JPS59151468A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59151468A
JPS59151468A JP58025705A JP2570583A JPS59151468A JP S59151468 A JPS59151468 A JP S59151468A JP 58025705 A JP58025705 A JP 58025705A JP 2570583 A JP2570583 A JP 2570583A JP S59151468 A JPS59151468 A JP S59151468A
Authority
JP
Japan
Prior art keywords
region
film
regions
semiconductor
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58025705A
Other languages
Japanese (ja)
Inventor
Takehide Shirato
猛英 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58025705A priority Critical patent/JPS59151468A/en
Publication of JPS59151468A publication Critical patent/JPS59151468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To inhibit the variation of the width of an offset region by isolating and demarcating each active region by a field oxide film and forming the offset region to the lower section of the field oxide film. CONSTITUTION:Si3N4 Films 33 are formed selectively on an N type Si base body 31 through an SiO2 film 32. P Type impurity introducing regions 35 are formed, and N type impurity introducing regions 37 are formed. Field oxide films 38 are formed selectively, and the films 33, 32 are removed. An SiO2 film 42 as a gate oxide film is formed on the base body 31, and a gate oxide film 43 is formed. The film 42 on drain and source forming regions is removed. Ions are implanted into the regions 40, 41. A surface protective film 45 is formed on the whole surface of the base body 31, a window for forming an electrode is bored to the film 45, and an SiO2 film 44' is formed and the whole is heated and treated. The regions 35 are changed into P<-> type offset regions 35 and a P<-> type low-concentration region 35' through the heat treatment. According to such a formation, the variation of the width of the offset regions is inhibited, and a protection on a base-body surface between a drain and a gate can be reinforced.

Description

【発明の詳細な説明】 (a)  発明の技術与野 本発明は半導体装置、特に高耐圧用MO8FETにかが
シ、その特性の変動が抑制され、かつ製造工程数の削減
が可能であるMOS FETの構造に関する。
[Detailed Description of the Invention] (a) Technique of the Invention The present invention applies to semiconductor devices, particularly MO8FETs for high breakdown voltages, and provides a MOS FET in which fluctuations in characteristics are suppressed and the number of manufacturing steps can be reduced. Regarding the structure of

(b)  技術の黄門 MO8電界効果トランジスタ(以下MO8FETと略称
する〕は半導体装置、特に集積回路装置において現在主
流とされている。しかしながら通常iなわれてい逮構造
のMOS FETは螢光衆示管等の高電圧駆動itに用
いるためにはその接合耐圧、□が不″充分である! 通常の構造のMOS FETにおいては下記の要因によ
ってドレイン耐圧が低下している。
(b) Technical Komon MO8 field effect transistors (hereinafter abbreviated as MO8FET) are currently the mainstream in semiconductor devices, especially integrated circuit devices.However, MOS FETs with an unconventional structure are usually used in fluorescent display tubes. The junction breakdown voltage, □, is insufficient for use in high-voltage drive IT devices such as the following! In a MOS FET with a normal structure, the drain breakdown voltage is reduced due to the following factors.

(イ) ドレイン領域とゲート電極とが薄い絶縁膜を介
して重なっているために、ドレイン領域表面近傍で電界
集中が生じてなだれ降伏が起こる。
(a) Since the drain region and the gate electrode overlap with each other via a thin insulating film, electric field concentration occurs near the surface of the drain region, causing avalanche breakdown.

(ロ) ドレイン領域とゲート電極との間の電界が増大
してゲート絶縁膜の絶縁破壊を生じやすい。
(b) The electric field between the drain region and the gate electrode increases, which tends to cause dielectric breakdown of the gate insulating film.

e→ チャネル長が短い場合には、空乏層がソース領域
まで延びて、いわゆるバンチスルー現象を生ずる。
e→ When the channel length is short, the depletion layer extends to the source region, causing a so-called bunch-through phenomenon.

