JPS59151098A - Transporting container for radioactive material - Google Patents

Transporting container for radioactive material

Info

Publication number
JPS59151098A
JPS59151098A JP58024673A JP2467383A JPS59151098A JP S59151098 A JPS59151098 A JP S59151098A JP 58024673 A JP58024673 A JP 58024673A JP 2467383 A JP2467383 A JP 2467383A JP S59151098 A JPS59151098 A JP S59151098A
Authority
JP
Japan
Prior art keywords
container
space
main body
gas
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58024673A
Other languages
Japanese (ja)
Inventor
長戸路 雄厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP58024673A priority Critical patent/JPS59151098A/en
Publication of JPS59151098A publication Critical patent/JPS59151098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Packages (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、照射筒核燃料物質や照射済金属材料等の放射
性物質を、原子力発電所、照射後の試験施設及び再処理
工場間で、輸送する際に使用する放射性物質の放散防止
構造を改良した放射性物質の輸送容器に関するものであ
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is a method for transporting radioactive materials such as irradiation tube nuclear fuel material and irradiated metal materials between a nuclear power plant, a post-irradiation test facility, and a reprocessing plant. This invention relates to a container for transporting radioactive materials that has an improved structure to prevent the radiation of radioactive materials.

〔従来技術〕[Prior art]

従来の放射性物質の輸送容器は第1図に縦断面図を示す
ように、本体1、本体蓋2、ドレン弁部6、ベント弁部
7からなシ、本体1の側面はガンマ線遮蔽用の鉛層3と
中性子線遮蔽用の水層4により内部5を包囲している。
As shown in the vertical cross-sectional view in Fig. 1, a conventional transport container for radioactive materials has a main body 1, a main body lid 2, a drain valve part 6, and a vent valve part 7. The interior 5 is surrounded by a layer 3 and a water layer 4 for shielding neutron beams.

照射筒核燃料物質等は、本体1の内部5内に収納した後
、本体蓋2を取シ付けて本体1外部とを遮断する。輸送
容器の内部5と外部との境界部、即ち、密封境界は、本
体蓋2に取り付けた0リング8、ドレン弁部6及びベン
ト弁部7でらる:Oリング8、ドレン弁部6及びベント
弁部7の密封構造の詳細を第2図、第3図に示す。Oリ
ング8は耐放射線性のよいゴム等を使用する二重シール
構造で、2本のOリング位置の中間に細孔9を配設し、
細孔9の出口部、即ち、本体蓋2の外周部には0リング
付のプラグ10を設け、輸送中外部との気密を保つ構造
となっている。尚、細孔9とプラグ10は後述する気密
漏洩試験時に使用するものである。一方、ドレン弁部6
とベント弁部7は、同様に、第3図に示すようにストッ
プパルプ11とフランジ12とからなっておシ、7ラン
ジ12にはOリング機構を設けて外部と気密を保持する
構造となっている。また、フランジ12にはプラグ13
fc有し気密漏洩試験時に使用するようになっている。
After the irradiation tube nuclear fuel material and the like are stored in the interior 5 of the main body 1, the main body lid 2 is attached to shut off the main body 1 from the outside. The boundary between the inside 5 and the outside of the transport container, that is, the sealing boundary is defined by the O-ring 8 attached to the main body lid 2, the drain valve part 6, and the vent valve part 7. Details of the sealing structure of the vent valve section 7 are shown in FIGS. 2 and 3. The O-ring 8 has a double seal structure using rubber or the like with good radiation resistance, and a pore 9 is arranged between the two O-ring positions.
A plug 10 with an O-ring is provided at the outlet of the pore 9, that is, at the outer periphery of the main body lid 2, to maintain airtightness from the outside during transportation. Incidentally, the pore 9 and the plug 10 are used during an airtight leakage test to be described later. On the other hand, the drain valve part 6
Similarly, the vent valve part 7 is made up of a stop pulp 11 and a flange 12 as shown in FIG. ing. Also, a plug 13 is attached to the flange 12.
It has an fc and is designed to be used during airtight leakage tests.

