JPS59151737A - Ion source and ion generation - Google Patents

Ion source and ion generation

Info

Publication number
JPS59151737A
JPS59151737A JP58026000A JP2600083A JPS59151737A JP S59151737 A JPS59151737 A JP S59151737A JP 58026000 A JP58026000 A JP 58026000A JP 2600083 A JP2600083 A JP 2600083A JP S59151737 A JPS59151737 A JP S59151737A
Authority
JP
Japan
Prior art keywords
electrons
electrode
ion
electric field
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58026000A
Other languages
Japanese (ja)
Other versions
JPH0136661B2 (en
Inventor
Shoichi Ono
昭一 小野
Kuniyoshi Yokoo
邦義 横尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP58026000A priority Critical patent/JPS59151737A/en
Publication of JPS59151737A publication Critical patent/JPS59151737A/en
Publication of JPH0136661B2 publication Critical patent/JPH0136661B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To generate a large quantity of ions with low gas pressure by obtaining kinetic electrons of high density utilizing a secondary electron resonance multiplication phenomenon with one electrode while haveng high frequency electric power and DC power piled up thereon as an energy source. CONSTITUTION:A high frequency electric field and a DC electric field are given between two pieces of electrodes 1 and 2 by the power sources 3 and 4 respectively. By properly selecting both voltages of DC and high frequency, a large quantity of kinetic electrons can be obtained by one electrode multifactor effect, when a secondary electron emission coefficient of the electrode 1 is above 1. The collision of said kinetic electrons with gas molecules and atoms generates ions. Thereby, electrons are maintained in high density only by the secondary electron emission from the electrode so that a large quantity of ions can be generated even in such a low voltage in which no normal gas discharge can happen.

Description

【発明の詳細な説明】 本発明は半導体または金属へのイオン打込み装置、イオ
ン加速器、表面分析装置、薄膜形成装置等に使用するイ
オン源及びイオン生成法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion source and ion generation method used in ion implantation devices for semiconductors or metals, ion accelerators, surface analysis devices, thin film forming devices, and the like.

従来のイオン源としては、主に気体放電型のものが用い
られている。しかし、この型式のものは低ガス圧で大き
なイオン電流が得難いという欠点を有しており,表面分
析装置,良品質の薄膜形成等高真空装置で使用するイオ
ン源としては、ガス圧の高いことが障害となることがあ
る。この欠点を緩和しうるものとして,磁場中での電子
のサイクロトロン共鳴を利用した高周波放電によるイオ
ン源がある。
As conventional ion sources, gas discharge type ones are mainly used. However, this type has the disadvantage that it is difficult to obtain a large ion current at low gas pressure, and as an ion source used in high vacuum equipment such as surface analysis equipment and high-quality thin film formation, it is difficult to obtain a large ion current at low gas pressure. may become an obstacle. An ion source that can alleviate this drawback is a high-frequency discharge-based ion source that utilizes cyclotron resonance of electrons in a magnetic field.

この装置は磁場中で、電子が回転運動を行なうことを利
用したもので、限られた小容積の空間内でも走行距離が
伸び、原子または分子との衝突確率が大きくなっている
ために低いガス圧にお゛いても放電が維持できる利点を
有している。
This device utilizes the rotational motion of electrons in a magnetic field, which increases the traveling distance even within a small, limited volume of space, and reduces the gas flow rate due to the increased probability of collision with atoms or molecules. It has the advantage that discharge can be maintained even under high pressure.

しかし、反面高い強度及び特殊な空間分布を持つ定常磁
場が必要であり、このための付属装置が必要となり、装
置全体が複雑となる上、製作も−難しく、形状が大型化
し更にイオン源に近接して取り出したイオンビームの集
束、偏向又はエネルギー分析の為に定められた強度、ま
たは空間分布をもつ磁場を必要とするような装置のイオ
ン源としては不適当となり、使用範囲が限定される。
However, on the other hand, it requires a steady magnetic field with high strength and a special spatial distribution, which requires additional equipment, making the entire device complex, difficult to manufacture, large in size, and close to the ion source. This makes it unsuitable as an ion source for devices that require a magnetic field with a predetermined intensity or spatial distribution for focusing, deflection, or energy analysis of the ion beam extracted, and the range of use is limited.