従って高耐圧のMO8FET=i実現するためには、前
記の要因を抑制・排除する手段を設けることが必要とな
る。
Therefore, in order to realize MO8FET=i with high breakdown voltage, it is necessary to provide means for suppressing and eliminating the above-mentioned factors.

(C)従来技術と問題点 MOSFETの高耐圧化のために前記要因に対処する提
案が多くなされているが、その代表的方法としてドレイ
ン領域とゲート電極との重なシをなくして若干の間隔を
設けるオフセットゲート構造がある。
(C) Prior art and problems Many proposals have been made to address the above factors in order to increase the withstand voltage of MOSFETs, but a typical method is to eliminate the overlap between the drain region and gate electrode and create a slight gap between them. There is an offset gate structure that provides

第1図に従来性なわれているオフセットゲート構造のM
OS FETの一例の断面図を示す0図において、1は
N型シリコン半導体基体、2はフィールド酸化膜、3は
ゲート酸化膜、4はゲ゛−ト電極、5はP+型ドレイン
領域、6はP−型□ オフセット領域、7はソース領域
、8はN+型チャネルカット領域、9は酸化膜、10は
絶縁膜、11はドレイン電極、12はソース電極、13
は配線を示す。
Figure 1 shows M of the conventional offset gate structure.
In Figure 0 showing a cross-sectional view of an example of an OS FET, 1 is an N-type silicon semiconductor substrate, 2 is a field oxide film, 3 is a gate oxide film, 4 is a gate electrode, 5 is a P+ type drain region, and 6 is a P- type □ offset region, 7 is a source region, 8 is an N+ type channel cut region, 9 is an oxide film, 10 is an insulating film, 11 is a drain electrode, 12 is a source electrode, 13
indicates wiring.

ン領域5に接して、例えばボロン03)等のイオン注入
によって設けられたP−型オフセット領域6が設けられ
ている。この構造によって前記要因(イ)及び(ロ)が
抑制されて、ドレイン−ソース間耐圧として−40(V
)程度が得られている。
A P-type offset region 6 is provided in contact with the ion region 5, which is formed by implanting ions such as boron 03). This structure suppresses the factors (a) and (b) above, resulting in a drain-source breakdown voltage of -40 (V).
) degree has been obtained.

前記従来例においてはP+型ドレイン領域5はゲートを
極4に位負整合させることなく、レジスト等によるマス
クを設けて選択的に形成されるためにP−型オフセット
領域6の幅に変動を生ずるOP−型オフセット領域6は
MOS FETの動作状態においては高抵抗であり、そ
の幅の変動はチャネ3− ル抵抗の変動となって現われ、特に低インピーダンス回
路においては問題となる。
In the conventional example, the P+ type drain region 5 is selectively formed using a mask such as a resist without aligning the gate with the pole 4, which causes variations in the width of the P- type offset region 6. The OP-type offset region 6 has a high resistance in the operating state of the MOS FET, and fluctuations in its width appear as fluctuations in the channel resistance, which is particularly problematic in low impedance circuits.

+    。+    .

また前記従来例においては、P 型トレイン領鳴 域5とゲート電極4の間で半導体基体1を被覆する酸化
膜9は、通常ゲート酸化膜3と同様に薄いために静電耐
量が不足する場合がある。
In addition, in the conventional example, the oxide film 9 covering the semiconductor substrate 1 between the P-type train region 5 and the gate electrode 4 is thin like the gate oxide film 3, so that the electrostatic withstand capacity may be insufficient. There is.

以上の如き特性の変動及び弱点を改善することが要望さ
れている。
It is desired to improve the above-mentioned fluctuations in characteristics and weaknesses.

(d)  発明の目的 本発明は高耐圧用MO8FETに関して、オフセット領
域幅の変動を抑制し、更にドレイン−ゲート間の半導体
基体面上の保護を強化することを目的とする。
(d) Purpose of the Invention It is an object of the present invention to suppress fluctuations in offset region width and further strengthen protection on a semiconductor substrate surface between a drain and a gate in a high-voltage MO8FET.