一方、照射済核燃料物質等を収納した容器からは気体状
放射性物質としての希ガスやヨウ素等の漏洩が考えられ
、その画成発生個所は前述の密封境界部である。従って
、輸送前に容器の密封性を確認するため気密漏洩試験を
実流し、容器からの漏洩量が微少であることを確認しな
ければならない。しかるに、現在用いられている漏洩試
験方法はすべて気体加圧方式を採用している。これは、
輸送時の容器内圧に相当する圧力の気体(窒素ガスまだ
は乾燥空気)をプラグio、13全通し密封境界に加え
長時間放置して外部に設けたマノメータで圧力降下を測
定し、それを単位時間当シの室累ガス、乾燥空気の漏洩
量に変換してその値を放射性物質の漏洩に対応付けて評
価する方法でhる。この場合に使用する漏洩使用器を第
4図に示す。容器には側圧ホース17を3本を介し漏洩
試験装置14が接続され、漏洩試験装置It14は、マ
ノメータ15と圧力ゲージ16等よ)構成されている。
On the other hand, gaseous radioactive substances such as rare gas and iodine are likely to leak from a container containing irradiated nuclear fuel materials, and the leakage occurs at the sealed boundary portion described above. Therefore, in order to confirm the sealability of the container before transportation, it is necessary to carry out an actual airtight leakage test to confirm that the amount of leakage from the container is minute. However, all currently used leakage testing methods employ a gas pressurization method. this is,
Gas (nitrogen gas or dry air) at a pressure equivalent to the internal pressure of the container during transportation is applied to the sealed boundary through the plug IO, 13, left for a long time, and the pressure drop is measured with an external manometer, and the pressure drop is measured as a unit. This is done by converting the amount of leakage of indoor gas and dry air per hour and correlating that value with the leakage of radioactive materials. The leakage device used in this case is shown in FIG. A leak test device 14 is connected to the container via three lateral pressure hoses 17, and the leak test device It14 is composed of a manometer 15, a pressure gauge 16, etc.

ところで、上記の気体加圧法においてはmll定中の周
囲温度の影響を太きぐ受けると云う欠点かあ。
By the way, the above-mentioned gas pressurization method has a drawback in that it is greatly influenced by the ambient temperature during the milliliter determination.

る。即ち、袖込容器周辺の温度、特に密封境界部、ぐの
温度と漏洩試験装置14周辺の温度を同一にして、しか
も、測定中の温度変化を可能な限り小さく抑制しなけれ
ば精度のよい測定を実施することは困難である。経験上
、温度変化は1〜2c以内としなければならない。収納
した核燃料物質の崩壊熱のため、熱的平衡状態到達後の
容器の周辺温度は、漏洩試験装置14の周辺温度よシも
高い。
Ru. In other words, accurate measurements can only be achieved by keeping the temperature around the armhole container, especially the temperature at the sealed boundary, and the temperature around the leak test device 14 the same, and also by suppressing temperature changes during measurement as small as possible. is difficult to implement. As a rule of thumb, the temperature change should be within 1-2 c. Due to the decay heat of the contained nuclear fuel material, the ambient temperature of the container after reaching thermal equilibrium is higher than the ambient temperature of the leak test device 14.

そこで、輸送容器を、例えばビニルハウス19内に\そ
して、凋洩試験装置t14もビニルハウス18内に設置
し、外乱による温度変化を抑え、さらに両者の周辺温度
を等しくする目的で、ビニルハウス18内に光源等の発
熱体を配置し適時点滅させて漏洩試験装置14の周辺温
度を適正化している。
Therefore, the transportation container is placed inside the vinyl house 19, for example, and the leakage test device t14 is also installed inside the vinyl house 18. A heat generating element such as a light source is placed inside and blinked at appropriate times to optimize the ambient temperature of the leak test device 14.

