JPS59152267A - Manufacture of diamond sintered body - Google Patents

Manufacture of diamond sintered body

Info

Publication number
JPS59152267A
JPS59152267A JP58025907A JP2590783A JPS59152267A JP S59152267 A JPS59152267 A JP S59152267A JP 58025907 A JP58025907 A JP 58025907A JP 2590783 A JP2590783 A JP 2590783A JP S59152267 A JPS59152267 A JP S59152267A
Authority
JP
Japan
Prior art keywords
diamond
sintered body
powder
thin plate
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58025907A
Other languages
Japanese (ja)
Inventor
上原 一仁
山家 菱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP58025907A priority Critical patent/JPS59152267A/en
Publication of JPS59152267A publication Critical patent/JPS59152267A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、切削工具及び耐M粍工具に適するダイヤモン
ド焼結体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a diamond sintered body suitable for cutting tools and anti-malt tools.

従来、超高圧技術を利用したダイヤモンド焼結体の製造
方法は、ダイヤモンド粉末とダイヤモンドを溶解する金
属の粉末との混合粉末を高温高圧下で焼結する方法が行
われており、その1つの例として特公昭39−2048
3がある。このようにダイヤモンド粉末とダイヤモンド
を溶解する金属の粉末との混合粉末を高温高圧下で焼結
する場合混合粉末が微粉になればなる程、特にダイヤモ
ンドを溶解する金属の粉末が微粉になればなる程、粉末
の表面に物理的もしくは化学的に吸着している酸素や水
分等の高温でガスとなる物質が多くなり、3頁 密閉した高温高圧下での焼結を困難にし、均質で高硬度
の焼結体全容易に得られないという問題点がある。
Conventionally, the method for manufacturing diamond sintered bodies using ultra-high pressure technology is to sinter a mixed powder of diamond powder and metal powder that dissolves diamond under high temperature and high pressure. Special Public Service as 39-2048
There are 3. In this way, when a mixed powder of diamond powder and a metal powder that dissolves the diamond is sintered under high temperature and high pressure, the finer the mixed powder becomes, especially the finer the metal powder that dissolves the diamond. The more substances that become gases at high temperatures, such as oxygen and moisture, are physically or chemically adsorbed on the surface of the powder, making it difficult to sinter under high temperature and high pressure in a sealed container, resulting in a homogeneous, high hardness product. There is a problem that it is not easy to obtain a whole sintered body.

本発明は、上記のような従来の問題点を解決し、作業性
及び焼結性全容易にし緻密で高硬度なダイヤモンド焼結
体を得ることができる製造方法を提供するものである。
The present invention solves the above-mentioned conventional problems and provides a manufacturing method that makes it possible to obtain a dense and highly hard diamond sintered body with ease of workability and sinterability.