(e)  発明の構成 本発明の前記目的は、第1の導電型を有する半導体基体
と、該基体面上に配設されたケート酸化膜と、該ゲート
酸化膜に接する第1の半導体領域と、前記基体の表面近
傍に配設され第2の導電型を有する第2及び第3の半導
体領域と、該第1゜第2及び第3の各半導体領域を分離
画定する絶縁=4− 膜と、該絶縁膜の下部に配設され、前記第2又は第3の
半導体領域と前記第1の半導体領域とに接し、かつ前記
第2又は第3の半導体領域よシネ細物濃度が小であ、る
第2の導電型の第4及び第5の半導体領域と、該第4お
よび第5の半導体領域以外の前記絶縁膜の下部に選択的
に配設され前記基体よシネ細物濃度が大である第1の導
電型の第6の半導体領域と、前記ゲート酸化膜に接し、
かつ前記第4および第5の半導体領域上の前記絶縁膜上
に延在するゲート電極とを含んでなる半導体装置によっ
て達成される。
(e) Structure of the Invention The object of the present invention is to provide a semiconductor substrate having a first conductivity type, a gate oxide film disposed on the surface of the substrate, and a first semiconductor region in contact with the gate oxide film. , second and third semiconductor regions disposed near the surface of the base body and having a second conductivity type, and an insulating film separating and defining the first, second and third semiconductor regions; , disposed under the insulating film, in contact with the second or third semiconductor region and the first semiconductor region, and having a smaller concentration of cine fines than the second or third semiconductor region. , fourth and fifth semiconductor regions of a second conductivity type, which are selectively disposed under the insulating film other than the fourth and fifth semiconductor regions, and have a higher concentration of cine fines than the substrate. a sixth semiconductor region of the first conductivity type, which is in contact with the gate oxide film;
and a gate electrode extending over the insulating film on the fourth and fifth semiconductor regions.

更に前記半導体装置が、前記絶縁膜の下部に配設され、
前記第6の半導体領域に接し、又は分離し、かつ前記第
2の半導体領域に接して、前記第、2の半導体領域より
不純物濃度が小である第2の導電型の第7の半導体領域
を含むことによって、その耐圧が更に向上・安定する。
Further, the semiconductor device is disposed under the insulating film,
A seventh semiconductor region of a second conductivity type, which has an impurity concentration lower than that of the second semiconductor region, is in contact with or separated from the sixth semiconductor region and is in contact with the second semiconductor region. By including it, the withstand voltage is further improved and stabilized.

(f)  発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。
(f) Embodiments of the Invention The present invention will be specifically described below by way of embodiments with reference to the drawings.

第2図(a)乃至(f)は本発明の実施例についてその
製造工程中の状態を示す断面図であり、以下製造工程を
追って本発明の特徴と効果を説明する。
FIGS. 2(a) to 2(f) are cross-sectional views showing an embodiment of the present invention during its manufacturing process, and the features and effects of the present invention will be explained following the manufacturing process.

第2図(a)参照 不純物濃度が例えば5 x 10” (cFrL−3,
)程度+7)N型シリコン(Si)基体31上に膜厚数
10 (nm)程度の二酸化シリコン(5i02) M
32を介して、膜厚数100 (nm)程度の窒化シリ
コン(Si3N番)膜33を形成し、各活性領域を分離
画定する絶縁膜(以下フィールド酸化膜という)を形成
する領域の5isNa膜33を選択的に除去する。
FIG. 2(a) If the reference impurity concentration is, for example, 5 x 10" (cFrL-3,
) grade +7) Silicon dioxide (5i02) M with a film thickness of about 10 (nm) on the N-type silicon (Si) substrate 31
A silicon nitride (Si3N) film 33 with a thickness of about 100 nm is formed through the 5isNa film 33 in a region where an insulating film (hereinafter referred to as a field oxide film) for separating and defining each active region is to be formed. selectively remove.