@送容器の大きさにも依存するが、照射済燃料集合体を
1体または2体収納できる程度の小形の容器の場合、発
熱量が数KWもあれば容器表面の温1組は呈温よシ数十
C高くなシ、結果として容器の周囲温度は、漏洩試験装
置14周辺のそれよシも5C以と上昇することも稀では
ない。従って、気体加圧法は、周囲温度調整に煩雑な手
順を必要とし、また、測定可能な状態に至らせるまでに
長時間を必要とする。さらに、ビニル・・ウス設置時に
労力を必要とする上に、ビニルシートと云う難燃性の廃
棄物が多量に出ることになる。このような欠点は大形の
1@送容器の気密漏洩試験でも全く同様である。
@Although it depends on the size of the shipping container, in the case of a small container that can accommodate one or two irradiated fuel assemblies, if the calorific value is several kilowatts, the temperature of one set of container surfaces will be the same. As a result, it is not uncommon for the ambient temperature of the container to rise to 5C or more, even around the leak test device 14. Therefore, the gas pressurization method requires a complicated procedure for adjusting the ambient temperature, and also requires a long time to reach a measurable state. Furthermore, installation of the vinyl sheet requires labor, and a large amount of flame-retardant waste called vinyl sheet is produced. These drawbacks are exactly the same in the hermetic leakage test for large 1@ shipping containers.

〔発明の目的〕[Purpose of the invention]

本発明は上記の状況に鑑みなされたものであシ、容器内
からの放射性物質の漏洩を皆無にし気密漏洩試験を不要
とし安全に輸送できる放射性物質の輸送容器を提供する
ことを目的としたものである。
The present invention was made in view of the above situation, and an object of the present invention is to provide a container for transporting radioactive materials that completely eliminates the leakage of radioactive materials from inside the container, eliminates the need for airtight leakage tests, and can be transported safely. It is.

〔発明の概要〕[Summary of the invention]

本発明の放射性物質の輸送容器は、照射済核燃料物買、
照射筒金属材料等の放射性物質を本体の内部に収納して
輸送するように形成してなり、上記内部を密封する境界
部に空間を設け、輸送のため上記内部に上記放射性物質
を収納している間、上記空間丙に該放射性物質の外部に
対する放散を阻止する高圧気体を封入してなるものであ
る。従って、該高圧気体を、密封境界内よシ輸送谷器内
へ漏洩させることによシ、逆に容器内よシ容器外への放
射性物質の漏洩を無くするものである。
The transport container for radioactive materials of the present invention is suitable for transporting irradiated nuclear fuel,
The irradiation tube is formed so that a radioactive substance such as a metal material is stored and transported inside the main body, and a space is provided at the border that seals the inside, and the radioactive substance is stored inside the main body for transportation. During this period, high-pressure gas is sealed in the above-mentioned space (C) to prevent the radioactive substance from dispersing to the outside. Therefore, by leaking the high-pressure gas from within the sealed boundary into the transport vessel, leakage of radioactive materials from inside the container to outside the container can be prevented.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の放射性vJ質の輸送容器を、実施例を介し
従来と同部品は同符号を用い同部分の構造の説明は省略
し第5図、第6図によp説明する。
Hereinafter, the transport container for radioactive VJ material of the present invention will be described with reference to Examples and FIGS. 5 and 6, using the same reference numerals for the same parts as in the prior art and omitting the explanation of the structure of the same parts.

