JPS59151454A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS59151454A
JPS59151454A JP58026460A JP2646083A JPS59151454A JP S59151454 A JPS59151454 A JP S59151454A JP 58026460 A JP58026460 A JP 58026460A JP 2646083 A JP2646083 A JP 2646083A JP S59151454 A JPS59151454 A JP S59151454A
Authority
JP
Japan
Prior art keywords
links
phase
distance
memory device
word line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58026460A
Other languages
Japanese (ja)
Other versions
JPH0516184B2 (en
Inventor
Kazuhiro Shimotori
下酉 和博
Kazuyasu Fujishima
一康 藤島
Hideyuki Ozaki
尾崎 英之
Hideji Miyatake
秀司 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58026460A priority Critical patent/JPS59151454A/en
Publication of JPS59151454A publication Critical patent/JPS59151454A/en
Publication of JPH0516184B2 publication Critical patent/JPH0516184B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Landscapes

  • Techniques For Improving Reliability Of Storages (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

PURPOSE:To improve the mounting density of a memory device by adjacently arranging links forming phase at a distance between in-phase links while said links forming phase are disposed at a distance between other-phase links larger than said distance from other-phase links. CONSTITUTION:Links L5 and L6, L7 and L8, L9 and L10 forming phase related to a mutiplied line decoder or row decoder are arranged at a distance d2 between in-phase links, and other phase links such as L8 and L9 are disposed at a distance d3 (d3>d2) between other phase links. Since all of links forming phase are blown out at the distance d2, the links can be made approach up to a distance allowable on the technique of manufacture. The distance d3 is a value obtained by considering the errors of a laser spot diameter and accuracy on positioning. Accordingly, the mounting density of a memory device can be increased because distances among the links can be reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は不良ビットを救済するための予備ビットを内
蔵する。いわゆる冗長性を備えた半導体記憶装置に関す
るものであ石。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention includes a built-in spare bit for relieving defective bits. This is related to semiconductor storage devices with so-called redundancy.

〔従来技術〕[Prior art]

第1図は従来の半導体記憶装置を示す一部詳細な回路図
であシ、−例として、レーザプ日ダラム方式の冗長性ダ
イナミックMO8半導体記憶装置について説明する。同
図において、(Ql)−(QIS)は各ドレインが共通
にノードNに接続し、各ソースが共通に接地電位v■の
接地端子に接続し、各ゲー果トランジスタ(以下MO8
Tと称する’) 、 (Ql)はドレインが電源電圧V
eeの電源端子に接続し、ソースがノードNに接続し、
ゲートにプリチャージ信号(PRD:)が入力するMO
8’r 、 (Q7)−(QIO) ハ各ソースが共通
にノードNに接続し、各ゲートに共通に分m信号(CR
DI) カ入カーiルMO8T、 (Qll)−(Ql
4)は各ケートがMO8T(Qy)(Qlo)のドレイ
ンにそれぞれ接続し、各ドレインにワード線駆動信号(
CRo )〜(CRs )が入力するMO8T 、 (
Ll )〜(L4)は各一端がMO8T(Qll) 〜
(Ql4)のソースに接続し、そして、第2図に示すよ
うに、リンク間距離dで配置され、レーザで溶断可能な
リンク、(WLn)〜(WLn+s)は各一端がリンク
(Ll)〜(L4)の他端に接続するワード線である。
FIG. 1 is a partially detailed circuit diagram showing a conventional semiconductor memory device. As an example, a laser dynamic MO8 semiconductor memory device with redundancy based on Durham method will be described. In the same figure, (Ql)-(QIS) has each drain commonly connected to the node N, each source commonly connected to the ground terminal of the ground potential v■, and each gate transistor (hereinafter MO8
(referred to as T'), (Ql) whose drain is at the power supply voltage V
connected to the power supply terminal of ee, the source connected to node N,
MO where the precharge signal (PRD:) is input to the gate
8'r, (Q7)-(QIO) C Each source is commonly connected to node N, and each gate is commonly connected to the minute m signal (CR
DI) Input curl MO8T, (Qll) - (Ql
4), each gate is connected to the drain of MO8T (Qy) (Qlo), and a word line drive signal (
MO8T input by CRo) to (CRs), (
Ll ) ~ (L4) each end is MO8T (Qll) ~
The links (WLn) to (WLn+s) are connected to the source of (Ql4), and are arranged at a distance d between links as shown in FIG. This is a word line connected to the other end of (L4).