本発明のダイヤモンド焼結体の製造方法は、ダイヤモン
ド全溶解する金属又は合金からなる薄板とこの薄板の一
面に接するように充填したダイヤモンド含有粉末圧粉体
とを容器の中に設置して熱力学的ダイヤモンド安定域内
又はダイヤモンドと黒鉛の平衡線付近の黒鉛安定域内で
しかもダイヤモンドを溶解する金属又は合金からなる薄
板とダイヤモンド含有粉末圧粉体とが反応して溶融する
圧力温度条件下に加圧加熱後急冷して焼結する方法であ
る。このようにダイヤモンド焼結体の製造方法において
出発原料がダイヤモンドに対して溶媒作用となる金属又
は合金金薄板状にしてダイヤモンド含有粉末圧粉体に接
触させた状態で超高圧高温下にすると薄板状の金属又は
合金は、粉末状の金属又は合金に比較して酸素及び水分
等のガス成分となる物質の吸着が非常に少なくなるか殆
んどなくなるために焼結過程でのダイヤモンドの黒鉛化
全防ぎしかもガスによる焼結性の阻害も少なくなり、金
属又は合金からなる薄板が浴鯛してダイヤモンド含有粉
末圧粉体内に均質に溶浸して緻密で高硬度なダイヤモン
ド焼結体が得られる。ここで使用するダイヤモンド全溶
解する金属又は合金からなる薄板は、Fe、Ni、Co
、 Cr、 Pd。
The method for producing a diamond sintered body according to the present invention involves placing in a container a thin plate made of a metal or alloy in which all diamonds are melted and a diamond-containing powder green compact filled so as to be in contact with one surface of the thin plate. Pressurized heating under pressure and temperature conditions in which the diamond-containing powder compact reacts with a thin plate made of a metal or alloy that dissolves diamond within the diamond stability region or within the graphite stability region near the equilibrium line of diamond and graphite and melts. This method is followed by rapid cooling and sintering. In this way, in the method for producing a diamond sintered body, the starting material is formed into a metal or alloy metal thin plate that acts as a solvent on the diamond, and is brought into contact with a diamond-containing powder compact under ultra-high pressure and high temperature to form a thin plate. Compared to powdered metals or alloys, these metals or alloys absorb very little or almost no substances that become gaseous components such as oxygen and moisture, so the graphitization of diamond during the sintering process is completely eliminated. In addition, the sinterability is less inhibited by gas, and a thin plate made of metal or alloy is soaked in a bath and homogeneously infiltrated into the diamond-containing powder green compact, resulting in a dense and highly hard diamond sintered body. The thin plate made of metal or alloy that completely melts diamond used here is Fe, Ni, Co, etc.
, Cr, Pd.

B i、 Sm、 Mn、 B e、 Au、 Ag、
 、Ge、 Cu。
B i, Sm, Mn, B e, Au, Ag,
, Ge, Cu.

Pr、Ba、 Nd、 Ce%S r及びこれらの金属
金倉む合金等が考えられるがダイヤモンドの触媒及び溶
媒作用としての効果のあるFe、 Ni、CoE<びこ
れらの金属を含む合金が価格、作業性及び焼結のし易さ
等からも好適である。Fe、Ni、Co及びこれらの金
属金倉む合金からなる薄板は、1夕uえf F e i
合金としてはステンレス、センダ71種々の合金鋼が有
り、Ni基合金としてはインコネル、ハステロイ、パー
マロイ、モネル等が有り、5頁 CO基合金としてはステライト等が有り、その他に種々
のろう材が有るがこれらの薄板はダイヤモンド焼結体の
用途例えば切削工具でも被剛材等を含めた切削条件によ
って選定したり、耐摩耗工具でもダイス、裁断刃、切断
刃及び摩擦摩耗的な用途等によって選定するのが良い。
Pr, Ba, Nd, Ce%Sr, and alloys containing these metals are considered, but Fe, Ni, CoE, and alloys containing these metals, which are effective as catalysts and solvents for diamond, are available due to price, workability, and It is also suitable from the viewpoint of ease of sintering. Thin plates made of Fe, Ni, Co and alloys of these metals are
Alloys include stainless steel and Senda 71 various alloy steels, Ni-based alloys include Inconel, Hastelloy, Permalloy, Monel, etc., CO-based alloys include Stellite, and various other brazing materials. However, these thin plates are selected depending on the use of the diamond sintered body, such as cutting tools, depending on the cutting conditions, including the rigidity of the material to be used, and wear-resistant tools, such as dies, cutting blades, cutting blades, and friction-wearing uses. It's good.