このように従来のイオン源は、気体放電型のものも、電
子サイクロトロン共鳴を利用したものもそれぞれに使用
範囲が限定される。
As described above, the range of use of conventional ion sources is limited, whether it is a gas discharge type or one that utilizes electron cyclotron resonance.

本発明は斜上の従来の欠点を除去するものであり、その
目的は、低ガス圧でイオン電流の大きな新規のイオン源
及びイオン生成法を提供することにある。
The present invention eliminates the drawbacks of the conventional slanted top, and its purpose is to provide a new ion source and ion production method with low gas pressure and high ion current.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明のイオン源の基本的構成要素を示したも
のである。二枚の電極1.2間に高周波電界および直流
電界がそれぞれ電源3.4によって与えられる。ここで
、先ず直流電源4によって直流電界が印加されていない
場合を想定する。電極1より出た電子は高周波電界によ
って加速され、ある速度を持って電極2に衝突し、2次
電子を放出する。この時、高周波電界位相が反転してい
れば、逆方向に加速されて電極1に衝突し、再び2次電
子を放出する。もし、この場合に電極よりの2次電子放
出係数が1以上であれば、電極より放出される2次電子
数は時間の経過と共に増大する。この放出電子数は電子
数の増加と共に増大する空間電荷効果により初期の状態
とは異なる衝突速度となる事や。
FIG. 1 shows the basic components of the ion source of the present invention. A high frequency electric field and a DC electric field are respectively applied between the two electrodes 1.2 by a power source 3.4. First, assume that no DC electric field is applied by the DC power supply 4. Electrons emitted from electrode 1 are accelerated by a high-frequency electric field, collide with electrode 2 at a certain speed, and emit secondary electrons. At this time, if the high-frequency electric field phase is reversed, the electrons are accelerated in the opposite direction and collide with the electrode 1, emitting secondary electrons again. In this case, if the secondary electron emission coefficient from the electrode is 1 or more, the number of secondary electrons emitted from the electrode increases with the passage of time. The number of emitted electrons becomes different from the initial state due to the space charge effect, which increases as the number of electrons increases.

高周波電界との位相関係がずれる事により、成る程度の
電子数において平衡状態に達する。これが、2次電子共
鳴増倍効果とも云うべき、いわゆる通常のマルチパクタ
−効果であり、大電力マイクロ波電子管等で高周波電力
損失の大きな原因として、その防止対策が種々検討され
てきたことからもわかるように、非常に大きな電子増倍
の生ずる現象である。
By shifting the phase relationship with the high-frequency electric field, an equilibrium state is reached at a certain number of electrons. This is the so-called normal multipactor effect, which can also be called the secondary electron resonance multiplication effect, and it can be seen from the fact that various measures to prevent it have been studied as a major cause of high-frequency power loss in high-power microwave electron tubes, etc. This is a phenomenon in which extremely large electron multiplication occurs.