なお、前記MO8T(Ql)〜(QIO)は行デコーダ
を構成し、前記MO8T(Qlt)〜(QS4)はサブ
デコーダおよびワード線駆動回路を構成し、前記ワード
線駆動信号(CRo )〜(CR3)は図示せぬアドレ
ス信デコードされた信号である。前記プリチャージ信号
(PRD)は前記行デコーダをプリチャージするための
信号である。前記分離信号(CRDI)は行デコーダの
出力であるノードNとMO8T(Qll)〜(QS4)
のゲートを切シ離すための信号である。
The MO8T(Ql) to (QIO) constitute a row decoder, the MO8T(Qlt) to (QS4) constitute a sub-decoder and a word line drive circuit, and the word line drive signals (CRo) to (CR3 ) is a signal decoded from an address signal (not shown). The precharge signal (PRD) is a signal for precharging the row decoder. The separation signal (CRDI) is connected to the node N which is the output of the row decoder and MO8T (Qll) to (QS4)
This is a signal to disconnect the gate of the

次に、上記構成による半導体記憶装置の動作について説
明する。まず、不良ビットが存在しない場合について説
明する。この場合にはリンク(Ll)〜(L4)は溶断
されない。したがって、MO8T(Ql)〜(QS)の
ゲート−圧がOvに外るようなアドレス信号(RA2 
) 、 (RA2 )〜(RAII ) 、 (RAM
 )が入力した場合、MO8T(Ql)〜(q!I)は
オフ状態のため、行デコーダの出力に接続するノードN
は高電位に保たれる。一方、図示せぬ他の行デコーダの
出力に接続するノードは必ず接地電位v■に放電される
Next, the operation of the semiconductor memory device with the above configuration will be explained. First, a case where there is no defective bit will be explained. In this case, links (Ll) to (L4) are not fused. Therefore, the address signal (RA2
), (RA2) ~ (RAII), (RAM
) is input, since MO8T(Ql) to (q!I) are in the off state, the node N connected to the output of the row decoder
is held at a high potential. On the other hand, nodes connected to the outputs of other row decoders (not shown) are always discharged to the ground potential v■.

そして、MO8T(Q7)〜(QIO)のゲートに高レ
ベルの分離信号(CRDI)が入力すると、このMO8
T(Q?)〜(Ql(1)がオン状態になる。このため
、ノードNの高電位はこのオン状態のMO8T(Q7)
〜(QIO)を介してMO8T(Qll )、y(qt
i )のゲートにそれぞれ伝達される。そして、分離信
号(CHDI)が低レベルになると、このMO8T(Q
lt)〜(QS4)の高ゲート電位は各々のゲート電極
に閉じこめられる。そして、ワード線駆動信号(CRO
)〜(CRa)のうちの1つ、例えばワード線駆動信号
(CRI)が高電位になると、MO8T(Ql2)がオ
ン状態となシ、この高ゲート電位はこのオン状態のMO
8T(Ql2)ネよびリンク(L2)を通してワード線
(WLn+1 )に伝達される。このため、図示せぬメ
モリセルへのデータ□の読み出し/書き込みが行なわれ
る。
When a high level isolation signal (CRDI) is input to the gates of MO8T (Q7) to (QIO), this MO8
T(Q?)~(Ql(1) becomes on state. Therefore, the high potential of node N is MO8T(Q7) in this on state.
~(QIO) through MO8T(Qll), y(qt
i) respectively. Then, when the separation signal (CHDI) becomes low level, this MO8T (Q
The high gate potentials of lt) to (QS4) are confined to each gate electrode. Then, the word line drive signal (CRO
) to (CRa), for example, the word line drive signal (CRI), becomes a high potential, MO8T (Ql2) is turned on, and this high gate potential is applied to this on-state MO.
8T (Ql2) and is transmitted to the word line (WLn+1) through the link (L2). Therefore, data □ is read/written to a memory cell (not shown).

