JPS5915114B2 - Method for manufacturing silicon nitride sintered body - Google Patents

Method for manufacturing silicon nitride sintered body

Info

Publication number
JPS5915114B2
JPS5915114B2 JP51105598A JP10559876A JPS5915114B2 JP S5915114 B2 JPS5915114 B2 JP S5915114B2 JP 51105598 A JP51105598 A JP 51105598A JP 10559876 A JP10559876 A JP 10559876A JP S5915114 B2 JPS5915114 B2 JP S5915114B2
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
sintered body
firing
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51105598A
Other languages
Japanese (ja)
Other versions
JPS5330612A (en
Inventor
正章 森
法平 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP51105598A priority Critical patent/JPS5915114B2/en
Publication of JPS5330612A publication Critical patent/JPS5330612A/en
Publication of JPS5915114B2 publication Critical patent/JPS5915114B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明はβ′−サイアロンおよび/または窒化珪素を成
分とする窒化珪素質の焼結体を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon nitride sintered body containing β'-sialon and/or silicon nitride.

従来、この種の窒化珪素質焼結体は、窒化珪素質の被焼
結体を常圧の窒素雰囲気或いは非酸化性ガス雰囲気で焼
成するか、或いは該被焼結体を真空、窒素雰囲気或いは
非酸化性ガス雰囲気でホットプレスするか、のいずれか
により製造される。
Conventionally, this type of silicon nitride sintered body has been produced by firing a silicon nitride sintered body in a normal pressure nitrogen atmosphere or a non-oxidizing gas atmosphere, or by sintering the sintered body in a vacuum, a nitrogen atmosphere, or a non-oxidizing gas atmosphere. It is manufactured either by hot pressing in a non-oxidizing gas atmosphere or by hot pressing in a non-oxidizing gas atmosphere.

この場合、被焼結体は上述した雰囲気中で裸のまま、或
いは窒化硼素(BN)、窒化アルミニウム(AlN)、
炭化珪素(SiC)およびカーボンの1種または2種以
上よりなる詰粉中に埋設して焼成、ホットプレスされる
In this case, the body to be sintered is left bare in the above-mentioned atmosphere, or is made of boron nitride (BN), aluminum nitride (AlN),
It is embedded in a stuffing powder made of one or more of silicon carbide (SiC) and carbon, then fired and hot pressed.

また、とくに窒化珪素質焼結体としてβ′−サイアロン
を主成分とする焼結体を製造する場合は、窒化珪素と窒
化アルミニウムにさらにアルミナまたはシリカの一方も
しくは両者を加えた混合粉末を原料とし、これを種種の
方法で所定形状に成形、乾燥、バインダ除去を行なった
後、該成形体を窒化硼素粉末の詰粉を充填した黒鉛製容
器内に埋設して、黒鉛製容器ごと窒素雰囲気中で160
0〜1800℃の温度に焼成する。
In particular, when producing a sintered body mainly composed of β'-sialon as a silicon nitride-based sintered body, a mixed powder of silicon nitride and aluminum nitride and one or both of alumina and silica is used as the raw material. After molding this into a predetermined shape using various methods, drying, and removing the binder, the molded body was buried in a graphite container filled with boron nitride powder, and the graphite container was placed in a nitrogen atmosphere. So 160
Calcinate at a temperature of 0 to 1800°C.

しかし、上述した方法にあっては焼成中に被焼結体の表
面層に多孔性の白色部が生じる欠点があった。
However, the above-mentioned method has the disadvantage that a porous white portion is formed on the surface layer of the sintered body during firing.

そして、このような白色部が生じると、白色部を中心に
焼成亀裂が起きるばかりか、得られた焼結体の酸化抵抗
、耐アルカリ浸蝕性、強度、硬度等の諸物性の劣化原因
となる。
When such white areas occur, not only do firing cracks occur around the white areas, but they also cause deterioration of various physical properties such as oxidation resistance, alkali corrosion resistance, strength, and hardness of the obtained sintered body. .

