JPS59152094A - Detector for attitude of robot - Google Patents

Detector for attitude of robot

Info

Publication number
JPS59152094A
JPS59152094A JP1145783A JP1145783A JPS59152094A JP S59152094 A JPS59152094 A JP S59152094A JP 1145783 A JP1145783 A JP 1145783A JP 1145783 A JP1145783 A JP 1145783A JP S59152094 A JPS59152094 A JP S59152094A
Authority
JP
Japan
Prior art keywords
robot
wrist
posture
arm
hand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1145783A
Other languages
Japanese (ja)
Inventor
青森 功吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1145783A priority Critical patent/JPS59152094A/en
Publication of JPS59152094A publication Critical patent/JPS59152094A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明はロボットのアーム部、もしくは手首部まだはハ
シド部の姿勢を検知する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a device for detecting the posture of a robot's arm, wrist, or wrist.

[従来技術とその問題点] ロボットの手などが、いまどの方向に向いているかをい
ち早く検知する技術は、高性能ロボットを開発する上で
欠かせ々いものであり、たとえば部品同志を絹合わせた
り、あるいは穴拠棒を差し込むなど、ロボットに複雑な
仕事をさせようとする時は、まずロボットのアーム先端
部、手首、手先などの方向を正確かつ迅速に検知しかつ
制御しなければならない。このためにロボットの姿勢な
いしは方向を検知する装置が必要である。
[Prior art and its problems] Technology that quickly detects in which direction a robot's hand is currently facing is essential for developing high-performance robots. When trying to make a robot perform a complex task, such as inserting a hole bar into a hole, the direction of the robot's arm tip, wrist, hand, etc. must be accurately and quickly detected and controlled. For this purpose, a device is required to detect the posture or direction of the robot.

従来、ロボットの姿勢を検知することに関しては最近よ
うやくその重要性IJ&指摘されるようになった段階で
あるが、−例としてロボットのハンド部に、ハンド部の
方向の変化とともに移動する球の位置を、光学的に検知
することによって、ロボットハンド部の姿勢を検知する
方法がある。この方法はかなシの精度で姿勢が検知でき
る事が確認されているが、移動した球の投影像の形を電
気信号に変換し、マイコン等でロボット−・ンド部の姿
勢を検知しており、検出時間が5QQ m Secと長
い。
Conventionally, the importance of detecting the robot's posture has only recently been pointed out. For example, in the robot's hand, the position of a ball that moves as the direction of the hand changes. There is a method of detecting the posture of the robot hand by optically detecting the . It has been confirmed that this method can detect the posture with very little accuracy, but the shape of the projected image of the moving ball is converted into an electrical signal, and the posture of the robot arm is detected using a microcomputer, etc. , the detection time is as long as 5QQ m Sec.

また、ロボットが動いている状態では、球はその慣性力
を受けておシ、静的な状態でしか、正確な姿勢は検知で
きない。
Furthermore, when the robot is in motion, the ball is affected by its inertia, and the accurate posture can only be detected when the robot is in a static state.

一方、上述のような特別な検知装置を用いず、ロボット
の手やアームの関節の曲げ角度などのデータをもとに複
雑な計算によって求める方法もあリ、現在はこの方法が
一般的である。しかしこの方法は計算処理時間、検出の
精度という薇で問題がある。
On the other hand, there is also a method that does not use the special detection device mentioned above and uses complex calculations based on data such as the bending angle of the joints of the robot's hand and arm, and this method is currently common. . However, this method has problems in terms of calculation processing time and detection accuracy.

[発明の目的] 本発明は上述の欠似を改善するためになされたものでロ
ボットが動いている状態においても、簡便にかつ短時間
にロボットの姿勢を検知する装置kを提供することを目
的とする。
[Object of the Invention] The present invention was made to improve the above-mentioned deficiencies, and an object of the present invention is to provide a device k that can easily and quickly detect the posture of a robot even when the robot is in motion. shall be.

