JPS59152236A - Preparation of leaky guide - Google Patents

Preparation of leaky guide

Info

Publication number
JPS59152236A
JPS59152236A JP2342083A JP2342083A JPS59152236A JP S59152236 A JPS59152236 A JP S59152236A JP 2342083 A JP2342083 A JP 2342083A JP 2342083 A JP2342083 A JP 2342083A JP S59152236 A JPS59152236 A JP S59152236A
Authority
JP
Japan
Prior art keywords
layer
pipe
leaky
quartz
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2342083A
Other languages
Japanese (ja)
Inventor
Hisanori Nakai
中居 久典
Toshihide Tokunaga
徳永 利秀
Tatsuo Teraoka
寺岡 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2342083A priority Critical patent/JPS59152236A/en
Publication of JPS59152236A publication Critical patent/JPS59152236A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • C03B2203/16Hollow core

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain a leaky guide having pipe thickness of high precision, by depositing the first layer of doped silica on the inner side of a starting quartz pipe, piling the second layer of pure quartz on it, subjecting the piled pipe to HF treatment so that the starting quartz pipe and the first layer are removed, drawing the second layer. CONSTITUTION:The doped silica 2 as the first layer is deposited on the inner side of the starting quartz pipe 1 by MCVD method, and the pure quartz 3 as the second layer is piled on the inner side of it. The piled pipe is subjected to HF treatment so that the starting quartz pipe 1 and the doped silica 2 are removed, and the pipe consisting of the remaining pure quartz of the second layer is drawn to prepare a leaky guide. Pipe thickness of the deposited pure quartz 3 has high precision in the lengthwise direction, and the pipe is drawn to give a leaky guide having pipe thickness of high precision.

Description

【発明の詳細な説明】 本発明はり−キイガイドの製造方法に係り、特に簡単に
、しかも、高精度の管厚のリーキイガイドを製造するの
に好適なリーキイガイドの製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a beam-key guide, and particularly relates to a method of manufacturing a leaky guide that is easy and suitable for manufacturing a leaky guide with a highly accurate tube thickness. .

例えば、CO2レーザ光(波長10.6μm)などの赤
外光のパワー伝送路として中空導波路があり、古くはM
 arcat i l i等の提案による金属または誘
電体中空導波路がある。これは理論上はガラス中空導波
路で、波長10.6μmの光伝送の場合、最低損失モー
ド、HEr 1モードの伝送損失は約1.7dB/mと
なる。これに対して、近年、中空導波路の新しいタイプ
としてリーキイガイドが提案されている。これは、誘電
体の管厚を伝送する光の波長の1/4の奇数倍に設定し
、低損失を実現するようにしたものである。リーキイガ
イトを用いた場合、上記と同じ条件でのHEI sモー
ドの伝送損失は0.023d B/mと非常に低損失に
なる。
For example, there is a hollow waveguide as a power transmission path for infrared light such as CO2 laser light (wavelength 10.6 μm), and in the old days M
There is a metal or dielectric hollow waveguide proposed by Arcat Illi et al. Theoretically, this is a glass hollow waveguide, and in the case of optical transmission with a wavelength of 10.6 μm, the transmission loss in the lowest loss mode, HEr 1 mode, is approximately 1.7 dB/m. On the other hand, in recent years, leaky guides have been proposed as a new type of hollow waveguide. In this case, the thickness of the dielectric tube is set to an odd multiple of 1/4 of the wavelength of the transmitted light to achieve low loss. When leaky guide is used, the HEI s-mode transmission loss under the same conditions as above is as low as 0.023 dB/m.