次いで、前記5isN4膜33の素子間領域の窓を、全
面的にもしくはドレイン形成領域近傍を除外して、レジ
スト皮膜34で被覆する。
Next, the windows in the inter-element region of the 5isN4 film 33 are covered entirely or with the exception of the vicinity of the drain formation region with a resist film 34.

しかる後に、例えばボロン(B)をエネルギー25(K
eV)程度、ドーズ量3 x 1012([”)程度に
イオン注入して、Pij11不純物導入領域35を形成
する。
After that, for example, boron (B) is heated to an energy of 25 (K).
The Pij11 impurity-introduced region 35 is formed by implanting ions at a dose of about 3 x 1012 (['').

第2図(b)参照 前記レジスト皮膜34を剥離し、レジスト皮膜36によ
ってチャネルカット形成領域以外を被覆して、例えば燐
P)をエネルギー80 (KeV)、ドーズ量5X10
12〔crrL−2〕程度ニイオン注入シテ、N型不純
物導入領域37を形成する。
Refer to FIG. 2(b), the resist film 34 is peeled off, the area other than the channel cut formation area is covered with the resist film 36, and phosphorus (P) is applied at an energy of 80 (KeV) and a dose of 5×10.
An N-type impurity doped region 37 is formed by implanting ions of about 12 [crrL-2].

第2図(c)参照 前記レジスト皮膜36を剥離し、前記5isN4膜33
を耐酸化マスクとして選択熱酸化を行ない、フィールド
酸化膜38を選択的に形成し、前記Si、N、膜33及
びSin、膜32を除去する。
Refer to FIG. 2(c), the resist film 36 is peeled off, and the 5isN4 film 33 is removed.
Selective thermal oxidation is performed using as an oxidation-resistant mask to selectively form a field oxide film 38, and remove the Si, N film 33 and the Sin film 32.

ここで形成されたフィールド酸化膜38によって、ゲー
ト形成領域39、ドレイン形成領域40及びソース形成
領域41が分離画定され、その位置及び寸法が定まる。
The field oxide film 38 formed here separates and defines the gate formation region 39, drain formation region 40, and source formation region 41, and determines their positions and dimensions.

なお、P型不純物導入領域35及びN型不純物導入領域
37はフィールド酸化膜38の下部に位置することとな
る。
Note that the P-type impurity doped region 35 and the N-type impurity doped region 37 are located under the field oxide film 38.

第2″図(d)参照 81基体31面上に通常は熱酸化法によって、例えば膜
厚70 (nm)程度にSin、膜42を形成する。こ
のS10.膜42はゲート酸化膜となる。
Refer to FIG. 2'' (d) 81 A film 42 of Sin is formed on the surface of the substrate 31, usually by thermal oxidation, to a thickness of, for example, about 70 (nm).This S10 film 42 becomes a gate oxide film.

−7・− 次いで、化学気相成長方法等罠よって多結晶シリコンよ
りなるゲート電極43f:形成する。このゲート電極4
3はゲート形成領域39を包囲するフィールド酸化膜3
8上に延在した形状として、ゲート長に関係なくバター
ニングすることができる。次いでドレイン形成領域40
およびソース形成領域41上のstow膜42全42チ
ング除去する。次いでドレイン形成領域40およびソー
ス形成領域41の表出面上に膜厚50 (nm)程度に
酸化膜44’&−形成する。しかる後に、例えばボロン
(B)を、エネルギー25 (KeV〕、ドーズ量i 
xio15〔cnL−2〕程度忙、ドレイン形成領域4
0及びソース形成領域41にイオン注入する0この注入
に際しては、フィールド酸化膜38及びゲート電極43
がマスクとして機能して、イオン注入は前記の如く画定
された両領域に限定される。
-7.- Next, a gate electrode 43f made of polycrystalline silicon is formed by a chemical vapor deposition method or the like. This gate electrode 4
3 is a field oxide film 3 surrounding the gate formation region 39;
8, it can be patterned regardless of the gate length. Next, the drain formation region 40
Then, all 42 parts of the stow film 42 on the source formation region 41 are removed. Next, an oxide film 44'&- is formed to a thickness of about 50 nm on the exposed surfaces of the drain formation region 40 and the source formation region 41. After that, for example, boron (B) is heated to an energy of 25 (KeV) and a dose of i.
xio15[cnL-2] level busy, drain formation region 4
During this implantation, ions are implanted into the field oxide film 38 and the gate electrode 43.
serves as a mask to confine ion implantation to both regions defined above.