出発原料としてのダイヤモンド含有粉末圧粉体は、ダイ
ヤモンド粉末のみからなっていてもよいがダイヤモンド
が非常に高価であるためにダイヤモンド含有itヲでき
るだけ少なくし之粉末圧粉体からなる焼結体がダイヤモ
ンド粉末のみの粉末圧粉体からなる焼結体と同等の性質
になるのが望ましく、この1つの方法としてダイヤモン
ド含有粉末圧粉体のダイヤモンド含有量に対して30容
積チ以下の黒鉛を含有させた粉末圧粉体は、高温高圧下
の焼結過程でダイヤモンド全溶解する金属又は合金特に
鉄族金属又は鉄族金属含有合金からなる薄板が溶融溶浸
して粉末圧粉体中の黒鉛全全てダイヤモンドに変換して
高硬度で均質なダイヤモンド焼結体にする。ここでも鉄
族金属又は鉄族金6負 属含有合金からなる薄板が酸素又は水分等の高温でガス
成分となる物質を吸着していないために黒鉛全含有した
粉末圧粉体に容易に溶浸するとともに黒鉛によって薄板
の溶融偏置が低−トするために焼結性が促進されしかも
鉄族金属又は鉄族金属含有合金からなる薄板の触媒作用
によって黒鉛のダイヤモンド変換が容易になっている。
The diamond-containing powder compact as a starting material may be made of only diamond powder, but since diamond is very expensive, a sintered body made of a powder compact that contains as little diamond as possible is suitable for diamond-containing powder compacts. It is desirable that the properties be the same as those of a sintered body made of a powder green compact made only of powder, and one method for achieving this is to include graphite in an amount of 30 vol. or less relative to the diamond content of the diamond-containing powder green compact. Powder green compacts are made by melting and infiltrating thin plates made of metals or alloys, especially iron group metals or iron group metal-containing alloys, in which diamond is completely dissolved during the sintering process under high temperature and high pressure. It is converted into a highly hard and homogeneous diamond sintered body. Here, too, the thin plate made of iron group metal or iron group metal 6 negative metal-containing alloy does not adsorb substances that become gas components at high temperatures, such as oxygen or moisture, so it is easily infiltrated into the powder compact containing all graphite. At the same time, the graphite reduces the melting eccentricity of the thin plate, thereby promoting sinterability, and furthermore, the catalytic action of the thin plate made of an iron group metal or an iron group metal-containing alloy facilitates the conversion of graphite into diamond.

ここで使用した黒鉛せは、30容積%を越えると焼結体
中に黒鉛の残留が見られ、このために硬度低下及び脆性
が増してくるのでダイヤモンドに対して30容謬チ以下
とした。
The graphite used here had a volume ratio of 30% or less relative to diamond, since graphite remains in the sintered body when the volume exceeds 30%, resulting in decreased hardness and increased brittleness.

他の方法としてダイヤモンド含有粉末圧粉体のダイヤモ
ンド含有量に対して70谷積係以下の周期律表第43%
  5 a y 5 a族金属の炭化物、窒化物、炭窒
化物、硼化物及びこれらの相互固溶体並びにCBN、W
BNの中から選ばれfct裡以上の硬質物質全含有した
粉末圧粉体は、高温制圧下の焼結過程でダイヤモンド全
溶解する金属又は合金特に鉄族金属又は鉄族金属含有合
金からなる薄板が溶融溶浸して上記硬質物質と濡れ性が
良好となり、7頁 焼結性の促進及び均質な焼結体にする。このようにダイ
ヤモンドと上述のような硬質物質との混在したダイヤモ
ンド焼結体は、硬質物質の含有してないダイヤモンド焼
結体に比較して硬度及び耐摩耗性が低下するが研削性が
向上するために工具の製作コストが安くなったり、鋼と
反応し易いダイヤモンド金硬質物質がカバーすることか
ら用途によっては充分に期待できるものである。
As another method, the diamond content of the diamond-containing powder compact is 43% of the periodic table with a value of 70 valleys or less.
5 a y 5 carbides, nitrides, carbonitrides, borides of group A metals and their mutual solid solutions, as well as CBN, W
The powder green body selected from BN and containing all of the hard material of fct or more is a thin plate made of a metal or alloy, particularly an iron group metal or an iron group metal-containing alloy, which completely melts diamond in the sintering process under high temperature and pressure. Melting and infiltration improves wettability with the hard substance, promotes sinterability, and produces a homogeneous sintered body. In this way, a diamond sintered body containing a mixture of diamond and the above-mentioned hard substance has lower hardness and wear resistance than a diamond sintered body that does not contain a hard substance, but has improved grindability. Therefore, the production cost of the tool is reduced, and since it is covered by a diamond-gold hard substance that easily reacts with steel, it can be fully expected for some applications.