しかしながら、リーキイガイドは低損失を実現するため
に、管厚をλ/4(λは光の波長)程度、すなわちλ−
10.6μmとすれば、ニクロンオーダに制御する必要
があり、製造方法が非常に大きな問題となる。ところで
、リーキイガイドの好ましい製造方法についてはほとん
ど提案されていないのが波状である。
However, in order to achieve low loss, leaky guides have a tube thickness of about λ/4 (λ is the wavelength of light), that is, λ-
If the thickness is 10.6 μm, it must be controlled to the order of nicrons, and the manufacturing method becomes a very big problem. By the way, there are almost no proposals regarding the preferred manufacturing method for leaky guides, which are wavy.

本発明の目的は、管厚の制御が容易で、しかも、高精度
の管厚のリーキイガイドを簡単に製造することができる
リーキイガイドの製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a leaky guide, which allows easy control of the tube thickness and allows easy manufacture of a leaky guide having a highly accurate tube thickness.

本発明の特徴は、出発石英管の内側にMCVD(M o
dHied   chemical  vapor  
 deposition法により第1層としてドープト
シリカを堆積させ、次に第2層として純粋石英を堆積さ
せ、その後上記出発石英管と第1Bのドープトシリカを
フッ化水素処理(以下HF処理という)により除去し、
残った第2層の純石英からなる管を線引きしてリーキイ
ガイドを製造するようにした点にある。
A feature of the present invention is that MCVD (Mo
dHied chemical vapor
Doped silica is deposited as a first layer by a deposition method, then pure quartz is deposited as a second layer, and then the starting quartz tube and the 1B doped silica are removed by hydrogen fluoride treatment (hereinafter referred to as HF treatment),
The remaining second layer of pure quartz tube is drawn to produce a leaky guide.

以下本発明の方法の一実施例を第1図、第2図を用いて
詳細に説明する。
An embodiment of the method of the present invention will be described in detail below with reference to FIGS. 1 and 2.

第1図はリーキイガイドブリフォームの一例を示す斜視
図である。まず、出発石英管1の内側にMCVD法によ
り第1層としてドープトシリカ2を堆積させる。次に、
その内側に、第2層として純粋石英3を堆積される。こ
のとき、出発石英管1は長手方向に大きく変化している
。しかし、第1層のドープ1〜シリカ2および第2層の
純粋石英3の層厚が長手方向に非常に高精度となるよう
に堆積させることができる。次に、第2図に示すように
、l−I F処理によって出発石英管1と第1層のドー
プトシリカ2とを除去する。
FIG. 1 is a perspective view showing an example of a leaky guide form. First, doped silica 2 is deposited as a first layer inside a starting quartz tube 1 by MCVD. next,
Inside thereof, pure quartz 3 is deposited as a second layer. At this time, the starting quartz tube 1 has changed significantly in the longitudinal direction. However, the first layer of dope 1 to silica 2 and the second layer of pure quartz 3 can be deposited with very high precision in the thickness in the longitudinal direction. Next, as shown in FIG. 2, the starting quartz tube 1 and the first layer of doped silica 2 are removed by l-IF treatment.

この場合、出発石英管1の内側に直接純粋石英を堆積さ
せ、その後、出発石英管1をH「処理で除去することが
考えられるが、このようにザると、出発石英管1と純粋
石英とが同材質であるため、石英管1のみを除去するよ
うに制御することが非常に困難である。そこで、本発明
にa3いては、上記したように、第1層としてドープト
シリカ2を堆積させた。なお、出発石英管1は、HF処
理による除去速度が非常に遅く、50μmyhrである
In this case, it is conceivable to deposit pure quartz directly inside the starting quartz tube 1, and then remove the starting quartz tube 1 by H' treatment. Since they are made of the same material, it is very difficult to control the removal of only the quartz tube 1.Therefore, in the present invention, as described above, doped silica 2 is deposited as the first layer. Note that the starting quartz tube 1 had a very slow removal rate by HF treatment, which was 50 μmyhr.

