JPS59152237A - Preparation of glass material having gradient of refractive index - Google Patents

Preparation of glass material having gradient of refractive index

Info

Publication number
JPS59152237A
JPS59152237A JP2484483A JP2484483A JPS59152237A JP S59152237 A JPS59152237 A JP S59152237A JP 2484483 A JP2484483 A JP 2484483A JP 2484483 A JP2484483 A JP 2484483A JP S59152237 A JPS59152237 A JP S59152237A
Authority
JP
Japan
Prior art keywords
glass material
pores
dopant
glass body
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2484483A
Other languages
Japanese (ja)
Other versions
JPS6232140B2 (en
Inventor
Shigeaki Omi
成明 近江
Seiichi Aragaki
新垣 誠一
Hiroyuki Sakai
裕之 坂井
Yoshiyuki Asahara
浅原 慶之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2484483A priority Critical patent/JPS59152237A/en
Priority to DE19843405816 priority patent/DE3405816A1/en
Publication of JPS59152237A publication Critical patent/JPS59152237A/en
Publication of JPS6232140B2 publication Critical patent/JPS6232140B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/005Fibre or filament compositions obtained by leaching of a soluble phase and consolidation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0095Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To prepare an optically transparent glass material having gradient of refractive index free from light scattering, by sintering a porous glass material in an He gas. CONSTITUTION:In the preparation titled glass material wherein a solution of a dopant is penetrated into thin pores of a porous glass material, part of the dopant in the thin pores is eluted, so that gradient of concentration is formed in the dopant in the porous glass material, the dopant is precipitated on the thin pores, the porous glass material is dried, a solvent in the thin pores is volatilized, and the glass material is sintered to collapse the thin pores, the sintering is carried out in an He gas atmosphere. Even if a solution of a dopant having high concentration is used in stuffing, bubbles are not embedded in the glass material during sintering, and the optically transparent glass material having gradient of refractive index free from light scattering is obtained.

Description

【発明の詳細な説明】 本発明は光伝送用ファイバーの素材(プレフォーム)あ
るいはロッド状レンズ材料として使用されるところの屈
折率勾配を持ったガラス体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a glass body with a refractive index gradient, which is used as a material (preform) for optical transmission fibers or as a rod-shaped lens material.

屈折率勾配を持つガラス体の製造法としては分子スタッ
フインク法が知られている。この方法は多孔質ガラスを
素材に使用してその細孔内にドーパント(屈折率修正成
分)を充填させるものであって、特開昭51−1262
07号公報には分子スタッフインク法で屈折率勾配を有
するガラス体の製造法が多孔質ガラスの製造法と共に次
のように教示されている。
A molecular stuff ink method is known as a method for manufacturing a glass body having a refractive index gradient. This method uses porous glass as a material and fills the pores with a dopant (refractive index modifying component).
Publication No. 07 teaches a method for manufacturing a glass body having a refractive index gradient by the molecular stuff ink method as well as a method for manufacturing porous glass as follows.

すなわち、まず分相し得る硼珪酸塩ガラスを所定の条件
で熱処理することによって、Sin、に富んだ相とアル
カリ金属酸化物及びB20.に富んだ相とに分相させる
。次にそのガラスを@酸、硫酸、硝酸などの酸を含む水
溶液で処理して、アルカリ金属酸化物及びB2O3に富
んだ敵易溶相を溶出させ、8i02に富んだ相を骨格と
する連続細孔を有する多孔質ガラスヲ調製する。次いで
こうして得られた多孔質ガラス体の細孔内に、ドーパン
トの溶液を浸透(スタッフィング)貞オ+移 射ラ−y
h−41M側から細孔内のドーパントの一部を溶出(ア
ンスタッフインク)させてガラス体内のドーノセントに
濃度勾配を形成させ、しかる後、ドーパントを細孔内に
析出芒せてからそのガラス体を乾燥し、さらに焼成処理
を施して細孔をつぶすことにより、屈折率勾配を有する
ガラス体を得るものである。
That is, by first heat-treating a borosilicate glass capable of phase separation under predetermined conditions, a phase rich in Sin, an alkali metal oxide, and B20. The phase is separated into a phase rich in Next, the glass is treated with an aqueous solution containing an acid, such as @acid, sulfuric acid, or nitric acid, to elute the easily soluble phase rich in alkali metal oxides and B2O3, and to elute the glass into continuous fine particles with the framework of the 8i02-rich phase. A porous glass having pores is prepared. Next, a dopant solution is stuffed into the pores of the porous glass body thus obtained.
A part of the dopant in the pores is eluted (unstuffed) from the h-41M side to form a concentration gradient in the donocent in the glass body, and then the dopant is precipitated in the pores and then removed from the glass body. A glass body having a refractive index gradient is obtained by drying the material and then subjecting it to a firing treatment to close the pores.