一方、電極2に高周波電圧に直流電源4による負の直流
電圧を重畳してやると、電極1より出発し、高周波電界
により加速されて運動する電子を、電極2に到達するこ
となしに、2電極間を往復運動させて、再び電極1に衝
突させることができる。この時、2電極間に印加する直
流、高周波の両電圧を適当に選ぶことにより、この往復
運動する電子の走行時間を高周波の周期と同期させるこ
とができる。従って、電極1の2次電子放出係数が1以
上であれば、上述のように2電極での2次電子増倍を伴
なわなくとも、電極1の1電極での2次電子増倍のみに
よってマルチパクタ−効果を維持する仁とができる。(
以下この現象を1電極マルチパクタ−効果と呼ぶ。) 本発明のイオン源は、上記1m!極マルチパクター効果
により多量の運動電子を得、この運動電子とガス分子、
原子との衝突により、イオンを生成する。この場合電子
は、気体放電のようなガス分子の電離による電子、イオ
ンの対生成が全く無い高真空中でも、電極からの2次電
子放出のみによって高密度に維持されるので1通常の気
体放電の起こり得ない程度の低ガス圧においても多量の
イオンの生成が可能となる。また、運動電子は負直流電
圧の印加されている電極2と衝突することが無いので、
この電極2は高周波電圧及び直流電圧を与えることが可
能な材料であれば、材質に制限を受けず、また、多孔電
極、メツシュ電極等電極形状も大幅に自由に選択するこ
とが可能で、この電極2を通して生成イオンを外部へ引
き出す場合には、この電極には正イオンに対しては加速
電圧も加わっていることと合わせて、生成イオンを効率
良く引き出すことができる。
On the other hand, if a negative DC voltage from the DC power source 4 is superimposed on the high frequency voltage at the electrode 2, the electrons starting from the electrode 1 and moving while being accelerated by the high frequency electric field can be moved between the two electrodes without reaching the electrode 2. can be caused to reciprocate and collide with the electrode 1 again. At this time, by appropriately selecting both the DC and high-frequency voltages to be applied between the two electrodes, the travel time of the reciprocating electrons can be synchronized with the high-frequency cycle. Therefore, if the secondary electron emission coefficient of electrode 1 is 1 or more, secondary electron multiplication at one electrode of electrode 1 is possible even without secondary electron multiplication at two electrodes as described above. It is possible to maintain the multipactor effect. (
Hereinafter, this phenomenon will be referred to as the one-electrode multipactor effect. ) The ion source of the present invention has the above 1 m! A large amount of kinetic electrons is obtained due to the polar multipactor effect, and these kinetic electrons and gas molecules,
Ions are produced by collision with atoms. In this case, electrons are maintained at a high density only by secondary electron emission from the electrodes, even in high vacuum where there is no pair formation of electrons and ions due to ionization of gas molecules as in gas discharge. A large amount of ions can be generated even at impossibly low gas pressures. In addition, since the kinetic electrons do not collide with the electrode 2 to which negative DC voltage is applied,
The material of this electrode 2 is not limited as long as it is capable of applying a high frequency voltage and a direct current voltage, and the shape of the electrode, such as a porous electrode or a mesh electrode, can be selected with great freedom. When the generated ions are extracted to the outside through the electrode 2, the generated ions can be efficiently extracted in combination with the fact that an accelerating voltage is also applied to the positive ions at this electrode.

また1電極マルチパクタ−効果では、運動電子は負電位
電極2と衝突すること無しに高周波の1周期で往復運動
するので、高周波電圧による電子の加減速は丁度打ち消
されて、もし印加高周波の周波数が一定であれば、電極
1に衝突する電子のエネルギーは印加直流電圧によりて
のみ決めることができる。従って、印加直流電圧によっ
てこの衝突する電子のエネルギーを使用する電極材料の
2次電子放出係数が最大となる値に設定することができ
、かつ高周波の周波数及び電圧変化に対しても電子の飛
行距離が変化するだけで、同条件には直接影響せず、比
較的安定に低い高周波電圧でマルチパクタ−効果を開始
させることができる利点がある。
In addition, in the one-electrode multipactor effect, the moving electrons reciprocate in one high-frequency cycle without colliding with the negative potential electrode 2, so the acceleration and deceleration of the electrons due to the high-frequency voltage is exactly canceled out, and if the frequency of the applied high-frequency voltage is If constant, the energy of the electrons impinging on the electrode 1 can be determined only by the applied DC voltage. Therefore, the energy of these colliding electrons can be set to a value that maximizes the secondary electron emission coefficient of the electrode material using the applied DC voltage. This has the advantage that the multipactor effect can be started relatively stably with a low high-frequency voltage without directly affecting the same conditions.