なお、例えばワード線(WLn+1)に接続されたメモ
リセル(図示せず)に不良ビットがあった場合、このワ
ード線(WLn+t )に接続するリンク(L2)をレ
ーザで溶断し、ワード線駆動信号(CRI)がワード線
(WLn+1)に伝達されないようにし、不良ピッ、ト
からのデータの読み出し/書き込みがなされないように
する。しかしながら、従来の半導体記憶装置では例えば
リンク(L2)を溶断する場合、レーザのスポット径が
8μmであシ、スポット径の位置決め精度が2μmの誤
差を有するので、リンク間距離dを小さくすると、相と
々るリンク(例えばリンク(L2)に対してシンク(L
l)および(Lす)4を溶断する。このため、リンクの
幅を例えば3μmとすると、リンク間距離dは少なくと
も7.5μmを必要とする。こやように、リンク間圧−
dをあまシ小さくすることができず、メモリ装置の実装
密度を向上させることができ々い欠点があった。
For example, if there is a defective bit in a memory cell (not shown) connected to the word line (WLn+1), the link (L2) connected to this word line (WLn+t) is fused with a laser and the word line drive signal is (CRI) is prevented from being transmitted to the word line (WLn+1), and data is prevented from being read/written from the defective pit. However, in conventional semiconductor storage devices, when fusing the link (L2), for example, the laser spot diameter is 8 μm, and the positioning accuracy of the spot diameter has an error of 2 μm. Totoru link (for example, link (L2) to sink (L
1) and (Ls) 4 are fused. Therefore, if the width of the links is, for example, 3 μm, the inter-link distance d needs to be at least 7.5 μm. This way, the pressure between the links -
This method has the drawback that d cannot be made much smaller, and the packaging density of the memory device cannot be improved.

〔発明の概要〕[Summary of the invention]

したがって、この発明の目的はリンク間距離dを小さく
でき、メモリ装置の実装密度を向上することができる半
導体記憶装置を提供するもの、である。
Therefore, an object of the present invention is to provide a semiconductor memory device in which the distance d between links can be reduced and the packaging density of the memory device can be improved.

このような目的を達成するため、この発明は多重化され
た行デコーダあるいは列デコーダに関連する相となるリ
ンクを同相リンク間距離d2で近接配置すると共に、リ
ンクの降り合う一方の相と他方の相との間の他相リンク
間距離d3をd a)d 2で配置するものであり、以
下実′施例な用いて詳細に説明する。
In order to achieve such an object, the present invention arranges links that are phases related to multiplexed row decoders or column decoders close to each other with a distance d2 between the in-phase links, and connects one phase and the other of the links to each other. This arrangement is such that the distance d3 between the other-phase links is da)d2, and will be described in detail below using examples.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明に係る半導体記憶装置の一実施例を示
す回路図であシ、−例としてサブデコーダをワード線駆
動信号(CRO)および(CR1)の2つで選択する場
合を示す。同図において、(Qls)はドレインがノー
ドNに接続し、ソースが接続電圧v■の接地端子に接続
し、ゲートにアドレス信号(RAl) 、 (RAS 
)が入力するMO8T、(Ls)および(Ls)はその
詳細な配置を第4図に示すように、相となるリンク(第
4図ではLsとLs 、 L7とLs 、 LsとLl
o)では同相リンク間距離d2で配置し、他の相のリン
ク(例えばLl、LSI)とは他相リンク間圧l1lJ
l#d3(d3〉d2)で配置した、レーザで溶断可能
なリンクである。
FIG. 3 is a circuit diagram showing an embodiment of a semiconductor memory device according to the present invention. As an example, a case is shown in which a sub-decoder is selected by two word line drive signals (CRO) and (CR1). In the same figure, (Qls) has a drain connected to node N, a source connected to the ground terminal of connection voltage v■, and an address signal (RAl), (RAS) connected to the gate.
) inputs MO8T, (Ls) and (Ls), whose detailed arrangement is shown in Figure 4.
In o), the in-phase links are arranged at a distance d2, and the other-phase links (for example, Ll, LSI) are arranged at a pressure l1lJ between the other-phase links.
This is a link that can be fused with a laser and arranged as l#d3 (d3>d2).