屈折率勾配を有するガラス体の用途には、マイクロレン
ズアレー用のロッド状マイクロレンズ、光通信用ファイ
ノ々−と光源との結合用マイクロレンズなどがめるが、
こうしたマイクロレンズヲ得るためには、屈折率勾配を
有するガラス体が光学的に透明でなければならない。そ
して上に述べたような分子スタッフインク法で光学的に
透明なガラス体を製造するためには、焼成工程に於て細
孔がつぶれる以前に、細孔内に析出したドーパントの熱
分解生成物たるガス成分を、細孔内から充分に追い出し
ておくことが必要である。
Applications of glass bodies with a refractive index gradient include rod-shaped microlenses for microlens arrays, microlenses for coupling optical communication fins and light sources, etc.
In order to obtain such a microlens, a glass body with a refractive index gradient must be optically transparent. In order to produce an optically transparent glass body using the molecular stuff ink method described above, the thermal decomposition products of the dopant precipitated within the pores must be removed before the pores are collapsed during the firing process. It is necessary to sufficiently expel the gas components from the pores.

ところで、前記の公開公報によれば、多孔質ガラス体の
ガラス転移点以下50〜150℃の湿度まで、多孔質ガ
ラス体を15〜50”C/時の昇温速度で乾燥し、その
温度を5〜200時間保持した後、常圧ないし150 
mmHg程度の圧力下に於て、π11)孔がつぶrる温
度でガラス体を焼成することが提案されている。しかし
ながら、細孔をつぶすだめの焼成を常圧ないし150 
mmHg程度の圧力で行なうと、高濃度のドーパント溶
液でスタッフィングした多孔質ガラス体にあっては、ロ
ッドの中心部に光散乱の原因となる気泡が封じ込められ
やすく、光学的に透明なガラス体を得ることが極めて困
難である。
By the way, according to the above-mentioned publication, a porous glass body is dried at a heating rate of 15 to 50”C/hour to a humidity of 50 to 150°C below the glass transition point of the porous glass body, and the temperature is After holding for 5 to 200 hours, normal pressure to 150
It has been proposed to sinter the glass body under a pressure of about mmHg at a temperature at which the π11) pores collapse. However, the firing to crush the pores is carried out at normal pressure or at
If the pressure is about mmHg, air bubbles that cause light scattering are likely to be trapped in the center of the rod in porous glass bodies stuffed with a highly concentrated dopant solution, making it difficult to form optically transparent glass bodies. It is extremely difficult to obtain.

本発明者らは上記した焼成工程に於ける問題点がヘリウ
ムガス中で多孔質ガラス体を焼成することにより解決で
きることを見出し、本発明を児成した。
The present inventors have discovered that the problems in the above-described firing process can be solved by firing a porous glass body in helium gas, and have created the present invention.

而して本発明の方法は、多孔質ガラス体の細孔内にCs
N0.、 TlN0.等の金属化合物又はその混合物か
らなるドーノぐントの溶液をスタッフィングした後、ド
ー・セントを細孔内に析出させるが又は析出させること
なく細孔内のドーパントの一部をアンスタッフィングし
て多孔質ガラス体内のドーパントに所定の濃度勾配を形
成させ、しかる後にこの多孔質ガラス体を低温でメタノ
ール又はエタノール等のドー・々ント溶解度の低い溶媒
に浸漬して細孔内の溶媒を置換することによってドーパ
ントを析出安定させ、次に多孔質ガラス体を乾燥するこ
とによって細孔内の溶媒を揮発させた後、このガラス体
をヘリウムガス雰囲気中で焼成処理して細孔をつぶすこ
とにより、光学的に透明で屈折率勾配を有するガラス体
を得ることからなる。そして、本発明の好ましい態様で
は、細孔がっぷn始める温度よりも50〜100″C低
い温度まで、乾燥多孔質ガラス体を、常圧の大気中又は
酸素雰囲気下で50〜b 孔が完全につぶれる温度1でガラス体をヘリウムガス雰
囲気に於て50〜150−C/時の昇温速度を加熱する
Accordingly, the method of the present invention provides Cs in the pores of the porous glass body.
N0. , TlN0. After stuffing a dopant solution consisting of a metal compound such as or a mixture thereof, a part of the dopant in the pores is unstuffed with or without precipitation of dopants into the pores to form a porous material. By forming a predetermined concentration gradient in the dopant within the glass body, and then immersing the porous glass body at low temperature in a solvent with low dopant solubility, such as methanol or ethanol, to replace the solvent in the pores. After stabilizing the precipitation of the dopant and then drying the porous glass body to volatilize the solvent in the pores, the glass body is fired in a helium gas atmosphere to collapse the pores, thereby creating optical properties. The process consists of obtaining a glass body that is transparent and has a refractive index gradient. In a preferred embodiment of the present invention, the dry porous glass body is heated to a temperature 50 to 100"C lower than the temperature at which the pores begin to open, in the atmosphere at normal pressure or in an oxygen atmosphere. The glass body is heated at a temperature of 1 at which it completely collapses in a helium gas atmosphere at a temperature increase rate of 50 to 150 C/hour.