このようなことから、本発明者は焼成中における被焼結
体の白色部の生成について種々研究した結果、その白色
部の生成が被焼結体表面からの窒化珪素、シリカ或いは
それら両者の成分の揮発散逸によって生じることを究明
し、しかもこれら成分の揮発散逸は上述した窒化硼素等
の詰粉では抑制し得ないことを発見した。
For this reason, the present inventor has conducted various studies on the formation of white parts on the sintered body during firing, and has found that the white parts are caused by silicon nitride, silica, or both components from the surface of the sintered body. The inventors have investigated that this is caused by the volatilization and dissipation of these components, and have discovered that the volatilization and dissipation of these components cannot be suppressed by the above-mentioned filling powder such as boron nitride.

しかして、本発明者は上記究明結果に基づきさらに研究
して詰粉として窒化珪素、シリカ或いは窒化珪素とシリ
カからなる粉末を試用してみたところ、窒化珪素質被焼
結体の焼成中において該被焼結体の表面層に白色部が形
成されず、焼成亀裂のない緻密質の焼結体が得られた。
Based on the above investigation results, the present inventor conducted further research and tried using silicon nitride, silica, or a powder consisting of silicon nitride and silica as a packing powder, and found that the No white portion was formed on the surface layer of the sintered body, and a dense sintered body without firing cracks was obtained.

しかし、このような窒化珪素および/またはシリカから
なる詰粉は被焼結体の焼成中においてそれ自体が焼結し
て焼成後の窒化珪素質焼結体を取り出せないことがわか
った。
However, it has been found that such a filling powder made of silicon nitride and/or silica sinteres itself during the firing of the sintered body, making it impossible to take out the silicon nitride sintered body after firing.

そこで、本発明者はさらに鋭意研究を重ねた結果、窒化
珪素粉末および/またはシリカ粉末と共に窒化硼素粉末
、窒化アルミニウム粉末、炭化珪素粉床およびカーボン
粉末の1種または2種以上を混合した混合粉末を詰粉と
して使用することにより、窒化珪素質被焼結体の焼成中
において該被焼結体の表面層に白色部が形成されず焼成
亀裂を防止できると共に、詰粉自体の焼結を抑制して詰
粉が付着しない緻密質の窒化珪素質焼結体が得られるこ
とを見出した。
Therefore, as a result of further intensive research, the present inventors found a mixed powder containing one or more of boron nitride powder, aluminum nitride powder, silicon carbide powder bed, and carbon powder together with silicon nitride powder and/or silica powder. By using the silicon nitride powder as a filling powder, white parts are not formed on the surface layer of the silicon nitride sintered object during firing, thereby preventing firing cracks and suppressing sintering of the packing powder itself. It has been found that a dense silicon nitride sintered body to which no powder adheres can be obtained by doing so.

このような被焼結体表面層における白色部の生成防止作
用は詰粉中に混合した窒化珪素および/またはシリカの
粉末が被焼結体の焼成中に分解、気散して、被焼結体周
囲の雰囲気中の気相成分濃度を充分高め、これによって
窒化珪素質被焼結体表面からの窒化珪素成分および/ま
たはシリカ成分の揮散化が抑制されるためと考えられる
This effect of preventing the formation of white parts on the surface layer of the sintered object is due to the fact that the silicon nitride and/or silica powder mixed in the powder is decomposed and diffused during the firing of the sintered object. This is thought to be because the concentration of gas phase components in the atmosphere around the body is sufficiently increased, thereby suppressing volatilization of silicon nitride components and/or silica components from the surface of the silicon nitride-based sintered body.

また、詰粉自体の焼結阻止作用は、被焼結体の焼成中に
おいて窒化珪素粉末および/またはシリカ粉末と共に混
合した焼結しにくい窒化硼素粉末等が焼結し易い該シリ
カ粉末等に介在してシリカ粉末等同志が直接接触焼結す
るのを防止するためと考えられる。
In addition, the sintering prevention effect of the packing powder itself is due to the fact that during the firing of the object to be sintered, boron nitride powder, etc., which is difficult to sinter and mixed with silicon nitride powder and/or silica powder, intervenes in the silica powder, etc., which is easy to sinter. It is thought that this is to prevent silica powder and the like from directly contacting each other and sintering.

以下、不発明の詳細な説明する。Hereinafter, the non-invention will be explained in detail.