ダイヤモンド含有粉末圧粉体とダイヤモンド全溶解する
金属又は合金からなる薄板と全挿入する容器は、周期律
表の第4a45a、6a族の高融点金属が使用でき、特
にガス吸収性の良い第4a族のT1、Zr、Hfが好適
である。
For the diamond-containing powder green compact, the thin plate made of a metal or alloy that completely melts the diamond, and the container into which the entire diamond is inserted, high-melting point metals from Groups 4a45a and 6a of the periodic table can be used, and metals from Group 4a, which have particularly good gas absorption properties, can be used. T1, Zr, and Hf are preferred.

本発明のダイヤモンド焼結体の製造方法における熱力学
的ダイヤモンド安定域内又はダイヤモンドと黒鉛の平衡
線付近の黒鉛安定域は、圧力が40〜60Kb、温度が
1200〜1600℃の範囲内が良く、特に本発明のダ
イヤモンド焼結体の製造方法のようにダイヤモンドを溶
解する金属又は合金からなる薄板を使用することによっ
て脱ガス等の前処理が必要でなく、従来よりも低圧、低
温側で緻密な焼結体を得ることができる。
In the method for producing a diamond sintered body of the present invention, the thermodynamic diamond stability region or the graphite stability region near the equilibrium line between diamond and graphite is preferably within the range of pressure 40 to 60 Kb and temperature 1200 to 1600°C, particularly By using a thin plate made of a metal or alloy that dissolves diamond, as in the method for producing a diamond sintered body of the present invention, pretreatment such as degassing is not necessary, and dense sintering can be achieved at lower pressure and lower temperature than conventional methods. You can get a solid body.

次に実施例に従って具体的に説明する。Next, a detailed explanation will be given according to an example.

実施例1 内径11ψ朋肉厚0.15mmのZr 製円筒容器の中
に4〜8μmの多結晶ダイヤモンド粉末1.0g全詰め
その上に11ψX0.5mmの00円板を接触させて後
11ψX0.15mのZr製円板で蓋をしてなるカプセ
ルを超高圧装置内にセットして55Kbの圧力で153
0℃で30分保持した後圧力は55Kbに保持した状態
で1200℃以下に急冷し、しかる後圧力と温Ill共
に常温、常圧まで下げて焼結体を取り出した。この焼結
体全研摩して11ψX 2.5 mmの円板状の焼結体
を得た。この焼結体は、巣孔、ひび割れ等がなく、硬さ
はヌニブ硬度で6700全示し、その組織はダイヤモン
ド粒子が相互に結合しており、粒子と粒子の間には全体
で約10容積饅のCO相が存在する均一な組織であった
。ダイヤモンド粒子の粒径は、出発原料粉末に比べると
細い粒子が多くなっていた。これは焼結前のダイキモ9
頁 ンド粒子の破壊、塑性変形及び焼結中のダイヤモンド粒
子の溶解析出によるものと思われた。
Example 1 A cylindrical container made of Zr with an inner diameter of 11 ψ and a wall thickness of 0.15 mm was completely filled with 1.0 g of polycrystalline diamond powder of 4 to 8 μm in size, and a 00 disc of 11 ψ x 0.5 mm was brought into contact with the powder, and then a 11 ψ x 0.15 m A capsule capped with a Zr disk was placed in an ultra-high pressure device and heated to 153 Kb at a pressure of 55 Kb.
After being held at 0°C for 30 minutes, the pressure was rapidly cooled to below 1200°C while maintaining the pressure at 55 Kb, and then both the pressure and temperature were lowered to room temperature and pressure, and the sintered body was taken out. This sintered body was entirely polished to obtain a disk-shaped sintered body measuring 11ψ×2.5 mm. This sintered body has no pores or cracks, has a hardness of 6700 on the Nunib hardness, and has a structure in which diamond particles are bonded to each other, with a total volume of approximately 10 between the particles. It had a uniform structure with a CO phase of . The particle size of the diamond particles was larger than that of the starting material powder. This is Daikimo 9 before sintering
This was thought to be due to fracture of paved particles, plastic deformation, and dissolution precipitation of diamond particles during sintering.