第2図(e)参照 燐珪酸ガラス(PSG)等の表面保設膜45を基体31
の全面に設ける。
Refer to FIG. 2(e), a surface preservation film 45 such as phosphosilicate glass (PSG) is applied to the base 31.
Provided on the entire surface.

弄面俣iSi謹45に電極形成のための窓を設け、8− 窓の部分の除去されたSin、膜44に代る5102膜
44′を低温で形成する。
A window for forming an electrode is provided in the iSi film 45, and a 5102 film 44' is formed at low temperature in place of the Sin film 44 from which the window is removed.

次いでこれまでに注入されたイオンの活性化とPSG表
面保護膜45の表面の円滑化を目的とする加熱処理を行
なう。この加熱処理によってドレイン領域40及びソー
ス領域41のP 型活性化の深さが決定されるが、この
加熱処理は窒素(Nり雰囲気中において行なわれ、その
条件は例えば温度1050〔℃〕、時間10分間程度で
ある。
Next, heat treatment is performed for the purpose of activating the ions implanted so far and smoothing the surface of the PSG surface protective film 45. This heat treatment determines the depth of P-type activation in the drain region 40 and source region 41, and this heat treatment is performed in a nitrogen (N) atmosphere. It takes about 10 minutes.

またこの加熱処理によって、P型不純物導入領域35は
P−型オフセット領域35およびP−型低濃度領域35
′とな)、N型不純物導入領域37はN”ffiチャネ
ルカット領域37となる。
Also, by this heat treatment, the P-type impurity introduced region 35 is separated from the P-type offset region 35 and the P-type low concentration region 35.
), the N-type impurity introduced region 37 becomes an N''ffi channel cut region 37.

第2図(f)参照 前記SiO2膜44′を除去して、例えばアルミニウム
(Al)を用いてドレイン電極46、ソース電極47、
ゲート配線48等を設ける。
Refer to FIG. 2(f), the SiO2 film 44' is removed, and a drain electrode 46, a source electrode 47, and a
Gate wiring 48 and the like are provided.

以上説明した製造工程の例よりも明らかなる如く、本発
明によればドレイン領域40はフィールド酸化膜38に
よって画定されるために先に述べた従来例の如くオフセ
ット領域幅の変動を排除することが可能であるのみなら
ず、P+型領域への選択的不純物導入のためのマスクが
不必要となる。
As is clear from the manufacturing process example described above, according to the present invention, since the drain region 40 is defined by the field oxide film 38, it is possible to eliminate variations in the width of the offset region as in the conventional example described above. Not only is this possible, but it also eliminates the need for a mask for selectively introducing impurities into the P+ type region.

またオフセット領域35の表面には厚いフィールド絶縁
膜38が設けられて、ゲート電極43の端部とドレイン
領域40との間の電界集中効果が緩和され静電耐量等が
向上する。
Further, a thick field insulating film 38 is provided on the surface of the offset region 35, which alleviates the electric field concentration effect between the end of the gate electrode 43 and the drain region 40, and improves electrostatic resistance.

なお前記実施例においてはP−型低濃度領域35′ヲド
レイン領域40とチャネルカット領域37との間に、チ
ャネルカット領2域37より分離して設けているが、こ
の部分のP−型低濃度領域35′を設けない場合、また
はこれがチャネルカット領域37に接する構造の場合に
おいても、本発明を適用して目的を達成することができ
る。
In the above embodiment, the P-type low concentration region 35' is provided between the drain region 40 and the channel cut region 37, separated from the channel cut region 2 region 37. Even when the region 35' is not provided or when the region 35' is in contact with the channel cut region 37, the present invention can be applied to achieve the object.