したがって、出発石英管1はできるだけ肉厚が薄いもの
がよい。一方、ドープトシリカ2の1」「処理による除
去速度は速く、例えば、リンをQ、 2%程度含んだも
のはis/hrである。したがって、ドープトシリカ2
の層の厚さは、作業性を考慮して多少厚くすることが好
ましい。
Therefore, it is preferable that the starting quartz tube 1 has a wall thickness as thin as possible. On the other hand, the removal rate of doped silica 2 by treatment is fast, for example, is/hr for doped silica containing about 2% phosphorus.
It is preferable that the thickness of the layer is somewhat thicker in consideration of workability.

第2図に示す出発石英管1と第1層のドープトシリカ2
をトIF処理によって除去して1qられた第2層の純粋
シリカ3よりなるガラス管の管厚は非常に高精度である
。次に、この管を線引きして目3− 的とするリーキイガイトを製造する。なお、線引きする
ことにより、HF処理により失透していたガラス管面は
ファイアポリシーされたと同じような仕上げ面となり、
管厚精度も良好なものとなる。
The starting quartz tube 1 and the first layer of doped silica 2 shown in FIG.
The thickness of the glass tube made of the second layer of pure silica 3, which is removed by IF processing, has a very high precision. Next, this tube is drawn to produce the target leaky site. By drawing the line, the surface of the glass tube that had been devitrified due to HF treatment becomes a finished surface similar to that of a firepolished surface.
The tube thickness accuracy is also good.

上記した本発明の実施例によれば、 (1)第2層の純粋石英3の堆積にMCVD法を用いて
いるから管厚の制御が容易である。
According to the embodiment of the present invention described above, (1) Since the MCVD method is used to deposit the second layer of pure quartz 3, the tube thickness can be easily controlled.

(′2 堆積させた純粋石英3の管厚は長手方向に非常
に高精度であるから、これを線引きして得られるリーキ
イガイドの管厚も非常に高精度である。  ・ (3)第1層のドープトシリカ2の厚さを適切に選ぶこ
とにより作業性を向上させることができる。
('2) The thickness of the deposited pure quartz 3 in the longitudinal direction is very accurate, so the thickness of the leaky guide obtained by drawing it is also very accurate. (3) No. Workability can be improved by appropriately selecting the thickness of one layer of doped silica 2.

(4)簡単に管厚精度が良好なリーキイガイドを製造す
ることができる。
(4) A leaky guide with good tube thickness accuracy can be easily manufactured.

なお、第2層の純粋石英3の内側に、さらにMCVD法
により内ばりをほどこし、多層誘電体リーキイガイドを
製造することも容易であり、多層とすると単層の場合よ
りさらに低損失のものとすることができる。
Note that it is also easy to manufacture a multilayer dielectric leaky guide by applying an inner burr inside the second layer of pure quartz 3 using the MCVD method, and the multilayer dielectric leaky guide has even lower loss than the single layer. It can be done.

4− また、出発石英管1が肉厚の場合、第1図に示すリーキ
イガイドブリフォームを線引きした後、HF処理を行う
ようにしてもよい。このようにすることによりHF処理
時間を短かくすることができる。
4- Furthermore, when the starting quartz tube 1 is thick, the HF treatment may be performed after the leaky guide preform shown in FIG. 1 is drawn. By doing so, the HF processing time can be shortened.

以上説明したように、本発明によれば、管厚の制御が容
易であり、しかも、高精度の管厚のり一キイガイドを簡
単に製造することができ、低損失のリーキイガイドが得
られるという効果がある。
As explained above, according to the present invention, the pipe thickness can be easily controlled, a high-precision pipe thickness glue guide can be easily manufactured, and a leaky guide with low loss can be obtained. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明のリーキイガイドの製造方法の
一実施例を説明するための図で、第1図はリーキイガイ
ドブリフォームの一例を示す斜視図、第2図は第1図の
リーキイガイドブリフォームのHF処理後の状態を示す
斜視図である。 1:出発石英管、2ニド−ブトシリカ、3:純粋石英。 降 1(211 年 l 閉
1 and 2 are diagrams for explaining an embodiment of the leaky guide manufacturing method of the present invention. FIG. 1 is a perspective view showing an example of a leaky guide form, and FIG. It is a perspective view which shows the state after HF processing of the leaky guide preform of a figure. 1: Starting quartz tube, 2 Nido-butosilica, 3: Pure quartz. Fall 1 (211 year l closed)