本発明の方法によれば、多孔質ガラス体の焼成処理がH
e雰囲気中で行われるため、たとえスタッフインクに高
濃度のドーパント溶液を使用しても、焼成過程で気泡が
ガラス体内に封じ込められることがなく、従って屈折率
勾配を有するうえに光散乱のない光学的に透明なガラス
体が得られるのである。
According to the method of the present invention, the firing treatment of the porous glass body is performed by H
Since the process is carried out in an e-atmosphere, even if a highly concentrated dopant solution is used in the stuff ink, air bubbles are not confined within the glass body during the firing process. A transparent glass body can be obtained.

進んで実施例を示すが、本発明はこれに限定されるもの
ではない。
Examples will now be shown, but the present invention is not limited thereto.

実施例 電蓄%テ8i0254.50 、 B2O334,30
、Na2O5,20及びに20 6.00からなるガラ
スを1450”Cで3時間溶解し、溶解中に約1時間攪
拌して鋳型に流し込み、480”Cで2時間保持した後
、炉内で放冷してガラスブロックを得た。このブロック
から切り出した直径約4mm、長さ76mmのガラスロ
ットを540℃で120゛時間熱処理して分相させた。
Example electricity storage % Te8i0254.50, B2O334,30
, Na2O5, 20 and 206.00 was melted at 1450"C for 3 hours, stirred for about 1 hour during melting, poured into a mold, kept at 480"C for 2 hours, and then left in a furnace. After cooling, a glass block was obtained. A glass rod cut out from this block with a diameter of about 4 mm and a length of 76 mm was heat treated at 540° C. for 120° to cause phase separation.

次に分相したガラスロッドを1.5NのH2SO4水溶
液中100”Cの温度にて12〜24時間処理し、多孔
質ガラスロッドをイ与た。
The phase-separated glass rod was then treated in a 1.5N aqueous H2SO4 solution at a temperature of 100''C for 12 to 24 hours to form a porous glass rod.

この多孔質ガラスロッドを水100 ml当り110g
のTlNO3を溶解させた溶液に温度100 ”Cで2
4時間浸raシてスタッフインクを行い、続いて40体
積チのエタノールを含む水溶液中に温度8o℃で20分
間浸漬してアンスタッフインクを行った。
This porous glass rod weighs 110g per 100ml of water.
of TlNO3 at a temperature of 100"C.
Stuff ink was performed by immersing it for 4 hours, and then unstuffing was performed by immersing it in an aqueous solution containing 40 volumes of ethanol at a temperature of 8° C. for 20 minutes.

アンスタッフインクを行ったロッドを次いで0″Cのエ
タノールに3時間浸漬してドーパントを細孔内に析出嘔
せてから大気中で乾燥した。しかる後とのロッドを添付
図面に示す焼成スケジュール、すなわち700°Cまで
大気中75“C/時の昇温速度で加熱し、700℃で2
時間保持した後、炉内をヘリウムガスで置換し、以後ヘ
リウムガス雰囲気中でロッドを700″Cに2時間保持
し、次に900℃まで75℃/時の昇温速度で加熱し、
900 ”Cで4時間保持し、炉内で放冷した。
The unstuffed rod was then immersed in 0''C ethanol for 3 hours to precipitate the dopant into the pores, and then dried in the air. After that, the rod was fired according to the firing schedule shown in the attached drawing. That is, heat up to 700°C in air at a heating rate of 75"C/hour, and
After holding for an hour, the inside of the furnace was replaced with helium gas, after which the rod was held at 700"C for 2 hours in a helium gas atmosphere, and then heated to 900°C at a temperature increase rate of 75°C/hour,
It was held at 900''C for 4 hours and allowed to cool in the furnace.

こうして得られ九ロッドは光散乱のない光学的に透明な
ガラス体で、しかも屈折率勾配を有するものであった。
The nine rods thus obtained were optically transparent glass bodies without light scattering and had a refractive index gradient.