更に前記実施例はN型基板上にMO8FETk形成して
いるが、N型ウェル層上にも同様に実施し得ることは明
らかであQlまた基板もしくはウェル層t−p型とする
Nチャネル形のMOS FETについても本発明を適用
することができる。
Furthermore, in the above embodiment, MO8FETk is formed on an N-type substrate, but it is obvious that it can be implemented similarly on an N-type well layer. The present invention can also be applied to MOS FETs.

ω)発明の効果 11− スミ極、48はゲート電極配線を示す6以上説明した如
く本発明によれば、高耐圧用MO8FETに関して、各
活性領域を選択熱酸化のマスクによって決定されるフィ
ールド酸化膜によふ って分離画定し、オフセット領域を該フィード酸化膜の
下部に設けることによって、オフセット領域幅従ってチ
ャネル抵抗の変動を抑制してその特性の均一化を進め、
更にゲート電極とドレイン領域間の電界集中を緩和する
効果が得られ静電耐量の上昇が期待できる。
ω) Effects of the invention 11-Sumi poles, 48 indicate gate electrode wiring 6 As explained above, according to the present invention, with respect to a high voltage MO8FET, each active region is formed with a field oxide film determined by a selective thermal oxidation mask. By separating and defining the feed oxide film and providing an offset region under the feed oxide film, variations in the width of the offset region and thus the channel resistance are suppressed and the characteristics thereof are made uniform;
Furthermore, the effect of alleviating electric field concentration between the gate electrode and the drain region can be obtained, and an increase in electrostatic capacity can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高耐圧用MO8FETの従来例を示す断面図、
第2図(a)乃至(f)I′i本発明の実施例について
、その製造工程を示す断面図である。 図において、31はN型シリコン基板、33は窒化シリ
コン膜、35はP−型オフセット領域、35′はP−型
低濃度領域、37は炉型チャネルカット領域、38はフ
ィールド酸化J[,40はドレイン領域、41はソース
領域、42はゲート酸化膜、43はゲート電極、44は
酸化膜、45はPSG絶縁膜、46はドレイン電極、4
7はソー12− 342 5      83 1                Q     階ヘ
    勧 一+ハ 343−
Figure 1 is a cross-sectional view showing a conventional example of a high voltage MO8FET.
FIGS. 2(a) to 2(f) I'i are sectional views showing the manufacturing process of an embodiment of the present invention. In the figure, 31 is an N-type silicon substrate, 33 is a silicon nitride film, 35 is a P-type offset region, 35' is a P-type low concentration region, 37 is a furnace type channel cut region, and 38 is a field oxidation J[, 40 4 is a drain region, 41 is a source region, 42 is a gate oxide film, 43 is a gate electrode, 44 is an oxide film, 45 is a PSG insulating film, 46 is a drain electrode, 4
7 is So 12- 342 5 83 1 Q floor Kanichi + Ha 343-

Claims (2)