尚、イオン源に磁場を印加することが許される場合には
、マルチパクタ−効果の起こる電極1.2間に電極に垂
直もしくは平行な定常磁場を加えて、運動電子に回転運
動を行なわせて、その走行距離を伸ばし、原子または分
子との衝突確率を高めてイオンの生成効率を良くする。
If it is permissible to apply a magnetic field to the ion source, apply a steady magnetic field perpendicular or parallel to the electrodes between the electrodes 1 and 2, where the multipactor effect occurs, to cause the moving electrons to perform rotational motion. This increases the traveling distance of ions, increases the probability of collision with atoms or molecules, and improves the efficiency of ion generation.

もしくは、2次電子電極面に入射する電子の入射角を変
え、この入射角度によって電極面よりの2次電子放出比
を大きクシ、イオン化に寄与する電子数を増し、生成イ
オン量を増大できる。
Alternatively, by changing the incident angle of electrons incident on the secondary electron electrode surface, the secondary electron emission ratio from the electrode surface can be increased, the number of electrons contributing to ionization can be increased, and the amount of generated ions can be increased.

但し、この場合使用する磁場強度は、電子サイクロトロ
ン共鳴現象を利用した場合のように高周波1[E源の周
波数によって定められるといった制限はなく、任意に選
ぶことができる。
However, the magnetic field strength used in this case is not limited to be determined by the frequency of the high frequency 1[E source as in the case of utilizing the electron cyclotron resonance phenomenon, and can be arbitrarily selected.

5.6はそれぞれ引き出したイオンの集電極及び引き出
したイオンに所望のエネルギーを与える電源である。7
はガス導入孔、8は排気口、9は真空容器である。
Reference numerals 5 and 6 are a collector electrode for the extracted ions and a power source for applying desired energy to the extracted ions. 7
8 is a gas introduction hole, 8 is an exhaust port, and 9 is a vacuum container.

なお、高周波電圧の印加される2[極間にインダクタン
スを付加すれば、このインダクタンスと電極間容量によ
り共振器が形成できる。この共振器の共振周波数と等し
い周波数の高周波電力を印加すれば、小電力の高周波入
力電力でマルチパクタ−効果生起のための大きな高周波
電圧を得ることができる。
Note that if an inductance is added between the two electrodes to which the high-frequency voltage is applied, a resonator can be formed by this inductance and the interelectrode capacitance. By applying a high frequency power having a frequency equal to the resonant frequency of this resonator, a large high frequency voltage for producing a multipactor effect can be obtained with a small high frequency input power.

高い周波数の使用を想定した共振器としてリエントラン
ト型の空胴を使用した例である。
This is an example of using a reentrant cavity as a resonator intended for use at high frequencies.

図中ハラ4の部分がリエントラント型空胴共振器を形成
しており、これに高周波電源4より共振周波数と等しい
周波数の高周波電力を供給する。共振器の容量を一形成
するダブルハラ4で示した電極1.2の間に高周波の高
電界が生じ、この部分がイオン生成空間となる。この場
合、この空間に1電極マルチパクタ−効果を生起させる
ために、電ai2はリエントラント空胴から直流的に絶
縁し、直流′lIt源4より負の直流電圧が印加できる
In the figure, a portion of the hollow 4 forms a reentrant cavity resonator, to which a high frequency power source 4 supplies high frequency power having a frequency equal to the resonant frequency. A high frequency high electric field is generated between the electrodes 1 and 2 indicated by the double hall 4 forming one of the capacitances of the resonator, and this portion becomes an ion generation space. In this case, in order to produce a one-electrode multipactor effect in this space, the electric current ai2 is galvanically insulated from the reentrant cavity, and a negative direct current voltage can be applied from the direct current source 4.

尚、電極2は多孔もしくは、網目状電極で構成されてお
り、その空隙より生成イオンを採り出・すことができる
Note that the electrode 2 is composed of a porous or mesh electrode, and generated ions can be extracted from the voids thereof.