なお、前記同相リンク間距離d2は相となるリンクをす
べて溶断するため、製造技術上で許容される距離まで近
接できる。また、リンクの隣シ合う一方の相と他方の相
との間の他相リンク間距離d3はレーザスポット径およ
び位置合せ精度の誤差を考慮した距離である。したがっ
て、−例として、レーザスポット径8μm1位置合せ誤
差2μm、リンク幅3μm、同相リンク間距臨d3が3
μmでは他相リンク間距離d3は6.75μmとなる。
Note that the distance d2 between the in-phase links is determined by cutting all the links that are in phase, so that the distances between the in-phase links can be as close as possible based on manufacturing technology. Further, the inter-phase link distance d3 between one phase and the other phase of adjacent links is a distance that takes into account errors in laser spot diameter and alignment accuracy. Therefore, - as an example, the laser spot diameter is 8 μm, the alignment error is 2 μm, the link width is 3 μm, and the in-phase link distance d3 is 3 μm.
In μm, the distance d3 between other phase links is 6.75 μm.

また、相となるリンクは1つの行デコーダとサブデコー
ダのワード線駆動信号によって選択されるワード線に接
続するリンクの組である。
Further, the phase links are a set of links connected to a word line selected by a word line drive signal of one row decoder and a subdecoder.

次に、上記構成による半導体記憶装置の動作について説
明する。まず、不良ビットが存在しない場合について説
明する。この場合にはリンク(し0および(Le)は溶
断され表い。したがって、Mo8T(Ql )〜(Ql
l ”)および(Ql5)はオフ状態のため、行デコー
ダの出力に接続するノードNは高電位に保持される。一
方、図示せぬ他の行デコーダの出力に接続するノードは
必ず接地電位Vllに放電さレル。ソL、テ、Mo8T
(Qt)および(Qs)のゲートに高レベルの分離信号
(CRDI)が入力すると、とのMo5T(Qt)およ
び(Q8’)がオン状態になる。
Next, the operation of the semiconductor memory device with the above configuration will be explained. First, a case where there is no defective bit will be explained. In this case, links (shi0 and (Le) are fused and displayed. Therefore, Mo8T (Ql) ~ (Ql
1") and (Ql5) are in the off state, the node N connected to the output of the row decoder is held at a high potential. On the other hand, the nodes connected to the outputs of other row decoders (not shown) are always at the ground potential Vll. Discharged to Rel. So L, Te, Mo8T
When a high-level isolation signal (CRDI) is input to the gates of (Qt) and (Qs), Mo5T (Qt) and (Q8') are turned on.

したがって、このノードNの高電位はこのオン状態のM
o8T(Qt)および(QB)を通してMo8T (Q
ll)および(Qtz)のゲートにそれぞれ伝達される
。そして、分離信号(CRDI)が低レベルになると、
このMo8T(Qll)および(Qll)の高ゲート電
位は各々のゲート電極に閉じこめられる。そして、9−
ド線駆動信号(atto )および(CRI)のうちの
1つ、例えばワード線駆動信号(CRI)が高電位にな
ると、Mo8T(Qxz)がオン状態になる。このため
、この高ゲート電位はこのオン状態のMo8T(QB)
およびリンク(Le)を通してワード線(WLn+l)
に伝達され、メモリセル(図示せず)からのデータ読み
出し/書き込みが行なわれる。
Therefore, the high potential of this node N is
Mo8T (Q
ll) and (Qtz) gates, respectively. Then, when the separation signal (CRDI) becomes low level,
The high gate potential of Mo8T (Qll) and (Qll) is confined in each gate electrode. And 9-
When one of the word line drive signals (atto) and (CRI), for example the word line drive signal (CRI), goes to a high potential, Mo8T (Qxz) is turned on. Therefore, this high gate potential is applied to this on-state Mo8T(QB).
and the word line (WLn+l) through the link (Le)
Data is read/written from a memory cell (not shown).