実施例2 実施例1の製造方法において00円板に換えてJI8Z
−3265のB?l−2に相当するNi基ろう材の円板
11ψXQ、5mi用い、焼結条件を圧力45Kb。
Example 2 In the manufacturing method of Example 1, JI8Z was used instead of the 00 disc.
-3265 B? A Ni-based brazing filler metal disk 11ψXQ, 5mi corresponding to l-2 was used, and the sintering conditions were a pressure of 45Kb.

温度1380℃、保持時間30分とし、他の条件は実施
例1と同様にして焼結した。得られた焼結体は、ダイヤ
モンド粉末が強固に焼結されており、ダイヤモンド層の
硬さはヌープ硬さで6600であった。
Sintering was carried out at a temperature of 1380°C and a holding time of 30 minutes, with the other conditions being the same as in Example 1. In the obtained sintered body, the diamond powder was strongly sintered, and the hardness of the diamond layer was 6600 in Knoop hardness.

実施例3 実施例2の製造方法においてNi基ろう材の円板に換え
てJI8Z−3267のBPd−12に相当するパラジ
ウムろう円板11ψ×1關、JI8Z−32660BA
u−3に相当する金ろう円板11φX0.3mm及びA
W8のBCo−1に相当するCO基ろう円板11ψX0
.5+giそれぞれ用いて実施例2と同一製造条件にて
焼結した。得られたそれぞれの焼結体はダイヤモンド粉
末が強固に焼結された緻密な焼結体でヌープ硬さもそれ
ぞれ6500.6400.660010頁 を示した。
Example 3 In the manufacturing method of Example 2, instead of the Ni-based brazing filler metal disk, a palladium brazing disk 11ψ×1 size corresponding to BPd-12 of JI8Z-3267, JI8Z-32660BA was used.
Gold solder disc 11φX0.3mm and A corresponding to u-3
CO-based brazing disk 11ψX0 corresponding to BCo-1 of W8
.. Sintering was performed under the same manufacturing conditions as in Example 2 using 5+gi. Each of the obtained sintered bodies was a dense sintered body in which the diamond powder was strongly sintered, and the Knoop hardness was 6500, 6400, and 660010 pages, respectively.

実施例4 実施例1の製造方法において00円板に換えてN1円板
11ψ×0.2顛、5US304相当の円板11ψxo
、smm、ノ・ステロイB相当の円板11ψX 0.5
 mm。
Example 4 In the manufacturing method of Example 1, instead of the 00 disk, a N1 disk 11ψ×0.2 size, a disk 11ψxo equivalent to 5US304 was used.
, smm, disk equivalent to No. Steroid B 11ψX 0.5
mm.

インコネルX−550相当の円板11ψX0.5a真、
硬質ステライトに相当の円板11ψX0.5 mm、 
8 i −At含有のセンダスト合金に相当の円板11
ψX0,5+m、Ni−Cu−8i含有のS−モネル合
金に相当の円板11ψXQ、5aziそれぞれ用いて実
施例1と同一製造条件にて焼結した。得られたそれぞれ
の焼結体はダイヤモンド粉末が強固に焼結された緻密な
焼結体でヌープ硬さもそれぞれ6000以上を示した。
Disc 11ψX0.5a true equivalent to Inconel X-550,
Disc 11ψ×0.5 mm equivalent to hard stellite,
8 i - Disc 11 corresponding to At-containing Sendust alloy
Sintering was carried out under the same manufacturing conditions as in Example 1 using disks 11ψXQ and 5azi corresponding to S-monel alloy containing ψX0,5+m and Ni-Cu-8i, respectively. Each of the obtained sintered bodies was a dense sintered body in which the diamond powder was strongly sintered, and each exhibited a Knoop hardness of 6000 or more.