【特許請求の範囲】[Claims] (1)第1の導電型を有する半導体基体と、該基体面上
に配設されたゲート酸化膜と、該ゲート酸化膜に接する
第1の半導体領域と、前記基体の表面近傍に配設され第
2の導電iを有する第2及び第3の半導体領域と、該第
1.第2及び第3の各半導体領域を分離画定する絶縁−
と、該絶縁膜の下部に配設され、前記第2又は第3の半
導体領域と前記第1の半導体領域とに接し、かつ前記第
2又は第3の半導体領域よシネ細物濃度が・」ミである
第2の導電型の第4及び第5あ半導体領域と、該第4お
よび第5の半導体領域以外の前記絶縁膜の下部に選択的
に配設−れ前記基体よシネ細物濃度が大である第1の導
電型の第6の半導体領域と、前の半導体領域上の前記絶
縁膜上に延在す五ゲート電極とを含んでなることを特徴
とする半導体装置。
(1) A semiconductor substrate having a first conductivity type, a gate oxide film disposed on the surface of the substrate, a first semiconductor region in contact with the gate oxide film, and a semiconductor substrate disposed near the surface of the substrate. second and third semiconductor regions having a second conductivity i; Insulation that separates and defines each of the second and third semiconductor regions.
and is disposed under the insulating film, is in contact with the second or third semiconductor region and the first semiconductor region, and has a cine fines concentration higher than that of the second or third semiconductor region. a fourth and a fifth semiconductor region of a second conductivity type, which are selectively disposed under the insulating film other than the fourth and fifth semiconductor regions; 1. A semiconductor device comprising: a sixth semiconductor region of a first conductivity type having a large conductivity; and a fifth gate electrode extending over the insulating film on the previous semiconductor region.
(2)前記絶縁膜の下部に配設され、前記第6の半導体
領域に接し、−又は分離し、かつ前記第2の半導体領域
に接して、前記第2の半導体領域より不純物□濃度が小
である第2の導電型の第7の半導体領域を含んでなるこ
とを特徴とする特許請求の範囲第1項記載の半導体装置
。     □
(2) disposed under the insulating film, in contact with or separated from the sixth semiconductor region, and in contact with the second semiconductor region, the impurity concentration is lower than that of the second semiconductor region; 2. The semiconductor device according to claim 1, further comprising a seventh semiconductor region of a second conductivity type. □
JP58025705A 1983-02-18 1983-02-18 Semiconductor device Pending JPS59151468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025705A JPS59151468A (en) 1983-02-18 1983-02-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025705A JPS59151468A (en) 1983-02-18 1983-02-18 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59151468A true JPS59151468A (en) 1984-08-29

Family

ID=12173199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025705A Pending JPS59151468A (en) 1983-02-18 1983-02-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59151468A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305573A (en) * 1988-06-03 1989-12-08 New Japan Radio Co Ltd Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131483A (en) * 1976-04-28 1977-11-04 Hitachi Ltd Mis-type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131483A (en) * 1976-04-28 1977-11-04 Hitachi Ltd Mis-type semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305573A (en) * 1988-06-03 1989-12-08 New Japan Radio Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US6025237A (en) Methods of forming field effect transistors having graded drain region doping profiles therein
US4654958A (en) Process for forming isolated silicon regions and field-effect devices on a silicon substrate
US7671426B2 (en) Metal insulator semiconductor transistor using a gate insulator including a high dielectric constant film
TW200929442A (en) Semiconductor structure and method of manufacture
US5994179A (en) Method of fabricating a MOSFET featuring an effective suppression of reverse short-channel effect
JP2004523095A (en) Method of manufacturing trench double-diffused metal oxide semiconductor having low threshold voltage
US6160288A (en) Vertical type misfet having improved pressure resistance
US6376296B2 (en) High-voltage device and method for manufacturing high-voltage device
JP2000188391A (en) Manufacture of semiconductor integrated circuit device
JPH0586673B2 (en)
JPH08241985A (en) Ld-mos transistor
JPS6124833B2 (en)
US6391728B1 (en) Method of forming a highly localized halo profile to prevent punch-through
JP3253986B2 (en) Method of forming capacitor on same substrate as MOS transistor, capacitor formed by the method, and method of forming electrical structure
JPS626671B2 (en)
JP4288925B2 (en) Semiconductor device and manufacturing method thereof
JP2002057330A (en) Insulated gate semiconductor device and its manufacturing method
US7335549B2 (en) Semiconductor device and method for fabricating the same
JPH07283302A (en) Manufacture of semiconductor integrated circuit device
JPS59151468A (en) Semiconductor device
EP0545484B1 (en) Manufacturing process for insulated gate field effect transistors (igfet) with low short circuit density between gate and source and devices obtained thereby
US11824115B2 (en) Semiconductor device and manufacturing method thereof
JPS6158987B2 (en)
US11646361B2 (en) Electrical isolation structure using reverse dopant implantation from source/drain region in semiconductor fin
JPS59151469A (en) Protective circuit element