Claims (1)

【特許請求の範囲】[Claims] 出発石英管の内管にMCVD法により第1層としてドー
プトシリカを堆積させ、次に第2層として純粋石英を堆
積させ、その後前記出発石英管と前記第1層のドープト
シリカをフッ化水素処理により除去し、残った前記第2
層の純粋石英からなる管を線引きしてリーキガイ、ドを
製造することを特徴とするリーキイガイドの製造方法。
Doped silica is deposited as a first layer on the inner tube of the starting quartz tube by MCVD, then pure quartz is deposited as a second layer, and then the starting quartz tube and the first layer of doped silica are removed by hydrogen fluoride treatment. and the remaining second
A method for manufacturing a leaky guide, which comprises manufacturing a leaky guide by drawing a tube made of layered pure quartz.
JP2342083A 1983-02-15 1983-02-15 Preparation of leaky guide Pending JPS59152236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2342083A JPS59152236A (en) 1983-02-15 1983-02-15 Preparation of leaky guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2342083A JPS59152236A (en) 1983-02-15 1983-02-15 Preparation of leaky guide

Publications (1)

Publication Number Publication Date
JPS59152236A true JPS59152236A (en) 1984-08-30

Family

ID=12110005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2342083A Pending JPS59152236A (en) 1983-02-15 1983-02-15 Preparation of leaky guide

Country Status (1)

Country Link
JP (1) JPS59152236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204102A (en) * 2008-02-28 2009-09-10 Toyota Motor Corp Belt for continuously variable transmission and element of belt for continuously variable transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204102A (en) * 2008-02-28 2009-09-10 Toyota Motor Corp Belt for continuously variable transmission and element of belt for continuously variable transmission

Similar Documents

Publication Publication Date Title
US4529426A (en) Method of fabricating high birefringence fibers
US5125946A (en) Manufacturing method for planar optical waveguides
EP0023066B1 (en) Method of manufacturing light conducting fibres
US4229070A (en) High bandwidth optical waveguide having B2 O3 free core and method of fabrication
US4415230A (en) Polarization retaining single-mode optical waveguide
US4619680A (en) Manufacture of integrated optical waveguides
US4494968A (en) Method of forming laminated single polarization fiber
JPS58145635A (en) Manufacture of fluorine-added optical fiber
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
NO792483L (en) OPTICAL CHAIRMAN WITH LARGE BANDWIDTH AND MANUFACTURE FOR SAME
EP0061901A1 (en) Optical waveguide fiber, and methods of forming an optical waveguide fiber, and an optical waveguide preform
JPH05283789A (en) Optical fiber and manufacture thereof
JP2004530621A (en) Method for producing optical waveguide article having high fluorine content region
JPH0341416B2 (en)
US4494969A (en) Method of forming laminated single polarization fiber
JPH0581543B2 (en)
JPS59152236A (en) Preparation of leaky guide
JP3836730B2 (en) Polarization-maintaining photonic crystal fiber and manufacturing method thereof
GB2180232A (en) Optical fibre
US20230104707A1 (en) Preforms for speckle-free output optical fibers having structured silica sections, methods of such preform manufacture, and improved speckle-free output optical fibers
JPS6252509A (en) Wide-band optical fiber
GB2057160A (en) Processes for producing light-conducting glass fibres
KR100420175B1 (en) Optical fiber preform and manufacturing method thereof
JPS59192225A (en) Optical circuit
JPS62163006A (en) Production of base material for optical waveguide