次に、例えばワード線(WLn)に接続されたメモリセ
ル(図示せず)に不良ビットがあった場合、あるいは正
規の行デコーダ自体の不良、例えば、Mo8T(Qs)
が破壊された場合、ワード線(WLn)および(WLn
+u )にそれぞれ接続するリンク(し0および(Le
)をレーザで溶断し、ワード線駆動信号(CRO)およ
び(CRI)がワード線(WLn)および(WLs+t
 )K伝達されないようにして、不良ビットからのデー
タの読み出し/書き込み、あるいは不良の行デコーダの
選択が行表われないようにする。
Next, if there is a defective bit in a memory cell (not shown) connected to the word line (WLn), or if the normal row decoder itself is defective, for example, Mo8T (Qs).
If word line (WLn) and (WLn
The links (shi0 and (Le
) is fused with a laser, and the word line drive signals (CRO) and (CRI) are connected to the word lines (WLn) and (WLs+t
) K is not transmitted to prevent read/write of data from a defective bit or selection of a defective row decoder from occurring.

とのように、相となるリンク(LH)および(Le)は
共に溶断されるため、製造技術上で許容される距離まで
近接配置できる。そして、前記したように、他相リンク
間距離を小さくすることができる。
Since the phase links (LH) and (Le) are both fused, they can be placed close to each other as far as manufacturing technology allows. As described above, the distance between other phase links can be reduced.

力お、前記の実施例ではサブデコーダを2つの 。In the above embodiment, there are two sub-decoders.

ワード線駆動信号(CR6)および(CRI)で選択す
 ′る場合を示したが、4つのワード線駆動信号など任
意の数のワード線駆動信号で選択しても同様にできるこ
とはもちろんである。また、前記の実施例では行デコー
ダおよびワード線の不良救済について説明したが、列デ
コーダおよびビット線についても同様に不良救済できる
ことはもちろんである。また、スタテックMOSメモリ
、バイポーラなど、サブデコーダ信号を有するメモリに
も同様に適用することができることはもちろんである。
Although the case where the selection is made using the word line drive signals (CR6) and (CRI) has been shown, it is of course possible to perform the same selection using any number of word line drive signals such as four word line drive signals. Further, in the above embodiment, defective relief for row decoders and word lines has been described, but it goes without saying that defective relief can also be applied to column decoders and bit lines. It goes without saying that the present invention can also be similarly applied to memories having sub-decoder signals, such as static MOS memories and bipolar memories.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、この発明に係る半導体記
憶装置によればリンク間距離を小さくすることができる
ので、記憶装置の実装密度を高くするととができる効果
□がある。
As described in detail above, according to the semiconductor memory device according to the present invention, the distance between links can be reduced, and therefore the packaging density of the memory device can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体記憶装置を示す回路図、第2図は
第1図のリンクの配置を示す図、第3図はこの発明に係
名半導体記憶装置の一実施例を示す回路図、第4図は第
3図のリンクの配置を示す図である。 (Ql)〜(Ql5)・・・・絶縁ゲート製電界効果ト
ランジスタ、(Ll)〜(L to)・拳・・リンク、
レス信号、(PRD)・・・・プリチャージ信号、(C
RDI)−−−−分離信号、(WLn )〜(WLn+
s)・・・・ワード線、(CRO)〜(CR3)―・・
・ワード線駆動信号。 なお、図中、同一符号は同一または相当部分を示す。 代 理 人   葛  野  信  −244−
FIG. 1 is a circuit diagram showing a conventional semiconductor memory device, FIG. 2 is a diagram showing the arrangement of links in FIG. 1, and FIG. 3 is a circuit diagram showing an embodiment of the semiconductor memory device related to the present invention. FIG. 4 is a diagram showing the arrangement of links in FIG. 3. (Ql)~(Ql5)...Insulated gate field effect transistor, (Ll)~(L to)・Fist...Link,
response signal, (PRD)...precharge signal, (C
RDI)---Separated signal, (WLn)~(WLn+
s)... Word line, (CRO) ~ (CR3)...
・Word line drive signal. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Shin Kuzuno -244-

Claims (1)