[発明の概要] 本発明は、ロボットのアーム部、もしくは手首部、ない
しは・・ンド部に、歪みゲージ方式吉圧電方式の両割速
度計をそれぞれx+ Y r zの:3方向に装置し、
各方向に関し、両割速度計の出力を減算することにより
、ロボットが動いている状態においても、歪みゲージ方
式の加速度計の出力に印加されている各方向の重力方向
成分を計算することKより、ロボットのアーム部、手首
部、ハンド部の姿勢を迅速にかつ簡単に検知することが
出来る。
[Summary of the Invention] The present invention provides a strain gage type piezoelectric type bisecting velocity meter installed in the arm portion, wrist portion, or arm portion of the robot in three directions: x + Y r z.
For each direction, by subtracting the output of the bisecting speedometer, the gravity direction component in each direction applied to the output of the strain gauge accelerometer can be calculated even when the robot is moving. , the posture of the robot's arm, wrist, and hand can be detected quickly and easily.

[発明の効果] 本発明によれば、ロボットが動いている状態においても
歪みゲージ方式の加速度計の出力に印加されている各方
向の重力方向成分を計算することによりロボットの姿勢
を迅速に、かつ簡便に検知出来る。
[Effects of the Invention] According to the present invention, even when the robot is moving, the posture of the robot can be quickly adjusted by calculating the gravitational direction components in each direction applied to the output of the strain gauge type accelerometer. And it can be easily detected.

[発明の実施例] 以下、図面を参照してこの発明の詳細な説明する。第1
図に、ロボットのアーム部、もしくは手首部、ハンド部
に仰りつけだ、歪みゲージ方式の加速度計の出力を、f
42図にFE電方式の加速度計の出力を示す。第1図、
第2図さも時間aでは初期の静止状態を示す。時間す、
dは運動状態、時間c、eはそれぞれの運動の停止状態
を示す。
[Embodiments of the Invention] Hereinafter, the present invention will be described in detail with reference to the drawings. 1st
The figure shows the output of a strain gauge type accelerometer attached to the robot's arm, wrist, or hand.
Figure 42 shows the output of the FE electric type accelerometer. Figure 1,
FIG. 2 also shows an initial stationary state at time a. Time,
d indicates the state of motion, and times c and e indicate the state of stoppage of each motion.

第1図例示したように、歪みゲージ方式の加速度計の出
力は、ロボットのアームないしは手首の運動により、重
力方向の成分も付加される。一方圧型方式の加速度計は
、第2図に示すように、重力方向とけ一切関係なく、運
動の方向成分のみを出力する。このことは歪みゲージ方
式の加速度計の出力から、圧電方式の加速度計の出力を
減算することにより、重力方向成分が得られることを意
味する。この減算結果を第3図に示す。この第3図よシ
静止・停止状態だけでなく、運動状態においても、重力
方向成分が検知されることがわかる。
As illustrated in FIG. 1, a component in the direction of gravity is added to the output of the strain gauge type accelerometer due to the movement of the arm or wrist of the robot. As shown in FIG. 2, the one-pressure type accelerometer outputs only the directional component of motion, regardless of the direction of gravity. This means that the gravity direction component can be obtained by subtracting the output of the piezoelectric type accelerometer from the output of the strain gauge type accelerometer. The result of this subtraction is shown in FIG. It can be seen from FIG. 3 that the gravitational direction component is detected not only in a stationary/stopped state but also in a moving state.

以上の原理をx、y、zの3方向について応用すると、
各x、y、z方向の重力方向成分が、ロボットの静止・
停止状態のみならず、運動状態においてモ検知され、ロ
ボットのアーム部、手首部ないしは・・ンド部のx、y
、z方向の各重力方向成分から、重力方向が得られる。
Applying the above principle to the three directions x, y, and z, we get
The gravity direction components in each x, y, and z direction are
It is detected not only in the stopped state but also in the moving state, and the x, y of the robot's arm, wrist, or...
, the gravity direction is obtained from each gravity direction component in the z direction.