イオン生成空間の大きさは、使用する高周波の周波数を
変えるか、あるいは高周波の周波数を一定とした場合に
も空胴共振器の設計番こよって広く変化させることがで
きる。これはイオン源の使用目的に応じ、生成イオンビ
ームの径を大きく変化させうろことを意味する。
The size of the ion generation space can be varied widely by changing the frequency of the radio frequency used, or by changing the design number of the cavity resonator even when the frequency of the radio frequency is constant. This means that the diameter of the generated ion beam can be changed significantly depending on the intended use of the ion source.

以上1本発明についていくつかの具体例を用いて詳細に
説明したが1本発明はこれらの具体例に限られるもので
はない。
Although the present invention has been described in detail using several specific examples, the present invention is not limited to these specific examples.

本発明のイオン源及びイオン生成法は、高周波電力およ
びこれに重畳された直流電力をエネルギー源として%1
電極での2次電子共鳴増倍現象を利用して、高密度の運
動電子を得て、この電子と所要の物質の原子まナニは分
子との衝突電離によって、これら原子または分子のイオ
ンを生成するものであり、低ガス圧で多量のイオンを生
成できるという特徴を有し、従来の電子サイクロトロン
共鳴現象と同様な動作条件を満たしたイオン源であり、
構造が簡単でその上磁場を使わない構成の場合には更に
構造が簡単になるという利点を有している。
The ion source and ion generation method of the present invention use high frequency power and direct current power superimposed thereon as an energy source.
Using the secondary electron resonance multiplication phenomenon at the electrode, a high density of moving electrons is obtained, and these electrons and atoms of the required substance collide with molecules and ionize to produce ions of these atoms or molecules. It is an ion source that can generate a large amount of ions at low gas pressure, and satisfies the same operating conditions as the conventional electron cyclotron resonance phenomenon.
It has the advantage that the structure is simple, and furthermore, in the case of a structure that does not use a magnetic field, the structure is even simpler.

今日、イオン源が多くの産業分野において実用されてい
る点から工業的意義も大きい。
It also has great industrial significance because ion sources are now in practical use in many industrial fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的構成を説明する図。 第2図はりエンドラント型空胴共振器を用いた本発明の
具体例である。 1−、−2次電子放出電極、2−−−一対向電極、8−
・・高周波電源、 4・・・直流電源、 5・・・イオ
ン集電極、6−−−−加速用電源、 7−、ガス導入口
、 8−排気口9−一一一真空容器
FIG. 1 is a diagram explaining the basic configuration of the present invention. FIG. 2 is a specific example of the present invention using a beam endrunt type cavity resonator. 1-, -secondary electron emitting electrode, 2--one counter electrode, 8-
...High frequency power supply, 4...DC power supply, 5...Ion collecting electrode, 6--Acceleration power supply, 7-, Gas inlet, 8-Exhaust port 9-111 Vacuum vessel

Claims (1)