まず、窒化珪素粉末またはシリカ粉末の一方もしくは両
者と窒化硼素粉末、窒化アルミニウム粉末、炭化珪素粉
末およびカーボン粉末の群から選ばれる1種または2種
以上とを混合した混合粉末を詰粉とし、該詰粉中に予め
成形されたβ仙すイアロン成分、窒化珪素成分或いはβ
′−サイアロン成分と窒化珪素成分等からなる窒化珪素
質被焼結体を埋設した後、常圧焼成法或いはホラ[プレ
ス法により焼成せしめて窒化珪素質焼結体を造る。
First, a mixed powder obtained by mixing one or both of silicon nitride powder and silica powder with one or more selected from the group of boron nitride powder, aluminum nitride powder, silicon carbide powder, and carbon powder is used as a powder. Pre-formed β iron component, silicon nitride component or β
After a silicon nitride sintered body consisting of a sialon component, a silicon nitride component, etc. is buried, it is fired by an atmospheric pressure sintering method or a hollow press method to produce a silicon nitride sintered body.

ここで常圧焼成法を採用する場合は黒鉛製容器に上記詰
粉を充填し、この詰粉中に窒化珪素質被焼結体を埋設し
た後、該黒鉛製容器をほぼ密閉しその容器ごと窒素雰囲
気中或いは不活性ガス等の非酸化性ガス雰囲気中で加熱
焼成する。
When using the normal pressure firing method, a graphite container is filled with the above-mentioned packing powder, a silicon nitride-based sintered body is buried in this packing powder, and then the graphite container is almost tightly sealed. The product is heated and fired in a nitrogen atmosphere or a non-oxidizing gas atmosphere such as an inert gas.

一方、ホットプレス法を採用する場合は、ホットプレス
用型に上記詰粉を充填すると共にその詰粉中に窒化珪素
質被焼結体を埋設し、例えば該型内を真空にし。
On the other hand, when a hot press method is adopted, a hot press mold is filled with the powder, a silicon nitride sintered body is buried in the powder, and the inside of the mold is evacuated, for example.

必要に応じて型の外周囲を真空にした後、黒鉛製押棒等
で加圧しつつ外周から加熱して焼成する。
After evacuating the outer periphery of the mold as necessary, the mold is heated and fired from the outer periphery while being pressurized with a graphite push rod or the like.

本発明に使用する詰粉中の窒化珪素粉末および/または
シリカ粉末の粒径は焼成中において効率よく分解気散し
易くすると共に、その自身の焼結性を抑制する観点から
細か過ぎても、粗過ぎてもよくなく、通常50〜500
μ程度にすることが望ましい。
The particle size of the silicon nitride powder and/or silica powder in the packed powder used in the present invention is such that it can be easily decomposed and diffused efficiently during firing, and even if it is too small, from the viewpoint of suppressing its own sinterability. Too coarse is not good, usually 50-500
It is desirable to set it to around μ.

不発明に使用する詰粉中の窒化硼素粉末、窒化アルミニ
ウム粉末、炭化珪素粉末およびカーボン粉末の群から選
ばれる1種または2種以上の粉末の粒径も同程度であれ
ばよい。
The particle size of one or more powders selected from the group of boron nitride powder, aluminum nitride powder, silicon carbide powder, and carbon powder in the packed powder used in the invention may also be about the same.

本発明における詰粉中の窒化珪素粉末等と窒化硼素粉末
等との配合割合は窒化珪素粉末等が3〜60重量係重量
化硼素粉末等が97〜40重量飴となるようにすること
が望ましい。
In the present invention, the blending ratio of silicon nitride powder, etc. and boron nitride powder, etc. in the packed powder is preferably such that the silicon nitride powder, etc. has a weight ratio of 3 to 60%, and the weighted boron powder, etc., has a weight ratio of 97 to 40%. .