【図面の簡単な説明】[Brief explanation of drawings]

図面は実施例で採用した焼成スケジュールの説明図であ
る。 株式会社 保 谷 硝 子 代理人朝倉正幸
The drawing is an explanatory diagram of the firing schedule adopted in the example. Yasutani Glass Co., Ltd. Agent Masayuki Asakura

Claims (1)

【特許請求の範囲】[Claims] 1、 多孔質ガラス体の細孔内にドー、eントの溶液を
浸透ちせだ後、細孔内のドー、eントの一部を溶出8せ
て多孔質ガラ1体内のドーノソントに濃度勾配を形成嘔
せ、しかる後ドーノξントを細孔内に析出させてから多
孔質ガラス体を乾燥することによって細孔内の溶媒を揮
発させ、次いで焼成処理により細孔をつぶすことからな
る屈折率勾配を育てるガラス体の製造法に於て、前記の
焼成処理をヘリウムガス雰囲気中で行なうことを特徴と
する前記のガラス体の製造法。
1. After infiltrating the pores of the porous glass body with a solution of the dome and the ent, a part of the dome and the ent in the pores is eluted to create a concentration gradient in the dome and the liquid inside the porous glass body. A refractive index gradient is formed by forming a refractive index gradient, followed by precipitating the donor into the pores, then drying the porous glass body to volatilize the solvent in the pores, and then collapsing the pores by a firing process. In the method for producing a glass body for growing a glass body, the above-mentioned firing treatment is performed in a helium gas atmosphere.
JP2484483A 1983-02-18 1983-02-18 Preparation of glass material having gradient of refractive index Granted JPS59152237A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2484483A JPS59152237A (en) 1983-02-18 1983-02-18 Preparation of glass material having gradient of refractive index
DE19843405816 DE3405816A1 (en) 1983-02-18 1984-02-17 Process for the production of a glass product having a refractive index gradient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2484483A JPS59152237A (en) 1983-02-18 1983-02-18 Preparation of glass material having gradient of refractive index

Publications (2)

Publication Number Publication Date
JPS59152237A true JPS59152237A (en) 1984-08-30
JPS6232140B2 JPS6232140B2 (en) 1987-07-13

Family

ID=12149522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2484483A Granted JPS59152237A (en) 1983-02-18 1983-02-18 Preparation of glass material having gradient of refractive index

Country Status (2)

Country Link
JP (1) JPS59152237A (en)
DE (1) DE3405816A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545699Y2 (en) * 1987-02-27 1993-11-25
JPH01244066A (en) * 1988-03-24 1989-09-28 Ig Tech Res Inc End coating material
JPH02161528A (en) * 1988-12-14 1990-06-21 Nec Corp Bidirectional static debugger for rule
DE19541372A1 (en) * 1994-11-15 1996-05-23 Gen Electric Mfg. quartz crucible for Czochralski semiconductor crystals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474818A (en) * 1977-11-28 1979-06-15 Sumitomo Electric Industries Method of making glass member
JPS56155036A (en) * 1980-04-30 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Preparation of high-silica glass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1586119A (en) * 1976-07-05 1981-03-18 Fujitsu Ltd Method of producing an optical fibre preform
US4157906A (en) * 1978-02-21 1979-06-12 Corning Glass Works Method of drawing glass optical waveguides
US4302231A (en) * 1979-01-29 1981-11-24 Pedro Manoel Buarque De Macedo Method of producing a glass article having a graded refractive index profile of a parabolic nature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474818A (en) * 1977-11-28 1979-06-15 Sumitomo Electric Industries Method of making glass member
JPS56155036A (en) * 1980-04-30 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Preparation of high-silica glass

Also Published As

Publication number Publication date
DE3405816A1 (en) 1984-08-30
JPS6232140B2 (en) 1987-07-13

Similar Documents

Publication Publication Date Title
US4225330A (en) Process for producing glass member
US5068208A (en) Sol-gel method for making gradient index optical elements
EP0534561A1 (en) Gradient index glasses and sol-gel method for their preparation
US4686195A (en) Method and composition for the manufacture of gradient index glass
US4640699A (en) Process for producing glass product having gradient of refractive index
US4797376A (en) Sol-gel method for making gradient-index glass
JPS6121171B2 (en)
US4902650A (en) Gradient-index glass
JPS58145634A (en) Manufacture of doped glassy silica
US4563205A (en) Process for the production of slab-shaped lens having gradient of refractive index in thickness direction only
US4410345A (en) Method of producing optical waveguide
JPS59152237A (en) Preparation of glass material having gradient of refractive index
CA1172045A (en) Process for the production of an optical glass article
JPS59152238A (en) Preparation of glass material having gradient of refractive index
JPH11314925A (en) Production of silica glass by sol-gel process
CA1267425A (en) Lithium-aluminum-silicate glass ceramic powders and methods of making them
US3149946A (en) Method of improving the infrared transmittance of high silica glass
US5294573A (en) Sol-gel process of making gradient-index glass
US4767435A (en) Process for producing transparent glass product having refractive index gradient
US5308802A (en) Sol-gel process of making glass, particulary gradient-index glass
US3252036A (en) Lamp having a colored envelope
KR19990065456A (en) Method for producing small ceramic beads
JPS606294B2 (en) Glass body manufacturing method
US3399043A (en) Electric lamp and method of production
JP3188296B2 (en) Manufacturing method of polarizing quartz glass