【特許請求の範囲】[Claims] 少なくとも行デコーダあるいは列デコーダが多重化され
、1つの行選択信号あるいは列選択信号が得られる半導
体記憶装置において、多重化された行デコーダあるいは
列デコーダに関連する相と表るリンクを同相リンク間距
離d2で近接配置すると共に、リンクの[)合う一方の
和と他方の相との間の他相リンク間距離d3を43)d
2で配量することを特徴とする半導体記憶装置。
In a semiconductor memory device in which at least row decoders or column decoders are multiplexed and one row selection signal or column selection signal is obtained, a link representing a phase related to the multiplexed row decoders or column decoders is defined as a distance between in-phase links. d2, and set the distance d3 between the other phase links between the matching sum of the links and the other phase as 43) d
A semiconductor memory device characterized in that the amount is determined by 2.
JP58026460A 1983-02-17 1983-02-17 Semiconductor memory device Granted JPS59151454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58026460A JPS59151454A (en) 1983-02-17 1983-02-17 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58026460A JPS59151454A (en) 1983-02-17 1983-02-17 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS59151454A true JPS59151454A (en) 1984-08-29
JPH0516184B2 JPH0516184B2 (en) 1993-03-03

Family

ID=12194116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58026460A Granted JPS59151454A (en) 1983-02-17 1983-02-17 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS59151454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023907A1 (en) * 1995-12-22 1997-07-03 Micron Technology, Inc. Reduced pitch laser redundancy fuse bank structure
US5905295A (en) * 1997-04-01 1999-05-18 Micron Technology, Inc. Reduced pitch laser redundancy fuse bank structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176948A (en) * 1982-04-12 1983-10-17 Toshiba Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176948A (en) * 1982-04-12 1983-10-17 Toshiba Corp Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023907A1 (en) * 1995-12-22 1997-07-03 Micron Technology, Inc. Reduced pitch laser redundancy fuse bank structure
US5747869A (en) * 1995-12-22 1998-05-05 Micron Technology, Inc. Reduced pitch laser redundancy fuse bank structure
US6597054B1 (en) 1995-12-22 2003-07-22 Micron Technology, Inc. Reduced pitch laser redundancy fuse bank structure
US5905295A (en) * 1997-04-01 1999-05-18 Micron Technology, Inc. Reduced pitch laser redundancy fuse bank structure

Also Published As

Publication number Publication date
JPH0516184B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
CA1199405A (en) Folded bit line memory with one decoder per pair of spare rows
US4354256A (en) Semiconductor memory device
JPH03171499A (en) Memory device
CN104299644B (en) 12-tube SRAM (Static Random Access memory) unit circuit capable of simultaneously increasing read noise tolerance and writing margin
JPH03203100A (en) Parallel test of semiconductor memory device and semiconductor memory device
KR0159445B1 (en) Semiconductor memory device
JP2001351385A (en) Static random access memory of cmos, memory circuit, and method for generating sense-enable signal
JP2981346B2 (en) Read-only semiconductor memory device
JP2007273007A (en) Semiconductor memory device
CN204102573U (en) A kind of novel 12 pipe sram cell circuit improving read noise tolerance limit simultaneously and write nargin
JPH0156478B2 (en)
CN105702281A (en) SRAM half-select disturb elimination structure based on hierarchical bit line structure
JP2000090682A (en) Semiconductor memory
JPS59151454A (en) Semiconductor memory device
JPS6284498A (en) Semiconductor memory device
JP2980472B2 (en) Semiconductor storage device
US6630856B2 (en) High-speed bank select multiplexer latch
JPS60253096A (en) Semiconductor storage device
JPS61144790A (en) Address decoder circuit
KR100275106B1 (en) Sram cell having one bit line
CN106527562B (en) A kind of low-power consumption SRAM word line voltage based on FPGA realizes circuit and method
US6542421B2 (en) Semiconductor memory device with redundancy circuit
US6765818B2 (en) Semiconductor memory having memory cells and device for controlling data written in the semiconductor memory
JPS60167188A (en) Semiconductor memory
US7443745B2 (en) Byte writeable memory with bit-column voltage selection and column redundancy