すなわち詰粉中の窒化珪素粉末等を3重最多未満では被
焼結体の焼成中において、該被焼結体周囲の雰囲気中の
気体状シリコン濃度が十分とならず被焼結体表面からの
窒化珪素成分および/またはシリカ成分の揮散を充分抑
制し得す、一方その量が60重量最多越えると、詰粉自
体が焼結し易くなるばかりか、詰粉中の揮発散逸成分が
多くなり過ぎ、焼成中に詰粉の実質容積が大きく減少し
、詰粉中の空洞容積が大きくなるからである。
In other words, if the number of layers of silicon nitride powder, etc. in the packed powder is less than three times the maximum, the concentration of gaseous silicon in the atmosphere around the sintered object will not be sufficient during firing of the sintered object, and the silicon nitride powder etc. will not be absorbed from the surface of the sintered object. It can sufficiently suppress the volatilization of the silicon nitride component and/or silica component, but if the amount exceeds 60% by weight at most, not only will the powder itself be easily sintered, but the amount of volatile components in the powder will increase too much. This is because the actual volume of the stuffed powder decreases greatly during baking, and the volume of cavities in the stuffed powder increases.

本発明における焼成湿度は被焼結体中の成分により適宜
選定すればよい。
The firing humidity in the present invention may be appropriately selected depending on the components in the object to be sintered.

たとえば被焼結体が窒化珪素の成分からなる場合は、焼
成湿度を1500℃以上とし、被焼結体がβ′−サイア
ロンの成分からなる場合は焼成湿度を1600〜180
0℃程度とすればよい。
For example, when the object to be sintered consists of a silicon nitride component, the firing humidity is set to 1500°C or higher, and when the object to be sintered consists of a β'-SiAlON component, the firing humidity is set to 1600 to 180°C.
The temperature may be about 0°C.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

実施例 1 まず、原料として窒化珪素、窒化アルミニウムおよびア
ルミナの微粉末を用意し、これらをそれぞれ20モル%
(Si3N、)、40モル係(AlN)、40モル%(
A1203)となるように秤量した後、アルミナポット
中で96時間湿式粉砕し、乾燥、解砕して平均粒径が0
.5μの混合微粉末原料を造った。
Example 1 First, fine powders of silicon nitride, aluminum nitride, and alumina were prepared as raw materials, and 20 mol% of each of these was prepared.
(Si3N, ), 40 mol% (AlN), 40 mol% (
A1203), wet-pulverized in an alumina pot for 96 hours, dried and crushed until the average particle size is 0.
.. A mixed fine powder raw material of 5 μm was prepared.

つづいて、この原料に酢酸ビニールを20重重量部加混
練し、36メツシユのナイロン篩を用いて造粒した後、
この造粒原料を金型プレス(圧力500Kp/cr/l
の条件)で寸法40WX70L×10TTnmの板状に
成形し、その成形体を空気中で400℃の湿度下にて加
熱して成形体中のバインダーを除去せしめβ′−サイア
ロン成分からなる窒化珪素質朴焼結体を造った。
Next, 20 parts by weight of vinyl acetate was added to this raw material and kneaded, and the mixture was granulated using a 36-mesh nylon sieve.
This granulated raw material is pressed into a mold press (pressure 500Kp/cr/l).
The molded body was molded into a plate shape with dimensions of 40 W x 70 L x 10 TT nm under the conditions of A sintered body was made.

次いで、窒化珪素粉末15重量最多窒化硼素粉末85重
量最多からなる詰粉(実施例1)を充填した黒鉛製容器
、および窒化硼素粉末のみからなる詰粉(比較例)を充
填した黒鉛製容器に、上記窒化珪素質被焼結体を夫々埋
設して密封した後、これら容器ごと窒素雰囲気中で10
0℃/Hrの昇温速度にて1750℃まで高め、その温
度で4時間加熱し、その後200°C/Hrの降溜速度
で加熱、徐冷してβ仙すイアロン成分からなる2種の窒
化珪素質焼結体を得た。
Next, a graphite container filled with a packing powder (Example 1) consisting of silicon nitride powder (15 weight maximum) and boron nitride powder (85 weight maximum), and a graphite container filled with a packing powder (comparative example) consisting only of boron nitride powder. After burying and sealing the silicon nitride sintered bodies, the containers were heated in a nitrogen atmosphere for 10 minutes.
Two types of iron components were heated to 1750°C at a temperature increase rate of 0°C/Hr, heated at that temperature for 4 hours, and then heated and slowly cooled at a falling rate of 200°C/Hr to release β. A silicon nitride sintered body was obtained.