第5図は容器の本体蓋取付部の縦断面図、第6図は第5
図のC部詳細図である。漏洩発生個所は前記のように、
本体蓋2のシール部分と、ドレン弁部6とベント弁部7
とであるが、ドレン弁部6とベント弁部7とは弁自身が
シール性能を持ち、さらに、弁部を覆うフランジ部にも
Oリングを配置してシール機能を持たせであるため、却
って本体蓋2部分からの漏洩対策が重要となる。このた
め、第5図、第6図に示すように、本体蓋2の二重0リ
ング8,8の中間に本体蓋2と本体1との両方向にそれ
ぞれ切欠きの空間20.21を設け、空間20は細孔9
と0リング付のグラブ10を介し外部に接続されている
。また、空間21も細孔22と高耐圧性のストップパル
プ23及びOリング付の蓋24を介し外部と接続されて
いる。尚、高耐圧のストップパルプ23は小形のものを
用いるようにしてパルプ設置空間の容積を小さくし、容
器の遮蔽欠損を少ないようにする。
Figure 5 is a vertical cross-sectional view of the main body lid attachment part of the container, and Figure 6 is the 5th section.
It is a detailed view of part C in the figure. The location of the leak is as mentioned above.
The seal part of the main body lid 2, the drain valve part 6 and the vent valve part 7
However, the drain valve part 6 and vent valve part 7 have sealing performance themselves, and an O-ring is also placed on the flange that covers the valve part to provide a sealing function. It is important to take measures to prevent leakage from the two parts of the main body lid. For this reason, as shown in FIGS. 5 and 6, cutout spaces 20 and 21 are provided between the double O-rings 8 and 8 of the main body lid 2 in both directions of the main body lid 2 and the main body 1, respectively. Space 20 is pore 9
and is connected to the outside via a glove 10 with an O-ring. Further, the space 21 is also connected to the outside via a pore 22, a high pressure-resistant stop pulp 23, and a lid 24 with an O-ring. It should be noted that a small-sized stop pulp 23 with high pressure resistance is used to reduce the volume of the pulp installation space and to reduce shielding defects in the container.

照射済核燃料等の輸送容器への収納は、燃料貯蔵プール
内で行われるため、空間20.21内にはプール水が残
留しているので蓋10.24を開放して残留水を抜き出
した後、再び蓋10を閉じバルブ23から窒素あるいは
乾燥空気を送シ、所定の高圧力に到達後パルプ23を閉
じ、史に蓋24を取シ付ける。輸送終了後は、蓋24を
取外しバルブ23を徐々に開き空間20.21内のガス
を逃がす。切欠き空間20.21の構造は第6図に示す
ように側壁部に傾きを付し輸送容器使用後の除染作業が
容易に行えるように形成している。
Irradiated nuclear fuel, etc. is stored in the transport container in the fuel storage pool, so pool water remains in the space 20.21, so after opening the lid 10.24 and drawing out the residual water. Then, the lid 10 is closed again and nitrogen or dry air is sent through the valve 23. After reaching a predetermined high pressure, the pulp 23 is closed and the lid 24 is attached. After the transportation is completed, the lid 24 is removed and the valve 23 is gradually opened to release the gas in the space 20.21. As shown in FIG. 6, the structure of the cutout spaces 20 and 21 is such that the side walls are inclined to facilitate decontamination work after use of the transport container.

次にこの輸送容器によシ放射性物質として照射済燃料集
合体の1本または2本を桶送する小形容器の場合を説明
する。第5図の2本の0リング8゜8間の中間位置の直
径を500 rtan、本体蓋2の上面と0 ’Jソン
グ間の距離、即ち、蓋板厚を60m+とじ、0リングの
幅を5wn、さらに、2個のOリング溝間の距離を15
mmとする。また、切欠き空間の容積は、空間20.2
1f:それぞれ300crn3 とし合計600cm3
とし、空間20.21の幅を10陥としだ。
Next, a case will be described in which a small container is used to transport one or two irradiated fuel assemblies as radioactive materials into the transport container. The diameter of the intermediate position between the two 0-rings 8°8 in Figure 5 is 500 rtan, the distance between the top surface of the main body lid 2 and the 0' J song, that is, the thickness of the lid plate, is 60 m +, and the width of the 0-ring is 500 rtan. 5wn, and further set the distance between the two O-ring grooves to 15
Let it be mm. In addition, the volume of the notch space is 20.2
1f: 300 crn3 each, total 600 cm3
Let us assume that the width of the space 20.21 is 10 depressions.