第4図には、x、y、z方向の各重力方向成分と重力方
向の関係を示し、第5図にはロボットの手首部において
y軸を手首部の長さ方向と仮定した場合の、x、y、z
方向の各重力方向成分と重力方向、ならびにロボットの
手首部の姿勢との関係を示す。
Fig. 4 shows the relationship between each gravitational direction component in the x, y, and z directions and the gravitational direction, and Fig. 5 shows the relationship between the gravitational direction components in the x, y, and z directions, and Fig. 5 shows the relationship between the gravitational direction components in the x, y, and z directions, and Fig. 5 shows the relationship between the gravitational direction and the gravitational direction in the wrist of the robot, assuming that the y-axis is the longitudinal direction of the wrist. x, y, z
The relationship between each gravitational direction component of the direction, the gravitational direction, and the posture of the robot's wrist is shown.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は歪みゲージ方式の加速度計の出力図、第2図は
圧電式加速度計の出力図、第;3図は歪みゲージ方式加
速度計の出力から圧電式加速度計の出力を減算した結果
を示す図、第4図は各重力方向成分と重力方向の関係を
示す図、第5図は各重力方向成分と重力方向ならびに実
際のロボット手首部の姿勢との関係を示す図。 代理人弁理」、則近憲佑(ほか1名) 第  1  図 第  3  図 第4図 第5図
Figure 1 is the output diagram of the strain gauge accelerometer, Figure 2 is the output diagram of the piezoelectric accelerometer, and Figure 3 is the result of subtracting the output of the piezoelectric accelerometer from the output of the strain gauge accelerometer. FIG. 4 is a diagram showing the relationship between each gravitational direction component and the gravitational direction, and FIG. 5 is a diagram showing the relationship between each gravitational direction component, the gravitational direction, and the actual posture of the robot wrist. "Representative Attorney", Kensuke Norichika (and 1 other person) Figure 1 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] ロボットのアーム部、もしくは手首部、またはハンド部
において、歪みゲージを用いた加速度計と、圧電式加速
度計とをそれぞれx+ >’ + Zの3方向に装着し
、その出力を演算することにより、ロボットのアーム部
、もしくは手首部ないしはハンド部の姿勢を検知するこ
とを特徴とするロボット姿勢検知装置、
By attaching an accelerometer using a strain gauge and a piezoelectric accelerometer to the arm, wrist, or hand of the robot in three directions, x+ >' + Z, and calculating their outputs, A robot posture detection device characterized by detecting the posture of a robot arm, wrist, or hand;
JP1145783A 1983-01-28 1983-01-28 Detector for attitude of robot Pending JPS59152094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145783A JPS59152094A (en) 1983-01-28 1983-01-28 Detector for attitude of robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145783A JPS59152094A (en) 1983-01-28 1983-01-28 Detector for attitude of robot

Publications (1)

Publication Number Publication Date
JPS59152094A true JPS59152094A (en) 1984-08-30

Family

ID=11778620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145783A Pending JPS59152094A (en) 1983-01-28 1983-01-28 Detector for attitude of robot

Country Status (1)

Country Link
JP (1) JPS59152094A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209867A (en) * 1985-03-13 1986-09-18 Sanyo Kiko Kk Apparatus for automatically polishing free curved surface of work
JP2012139770A (en) * 2010-12-28 2012-07-26 Yaskawa Electric Corp Robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209867A (en) * 1985-03-13 1986-09-18 Sanyo Kiko Kk Apparatus for automatically polishing free curved surface of work
JP2012139770A (en) * 2010-12-28 2012-07-26 Yaskawa Electric Corp Robot

Similar Documents

Publication Publication Date Title
Dev et al. Navigation of a mobile robot on the temporal development of the optic flow
Liu et al. A base force/torque sensor approach to robot manipulator inertial parameter estimation
Sakaguchi et al. Human motion capture by integrating gyroscopes and accelerometers
GB1383731A (en) Apparatus for determining the velocity and the direction of relative motion thereof with respect to a fluid and with regard to a direction of reference and the use of said apparatus
EP0464649B1 (en) Control device for robot in inertial coordinate system
JPS59152094A (en) Detector for attitude of robot
JP6719756B2 (en) Body part contact force sensor
JPS60217085A (en) Handling system of moving body
JPH0639070B2 (en) Robot device force sensor calibration method
JPS60217089A (en) Body gripper
JP3206775B2 (en) Copying control method and copying control device for machining / assembly device
JP3499132B2 (en) Displacement measuring device
JPH02300644A (en) Measuring method for gravity center position of body
JPH0131565B2 (en)
JPS6099583A (en) Method of controlling attitude of robot
JPS60131191A (en) Detector for external force
JPS61260992A (en) Method and device for controlling position of robot
JPS6368383A (en) Industrial robot
JP2766336B2 (en) Operating range monitoring method for industrial robots
JPS58176078A (en) Weld line detecting method
JPH0690104B2 (en) Method and apparatus for calibrating the transformation matrix of a force sensor
KR920010575B1 (en) Position compensation system for robot
JPH0349887A (en) Force control robot device having friction measuring function
Zhang et al. Motion Tracking of a High-Speed Multilink System Using Dynamic Measurements Fusion
JPH01222316A (en) Controller for position and force of multidegree freedom work machine