahydrate 26 m? (0.09 mrnol) was weighed out, dichloromethane (2 ml) and methanol (0.
5d) and water (27nl). Next, platinum electrode (1
, 5XI Cd), and electrolysis is performed by applying a current of 10 mA for 20 minutes at room temperature while stirring vigorously. The reaction mixture was treated as in Example 1 to give 6-(
23 my (yield: 881%) of besidyl 2-besisothiazyl)sulfethiminopenicillascilate (IA) was obtained.

生成物のNMR,JRスペクトルは実施例7で得た標品
のそれと完全に一致した。
The NMR and JR spectra of the product completely matched those of the standard sample obtained in Example 7.

実施例 21 C“02CII2ph (6a) Co2CH2Ph (Id) 7(β)−(2−ベシジチアゾリル)スルフニジアミノ
セファOスポリシ酸ベシジルエステル(6cL) 25
−5 W (0,06mmol )  と臭化ナトリウ
ム8# (0,08mm01 )とを秤シとり、これに
ジク0ルメタシ(2プ)とメタノール(0,5m1)と
水(2づ)とを加える。つぎに白金電極(IXl、5C
J)2枚を挿入しはげしくかきまぜなからlQm、、’
(の電流を54分間通電して電解する。通電電気量は7
(β)−(2−ベシジチアジリル)スルフエンアミノセ
ファロスポリシ酸ベシジルエステル(4d、)に対して
(5p / molに相当する。反応混合物は実施例1
と同様に処理すると7−(2−べ、′/ソチアゾリル)
スルフエンイミノセファロスポリシ酸べ、7ジルエステ
ル(1d)15■(収率62チ)が得られる。
Example 21 C“02CII2ph (6a) Co2CH2Ph (Id) 7(β)-(2-Besidithiazolyl)sulfunidiaminosepha O sporic acid besidyl ester (6cL) 25
-5 W (0.06 mmol) and 8# sodium bromide (0.08 mm01) were weighed, and to this were added diluted salt (2 units), methanol (0.5 ml), and water (2 units). . Next, platinum electrode (IXl, 5C
J) Insert two sheets and stir vigorously.lQm,,'
Electrolysis is performed by applying a current of ( ) for 54 minutes.The amount of electricity applied is 7
Corresponds to (5 p/mol) for (β)-(2-besidithiazylyl)sulfenaaminocephalosporic acid besidyl ester (4d,). The reaction mixture was prepared in Example 1.
When treated in the same manner as 7-(2-be,'/sothiazolyl)
15 μm (yield: 62 μm) of sulfeniminocephalosporosporic acid benzyl ester (1d) is obtained.

生成物(1d)のJR,’HNMRスペクトルは実施例
で得た標品のスペクトルと完全に一致した。
The JR,'H NMR spectrum of product (1d) completely matched the spectrum of the standard product obtained in the example.

(以 上)(that's all)

Claims (1)

【特許請求の範囲】 ■ 一般式 示す。ここでR1は水素原子又はカルポジ酸保護基を示
す。〕 で表わされるβ−ラクタム化合物と一般式%式% 〔式中R2は置換もしくは未置換のアリール基又は置換
もしくは未置換の複素芳香環基を示す。〕で表わされる
ジスルフィドとを含水有機溶媒中ハライド塩の存在下に
電解反応させて一般式〔式中R2及び>yは前記に同じ
。〕 で表わされるスルフエシイ三シ誘導体を得ることを特徴
とするスルフエυイ!ニジ誘導体の製造法。 ■ R2が置換もしくは未置換2−ベシゾチアジリル基
又は置換もしくは未置換フェニル基である特許請求範囲
第1項記載の方法。 ■ ハライド塩が臭素塩である特許請求範囲第1J%又
は第2項記載の方法。 ■ 含水有機溶媒が水層と有機層の二層からなる不均一
系溶媒である特許請求範囲第1項〜第3項のいずれかに
記載の方法。
[Claims] ■ A general formula is shown. Here, R1 represents a hydrogen atom or a carposi acid protecting group. ] A β-lactam compound represented by the general formula % Formula % [In the formula, R2 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaromatic ring group. ] in the presence of a halide salt in a water-containing organic solvent to form a disulfide represented by the general formula [where R2 and >y are the same as above]. ] Sulfure υi! is characterized by obtaining the sulfure derivative represented by ! Method for producing rainbow derivatives. (2) The method according to claim 1, wherein R2 is a substituted or unsubstituted 2-besizothiazylyl group or a substituted or unsubstituted phenyl group. (2) The method according to Claim 1J% or Claim 2, wherein the halide salt is a bromine salt. (2) The method according to any one of claims 1 to 3, wherein the water-containing organic solvent is a heterogeneous solvent consisting of two layers: an aqueous layer and an organic layer.
JP58025231A 1983-02-16 1983-02-16 Preparation of sulfenimine derivative Granted JPS59152389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025231A JPS59152389A (en) 1983-02-16 1983-02-16 Preparation of sulfenimine derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025231A JPS59152389A (en) 1983-02-16 1983-02-16 Preparation of sulfenimine derivative