実施例5 実施例1の製造方法において、4〜8μmの多結晶ダイ
ヤモンド粉末に換えて4〜8μmの多結晶ダイヤモンド
粉末70容積−と平均粒径57Imの黒鉛粉末30容積
チとからなる混合粉末を用い、その他の製造条件は実施
例1と同様にして焼結全行った。得られた焼結体は、X
線回折及び組絨観11頁 察全行った結果黒鉛が残留しておらず硬さ塩ヌープ硬度
で6500と略実施例1の焼結体と同等の硬さを示した
Example 5 In the manufacturing method of Example 1, instead of the 4-8 μm polycrystalline diamond powder, a mixed powder consisting of 70 volumes of 4-8 μm polycrystalline diamond powder and 30 volumes of graphite powder with an average particle size of 57 Im was used. The entire sintering process was carried out in the same manner as in Example 1, with the other manufacturing conditions being the same as in Example 1. The obtained sintered body is
Linear diffraction and 11-page inspection of the assembly showed that no graphite remained and the hardness was 6500 on the salt Knoop hardness, which was approximately the same as the sintered body of Example 1.

実施例6 実施例1の製造条件において4〜8μmの多結晶ダイヤ
モンド粉末に換えて4〜8μmの多結晶ダイヤモンド粉
末50容積チと4〜8μmのCBN粉末30容槓チと1
〜2μmの’fiCN粉末20容積−からなる混合粉末
を用い、その他の製造条件は実施例1と同様にして焼M
を行った。得られた焼結体は、強固に焼結されており、
ヌープ硬さも5700 ’i示した。
Example 6 Under the manufacturing conditions of Example 1, instead of the 4-8 μm polycrystalline diamond powder, 50 volumes of 4-8 μm polycrystalline diamond powder and 30 volumes of 4-8 μm CBN powder were used.
A mixed powder consisting of 20 volumes of 'fiCN powder of ~2 μm was used, and the other manufacturing conditions were the same as in Example 1.
I did it. The obtained sintered body is strongly sintered,
The Knoop hardness was also 5700'i.

実施例7 実施例1の製造条件において4〜8μmの多結晶ダイヤ
モンド粉末に換えて4〜8μmの多結晶ダイヤモンド粉
末35容積−と4〜8μmのCBN粉末50容積−と平
均粒径5μmの黒鉛粉末30容積チとからなる混合粉末
を用い、その他の友造条件は実施例1と同様にして焼結
を行った。得られた焼結体は、強固に焼結されており、
ヌープ硬さも特開昭59−152267(4) 5700を示した。
Example 7 Under the production conditions of Example 1, 35 volumes of 4-8 μm polycrystalline diamond powder, 50 volumes of 4-8 μm CBN powder, and graphite powder with an average particle size of 5 μm were used in place of the 4-8 μm polycrystalline diamond powder. Sintering was carried out in the same manner as in Example 1, using a mixed powder consisting of 30 vol. The obtained sintered body is strongly sintered,
The Knoop hardness was also 5700 according to JP-A-59-152267 (4).

Claims (1)