得られた本発明の窒化珪素質焼結体(実施例1)は表面
に白色部がなく、全体が灰黒色で、かつ均質で気孔率が
0.4係の緻密質であった。
The obtained silicon nitride sintered body of the present invention (Example 1) had no white parts on the surface, was grayish-black in color as a whole, and was homogeneous and dense with a porosity of 0.4.

また、焼結体の焼成亀裂は皆無であった。Furthermore, there were no firing cracks in the sintered body.

これに対し詰粉として窒化硼素粉末のみを使用して得ら
れた従来の窒化珪素質焼結体(比較例)は表面に厚さ約
1〜2mmの白色部が生成し、それより内部が灰黒色の
緻密部分であり、該白色部の気孔率は20〜30%、灰
黒色部のみの気孔率は0.3%であった。
On the other hand, in the conventional silicon nitride sintered body (comparative example) obtained using only boron nitride powder as a packing powder, a white part with a thickness of about 1 to 2 mm is formed on the surface, and the inside is gray. It was a dense black part, and the porosity of the white part was 20 to 30%, and the porosity of only the gray black part was 0.3%.

また、この焼結体の表面には焼成亀裂が数本広い範囲に
わたって人っていた。
Additionally, several firing cracks were present over a wide area on the surface of this sintered body.

なお、上記白色部および灰黒色部をX線で同定した結果
、白色部は15R−AINポリタイプ−サイアロンとα
−アルミナの成分からなり、一方灰黒色部はβ′−サイ
アロンが主構成相で他に微量のα−アルミナを含むもの
であった。
In addition, as a result of identifying the above white part and gray black part with X-ray, the white part is 15R-AIN polytype-Sialon and α
-Alumina, while the gray black part was mainly composed of β'-sialon and also contained a small amount of α-alumina.

実施例 2 詰粉として窒化珪素粉末15重量最多シリカ粉末5重世
襲および窒化硼素粉末80重量飴からなる混合粉末を使
用した以外上記実施例1と同様な方法にてβ仙すイアロ
ン成分からなる窒化珪素質焼結体を得た。
Example 2 Nitriding consisting of β iron component was carried out in the same manner as in Example 1 above, except that a mixed powder consisting of silicon nitride powder 15 weight maximum silica powder 5 hereditary and boron nitride powder 80 weight candy was used as the packing powder. A silicon sintered body was obtained.

得られた窒化珪素質焼結体は実施例1のものと同様、表
面に白色部がなく、かつノ焼成亀裂も皆無で、気孔率が
0.4係の極めて緻密質のものであった。
The obtained silicon nitride sintered body, like that of Example 1, had no white parts on the surface, no firing cracks, and was extremely dense with a porosity of 0.4.

以上詳述した如く、本発明によれば焼成中、窒化珪素質
被焼結体の表面から窒化珪素成分および/またはシリカ
成分が揮散するのを阻止して、該被焼結体の表面層に白
色部が生成されるのを防止できると共に焼成亀裂の発生
を防止でき、かつ詰粉自体の焼結塊状化を阻止でき、耐
酸化性、耐アリカリ浸蝕性、強度、硬度などの諸物性が
著しく優れた均質かつ緻密質の窒化珪素質焼結体を得る
ことができる等顕著な効果を有する。
As detailed above, according to the present invention, during firing, the silicon nitride component and/or the silica component are prevented from volatilizing from the surface of the silicon nitride-based sintered body, and the surface layer of the sintered body is It can prevent the formation of white parts, prevent the occurrence of firing cracks, and prevent the filling powder itself from forming into sintered lumps, and has remarkable physical properties such as oxidation resistance, alkali corrosion resistance, strength, and hardness. It has remarkable effects such as being able to obtain an excellent homogeneous and dense silicon nitride sintered body.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化珪素粉末またはシリカ粉末の一方もしくは両者
と窒化硼素粉末、窒化アルミニウム粉末、炭化珪素粉末
およびカーボン粉末の群から選ばれる1種または2種以
上とを混合した混合粉を詰粉とし、該詰粉中に窒化珪素
質の被焼結体を埋設した後、加熱焼成せしめることを特
徴とする窒化珪素質焼結体の製造方法。
1 A mixed powder obtained by mixing one or both of silicon nitride powder and silica powder with one or more selected from the group of boron nitride powder, aluminum nitride powder, silicon carbide powder, and carbon powder is used as a packing powder, and the packing is 1. A method for producing a silicon nitride sintered body, which comprises embedding a silicon nitride sintered body in powder and then heating and firing it.
JP51105598A 1976-09-03 1976-09-03 Method for manufacturing silicon nitride sintered body Expired JPS5915114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51105598A JPS5915114B2 (en) 1976-09-03 1976-09-03 Method for manufacturing silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51105598A JPS5915114B2 (en) 1976-09-03 1976-09-03 Method for manufacturing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS5330612A JPS5330612A (en) 1978-03-23
JPS5915114B2 true JPS5915114B2 (en) 1984-04-07