Publications (2)

Publication Number Publication Date
JPS59152389A true JPS59152389A (en) 1984-08-31
JPH0561355B2 JPH0561355B2 (en) 1993-09-06

Family

ID=12160195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025231A Granted JPS59152389A (en) 1983-02-16 1983-02-16 Preparation of sulfenimine derivative

Country Status (1)

Country Link
JP (1) JPS59152389A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277390A (en) * 1985-03-13 1987-12-02 Roller Japan Kk Cephalosporanic acid derivative
JP2002105084A (en) * 2000-09-29 2002-04-10 Otsuka Chem Co Ltd 3-cephem compound and method for producing the same
US10483047B2 (en) 2016-03-18 2019-11-19 Kabushiki Kaisha Toshiba Electrochemical reaction device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277390A (en) * 1985-03-13 1987-12-02 Roller Japan Kk Cephalosporanic acid derivative
JPH0692416B2 (en) * 1985-03-13 1994-11-16 三共株式会社 Cefalosporanic acid derivative
JP2002105084A (en) * 2000-09-29 2002-04-10 Otsuka Chem Co Ltd 3-cephem compound and method for producing the same
JP4659959B2 (en) * 2000-09-29 2011-03-30 大塚化学株式会社 3-CEPHEM COMPOUND AND PROCESS FOR PRODUCING THE SAME
US10483047B2 (en) 2016-03-18 2019-11-19 Kabushiki Kaisha Toshiba Electrochemical reaction device

Also Published As

Publication number Publication date
JPH0561355B2 (en) 1993-09-06

Similar Documents

Publication Publication Date Title
US4834846A (en) Process for deblocking N-substituted β-lactams
JP2005501841A5 (en)
JP2006508898A5 (en)
US4603014A (en) Thiazolinoazetidinone derivatives and process for the preparation of the same
JPS59152389A (en) Preparation of sulfenimine derivative
JP4538114B2 (en) Novel process for the preparation of derivatives of 4-phenyl-1,2,3,6-tetrahydropyridine and intermediates used
JPS60187689A (en) Nanufacture of 3-exo-methylenecepham derivative
JP2022078673A (en) Novel dehydroheterohelicene compound and production method thereof
JPS5874689A (en) Preparation of 3-chloromethyl-3-cephem derivative
KR860001364B1 (en) Process for preparing 7-epi-3-exomethylenecepham derivatives
JPS6339893A (en) 5-fluorouridine and production thereof
JPH0469353A (en) Production of tetrachloro-1,4-benzoquinone
JPS59101485A (en) Azetidinone derivative and its preparation
CA1249820A (en) Process for the preparation of 2-¬2-((5- dimethylaminomethyl) furan-2-ylmethylthio) ethylamino|-5-(6-methylpyrid-3-ylmethyl) pyrimid-4-one
JPS6236036B2 (en)
JP2003517029A (en) Method for producing trifluoromethylacetophenone
JPH11100376A (en) Production of 2,3-dihydrobenzo(b)furan derivative and medicine
CN117702140A (en) Synthesis method of tetra-substituted olefin compound
KR880001313B1 (en) Preparation method for tetrahydro indol derivatives
JPS6011486A (en) Preparation of quaternary salt of piperidylidenemethane
JPH0116917B2 (en)
JPS58117886A (en) Manufacture of 4-substituted phenylacetic acids
JPS58225079A (en) Benzoylpiperazine compound
JPS6018755B2 (en) Method for producing benzylic acid derivatives
JP2004262839A (en) New method of preparing [1,3] diselenole-2-thione