2個の切欠き空間20.21内に封入された高圧気体の
漏洩通路は、第6図から明らかなように、2本の0リン
グ8.8を通して容器の内部5や容器外へ出るもの、細
孔9を経て蓋10の0リング部から容器外へ出るもの、
細孔22とストップバルブ23を経て蓋24のOリング
部から容器外へ出るものとの4個存在している。しかし
、ストップバルブ23を通過してさらに蓋24のOリン
グシール部を経て刺入気体が漏洩する確率は小さいため
、実際上の漏洩通路は3個所となる。
As is clear from FIG. 6, the leak passage for the high-pressure gas sealed in the two notch spaces 20.21 is one that exits into the interior 5 of the container or the outside of the container through two O-rings 8.8. Those that exit the container from the O-ring part of the lid 10 through the pores 9,
There are four holes, one exiting from the O-ring part of the lid 24 to the outside of the container via the pore 22 and the stop valve 23. However, since the probability that the injection gas leaks through the stop valve 23 and further through the O-ring seal portion of the lid 24 is small, there are actually three leakage paths.

封入気体は、圧力条件を考えると粘性流で漏洩するが、
その際、気体は0リングと通常仕上げの0リングの接触
面との間にできる例えば直径(円が計算が容易なため使
用し以後直径と表示する)数μ”%0!Jング溝幅の長
さ5Wmの微小な間隙を通過して容器外へ出ると考えら
れる。表面に傷のない0リングを用い、輸送容器表面と
の接触面、即ち、シール面との仕上げをよくシ、さらに
蓋ボルトの締伺力を均等にしだところ、上記の微小間隙
の直径を1〜2μm以下とすることは容易であった。
The sealed gas leaks due to viscous flow considering the pressure conditions, but
At that time, the gas is formed between the contact surface of the O-ring and the normally finished O-ring, for example, the diameter (a circle is used because it is easy to calculate and will be expressed as the diameter from now on) is several μ''%0! J groove width. It is thought that it passes through a minute gap with a length of 5 Wm and exits the container.Use an O-ring with no scratches on the surface, make sure that the surface that contacts the surface of the transportation container, that is, the sealing surface, is well finished, and then close the lid. By equalizing the tightening force of the bolts, it was easy to reduce the diameter of the minute gap to 1 to 2 μm or less.

ここで、空間20.21内に封入する気体の圧力を20
気圧とすると、封入気体が漏洩によシ容器外にすべて出
てしまうまでに要する時間は、微小間隙の直径を3μm
とすると約10日、2μmとすると約40日、1μmな
らば数百日以上であった。従って、その間は空間20.
21内の気体は容器内の放射性物質収納の内部5内に移
動するのみで、放射性物質が容器外へ漏れ出すことはな
く、この間に輸送作業を終了させれば放射性物質の漏洩
は全く無視できる。尚、封入気体中に数チ程度のヘリウ
ムを混入させ、ヘリウム吸引ブローベとへv6ムリーク
検出器を用いれば漏洩量を知ることもできる。そして、
輸送途中の測定で、仮シに漏洩量が予測以上に大きいと
判断された場合は再度気体封入作業を行なうことも可能
である。
Here, the pressure of the gas sealed in the space 20.21 is set to 20.
In terms of atmospheric pressure, the time required for all the sealed gas to leak out of the container due to leakage is given by the diameter of the minute gap being 3 μm.
If it is 2 μm, it will take about 10 days, if it is 2 μm, it will take about 40 days, and if it is 1 μm, it will take several hundred days or more. Therefore, there is a space of 20.
The gas in 21 only moves into the interior 5 of the radioactive material storage in the container, and the radioactive material does not leak out of the container.If the transportation work is completed during this time, the leakage of radioactive material can be completely ignored. . Note that the amount of leakage can also be determined by mixing several inches of helium into the sealed gas and using a helium suction probe and a V6 leak detector. and,
If it is determined by measurements during transportation that the amount of leakage from the temporary container is larger than expected, it is possible to perform the gas filling operation again.