【特許請求の範囲】 (11所要の2次電子放出係数を有する電極とに−これ
に対向する(無孔、有孔、もしくは網目状)[極、該2
電極間に高周波電界と直流電界とを同時に印加する21
E源とを具備し、前記2電源の印加電界により、前記所
要の2次電子放出係数を有する電極から生じた電子を前
記2電極間を往復運動させ、該電極に与えることにより
2次電子を放出させ、該2次電子が再び往復運動するこ
とを高周波電界の周期に合わせ繰り返す2次電子共鳴増
倍現象により運動電子を得、該電子が分子、原子との衝
突によりイオン化することを特徴とするイオン源。 (2)  前記2電極間に磁場を加える部分とを具備す
ることを特徴とする特許 1項記載のイオン源。 (3}  マルチパクタ−効果を1電極でのみ生起せし
めて、この運動電子と所望ガス分子、原子との衝突電離
により、イオンを生成することを特徴とするイオン生成
法。
[Scope of claims]
Simultaneously applying a high frequency electric field and a DC electric field between electrodes21
E source, the electrons generated from the electrode having the required secondary electron emission coefficient are caused to reciprocate between the two electrodes by the applied electric field of the two power sources, and the secondary electrons are generated by applying the electrons to the electrode. The secondary electrons are emitted, and the secondary electrons reciprocate again in accordance with the period of the high-frequency electric field to obtain moving electrons, and the electrons are ionized by collision with molecules and atoms. ion source. (2) The ion source described in Patent No. 1, further comprising a portion that applies a magnetic field between the two electrodes. (3) An ion generation method characterized in that a multipactor effect is generated only at one electrode, and ions are generated by collision ionization between the moving electrons and desired gas molecules or atoms.
JP58026000A 1983-02-17 1983-02-17 Ion source and ion generation Granted JPS59151737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58026000A JPS59151737A (en) 1983-02-17 1983-02-17 Ion source and ion generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58026000A JPS59151737A (en) 1983-02-17 1983-02-17 Ion source and ion generation

Publications (2)

Publication Number Publication Date
JPS59151737A true JPS59151737A (en) 1984-08-30
JPH0136661B2 JPH0136661B2 (en) 1989-08-01

Family

ID=12181440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58026000A Granted JPS59151737A (en) 1983-02-17 1983-02-17 Ion source and ion generation

Country Status (1)

Country Link
JP (1) JPS59151737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434469A (en) * 1991-10-11 1995-07-18 Proel Tecnologie S.P.A. Ion generator with ionization chamber constructed from or coated with material with a high coefficient of secondary emission
EP3226663A1 (en) * 2016-03-28 2017-10-04 Scholtz e Fontana Consultoria Ltda - ME Plasma densification method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193000A (en) * 1975-02-13 1976-08-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193000A (en) * 1975-02-13 1976-08-14

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434469A (en) * 1991-10-11 1995-07-18 Proel Tecnologie S.P.A. Ion generator with ionization chamber constructed from or coated with material with a high coefficient of secondary emission
EP3226663A1 (en) * 2016-03-28 2017-10-04 Scholtz e Fontana Consultoria Ltda - ME Plasma densification method

Also Published As

Publication number Publication date
JPH0136661B2 (en) 1989-08-01

Similar Documents

Publication Publication Date Title
Fink et al. Halo formation and chaos in root-mean-square matched beams propagatingthrough a periodic solenoidal focusing channel
US2745039A (en) Ultra-high frequency electronic device
US5519213A (en) Fast atom beam source
US5216241A (en) Fast atom beam source
US4389165A (en) Ion pump for producing an ultrahigh degree of vacuum
US3450931A (en) Cyclotron motion linear accelerator
JPS59151737A (en) Ion source and ion generation
RU2246035C1 (en) Ion engine
JPH07169425A (en) Ion source
US2438954A (en) Electronic oscillator of the cavity resonator type
Wang et al. The simulation of a high-power low-velocity-spread space-charge-limited (SCL) cusp gun
US3378718A (en) Crossed-field traveling wave electron reaction device employing cyclotron mode interaction
Becker et al. The electron beam ion source and some possibilities for improvement
JPS5812346B2 (en) plasma etching equipment
JPS62224686A (en) Ion source
Scheitrum et al. W-band sheet beam klystron design
CN219738906U (en) Device for exciting electromagnetic wave by utilizing plasma
JPH0227773B2 (en) CHOKOSHUHADENSHIKAN
RU2761460C1 (en) Collector with multi-stage recovery for an electronic gyrotron-type uhf apparatus
JP3213135B2 (en) Fast atom beam source
JPH01161699A (en) High-speed atomic beam source
US2611882A (en) Electron discharge device
RU2306685C1 (en) Charged particle accelerator
JPS63221547A (en) Ion neutralizer
CN114156157A (en) Plasma generating device