【特許請求の範囲】 (11ダイヤモンドを溶解する金属又は合金からなる薄
板と該薄板の一面に接するように充填したダイヤモンド
含有粉末圧粉体とを容器の中に設置して熱力学的ダイヤ
モンド安定域内又はダイヤモンドと黒鉛の平衡線付近の
黒鉛安定域内で且つ前記薄板と前記粉末圧粉体とが反応
して溶融する圧力温度条件下に加圧加熱後急冷して焼結
すること全特徴とするダイヤモンド焼結体の製造方法。 (2)上記薄板が鉄族金属又は鉄族金属含有合金からな
ることを特徴とする特許請求の範囲第1項記載のダイヤ
モンド焼結体の製造方法。 (3)上記ダイヤモンド含有粉末圧粉体がダイヤモンド
含有量に対して30容積−以下の黒鉛を含有させたこと
を特徴とする特許請求の範囲第1項及び第2項記載のダ
イヤモンド焼結体の製造方法。 (4)上記ダイヤモンド含有粉末圧粉体がダイヤモンド
含有蓋に対して70容積−以下の周期律表第2頁 4ah 5a、5a族金属の炭化物、窒化物、炭窒化物
、硼化物及びこれらの相互固溶体、並びにCBN、WB
Nの中から選ばれた1ai以上を含有させたことを特徴
とする特許請求の範囲第1項、第2項及び第3項記載の
ダイヤモンド焼結体の製造方法。
[Scope of Claims] (11) A thin plate made of a metal or alloy capable of melting diamond and a diamond-containing powder green compact packed in contact with one surface of the thin plate are placed in a container to ensure that the diamond is within the thermodynamic diamond stability range. Alternatively, diamond is sintered by heating under pressure and then rapidly cooling within a graphite stability region near the equilibrium line of diamond and graphite and under pressure and temperature conditions where the thin plate and the powder compact react and melt. A method for producing a sintered body. (2) A method for producing a diamond sintered body according to claim 1, wherein the thin plate is made of an iron group metal or an alloy containing an iron group metal. A method for manufacturing a diamond sintered body according to claims 1 and 2, characterized in that the diamond-containing powder compact contains graphite in an amount of 30 volumes or less relative to the diamond content. 4) The diamond-containing powder green compact contains carbides, nitrides, carbonitrides, borides, and mutual solid solutions of metals of Groups 4ah, 5a, and 5a of the periodic table whose volume is 70 or less with respect to the diamond-containing lid. , as well as CBN, WB
The method for producing a diamond sintered body according to claims 1, 2, and 3, characterized in that 1ai or more selected from N is contained.
JP58025907A 1983-02-18 1983-02-18 Manufacture of diamond sintered body Pending JPS59152267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025907A JPS59152267A (en) 1983-02-18 1983-02-18 Manufacture of diamond sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025907A JPS59152267A (en) 1983-02-18 1983-02-18 Manufacture of diamond sintered body

Publications (1)

Publication Number Publication Date
JPS59152267A true JPS59152267A (en) 1984-08-30

Family

ID=12178848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025907A Pending JPS59152267A (en) 1983-02-18 1983-02-18 Manufacture of diamond sintered body

Country Status (1)

Country Link
JP (1) JPS59152267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018525530A (en) * 2015-08-26 2018-09-06 サンドビック インテレクチュアル プロパティー アクティエボラーグ How to produce a composite component of diamond and binder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131611A (en) * 1978-04-04 1979-10-12 Sumitomo Electric Industries Production of diamond sintered body
JPS56169179A (en) * 1980-05-30 1981-12-25 Kagaku Gijutsucho Mukizai Manufacture of diamond sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131611A (en) * 1978-04-04 1979-10-12 Sumitomo Electric Industries Production of diamond sintered body
JPS56169179A (en) * 1980-05-30 1981-12-25 Kagaku Gijutsucho Mukizai Manufacture of diamond sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018525530A (en) * 2015-08-26 2018-09-06 サンドビック インテレクチュアル プロパティー アクティエボラーグ How to produce a composite component of diamond and binder

Similar Documents

Publication Publication Date Title
JP5175933B2 (en) Super hard diamond composite
US10155301B1 (en) Methods of manufacturing a polycrystalline diamond compact including a polycrystalline diamond table containing aluminum carbide therein
US9623542B1 (en) Methods of making a polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material
US4636253A (en) Diamond sintered body for tools and method of manufacturing same
CN110831715B (en) Methods of forming support substrates and cutting elements, and earth-boring tools
JPH09254039A (en) Manufacture of grinding material compact having improved characteristics
JPS5819428B2 (en) Polishing object and manufacturing method thereof
JPH03177507A (en) Diamond shaped body for drilling and machining
US4872333A (en) Wire drawing die
JPH0530897B2 (en)
JPS6140722B2 (en)
JPS59152267A (en) Manufacture of diamond sintered body
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JPS59159902A (en) Production of composite sintered body
JPS6319585B2 (en)
JPS62105911A (en) Hard diamond mass and production thereof
JPS61270074A (en) Body for polishing
JPS6026624A (en) Manufacture of sintered diamond body
JPS6034514B2 (en) Manufacturing method of diamond sintered body
JPS6311414B2 (en)
JPS6137221B2 (en)
CA1095212A (en) Process of producing a sintered compact
JPS5823343B2 (en) Manufacturing method of diamond sintered body
JPS6146540B2 (en)
JPS59161268A (en) Abrasive body and manufacture thereof