Family

ID=14411921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51105598A Expired JPS5915114B2 (en) 1976-09-03 1976-09-03 Method for manufacturing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS5915114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276654A (en) * 1996-04-11 1997-10-28 Matsushita Electric Ind Co Ltd Exhaust gas filter and manufacture thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771872A (en) * 1980-10-20 1982-05-04 Kobe Steel Ltd Manufacture of high density silicon nitride sintered body
DE3141590C2 (en) * 1980-10-20 1985-01-03 Kobe Steel, Ltd., Kobe, Hyogo Process for the production of high density sintered silicon nitride
JPS57106574A (en) * 1980-12-19 1982-07-02 Kobe Steel Ltd Method of sintering silicon nitride
JPS59207877A (en) * 1983-05-10 1984-11-26 大同特殊鋼株式会社 Manufacture of high density silicon nitride reaction sintered body
JPS60145961A (en) * 1983-12-31 1985-08-01 工業技術院長 Manufacture of high strength heat resistant ceramic sinteredbody
JPS60166270A (en) * 1984-02-09 1985-08-29 技術研究組合工業炉技術研究所 Manufacture of heat transfer converter
JPS61202595A (en) * 1985-03-05 1986-09-08 Fujitsu General Ltd Color television receiver
JPS61197777U (en) * 1985-05-30 1986-12-10
US5324694A (en) * 1985-06-26 1994-06-28 The Babcock & Wilcox Company Silicon nitride/boron nitride composite with enhanced fracture toughness
JPS643076A (en) * 1987-06-25 1989-01-06 Toshiba Corp Production of sintered sialon
CN109734457B (en) * 2019-01-24 2022-01-07 湖南工业大学 High-hardness Sialon ceramic material and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276654A (en) * 1996-04-11 1997-10-28 Matsushita Electric Ind Co Ltd Exhaust gas filter and manufacture thereof

Also Published As

Publication number Publication date
JPS5330612A (en) 1978-03-23

Similar Documents

Publication Publication Date Title
US4354990A (en) Process for sintering silicon nitride compacts
US4351787A (en) Process for sintering reaction bonded silicon nitride
US4248813A (en) Process for producing high density sintered products
US4320204A (en) Sintered high density boron carbide
JPS5915114B2 (en) Method for manufacturing silicon nitride sintered body
US4668452A (en) Process for producing silicon carbide heating elements
US4698320A (en) Aluminum nitride sintered body
JPH0577632B2 (en)
US3572992A (en) Preparation of moulded and sintered aluminum nitride
JPH0341426B2 (en)
JPH0157075B2 (en)
JPS5919903B2 (en) Hot press manufacturing method of SiC sintered body
JP2745030B2 (en) Silicon nitride sintered body and method for producing the same
JPS593955B2 (en) Method for manufacturing high-strength, heat-resistant silicon compound fired moldings
JPH0146472B2 (en)
JPS6359993B2 (en)
JP2916934B2 (en) Method for producing sialon-based sintered body
JPS6212191B2 (en)
JPH09227233A (en) Production of silicon carbide sintered compact
JPS6138145B2 (en)
JPH0745342B2 (en) Method for sinter compacts with controlled grain size
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPS6256372A (en) Manufacture of silicon carbide sintered body
JPH075386B2 (en) Silicon nitride sintering aid and method for producing silicon nitride sintered body using the same
JPH046671B2 (en)