また、切欠き空間20.21の容積や封入気体の圧力は
、輸送容器の構造、寸法、輸送に要する日数等を考慮し
て決定すればよく、封入気体は窒素ガス等に限る必要な
く希ガスでもよい。一般に、粘性流条件下での気体の漏
洩量は粘性係数に逆比例するから粘性係数が大きく、か
つ、安全な気体ならば問題はない。そして、本実施例の
切シ欠き空間20.21の深さは20mmでるシ、これ
は本体蓋2の厚さ60ronと比較して十分小さいため
、たとえ輸送容器を剛体表面上に落下させてしまうよう
な事故条件下に置き本体蓋2の空間20に衝撃応力が集
中しても本体蓋2が破損して容器内の放射性物質が大気
中に飛散することはない。
In addition, the volume of the notch space 20.21 and the pressure of the sealed gas may be determined by taking into account the structure and dimensions of the transport container, the number of days required for transportation, etc. The sealed gas need not be limited to nitrogen gas, etc., and may be a rare gas. But that's fine. Generally, the amount of gas leaked under viscous flow conditions is inversely proportional to the viscosity coefficient, so if the gas has a large viscosity coefficient and is safe, there will be no problem. The depth of the notch space 20.21 in this embodiment is 20 mm, which is sufficiently small compared to the thickness of the main body lid 2, which is 60 ron, so that even if the transport container is dropped onto a rigid surface, Even if impact stress is concentrated in the space 20 of the main body lid 2 under such accident conditions, the main body lid 2 will not be damaged and the radioactive materials inside the container will not be scattered into the atmosphere.

そして、輸送容器が大形化すれば本体蓋2の直径も犬き
くなシ、従って、切欠き空間位置の直径も大きくとれる
ため空間容積を同一とする限シ切欠き空間の深さは浅く
て済む。本体蓋2に空間20を設けることが難しい場°
合は、他の実施例の第7図に示すように容器本体l側の
みに空間21を形成することも可能でろる。また、輸送
容器が火災事故に出会い茶器表面温度が数百0とな多空
間20.21内の気体の圧力が上昇しても、その温度に
耐える0リングとバルブを選択すれば容器の気密性は維
持できる。
If the transport container becomes larger, the diameter of the main body lid 2 will also become larger, and therefore the diameter of the notch space can be made larger, so as long as the space volume remains the same, the depth of the notch space will be shallower. It's over. In cases where it is difficult to provide a space 20 in the main body lid 2.
In this case, it may be possible to form the space 21 only on the container body l side as shown in FIG. 7 of another embodiment. In addition, even if a transport container were to catch fire and the surface temperature of the tea utensil rose to several hundred degrees Celsius, the airtightness of the container could be maintained by selecting O-rings and valves that could withstand the temperature. can be maintained.

このように本実施例の放射性物質の輸送容器は、放射性
物質を収納した内部を密封する境界部分に設けた空間内
に、内部側に漏洩するように高圧気体を封入しだので、
内部からの放射性物質の漏洩を皆無にし、従って、気密
漏洩試験を省略でき、従来に比べ作業工数を著しく減少
し安全性を向上できる。
In this way, the transport container for radioactive materials of this embodiment has high-pressure gas sealed in the space provided at the boundary that seals the interior containing the radioactive materials so as to leak to the inside.
There is no leakage of radioactive materials from the inside, so the airtight leakage test can be omitted, significantly reducing the number of work steps and improving safety compared to the conventional method.

第8図は他の実施例を示し、上記実施例と異なるところ
は、上記実施例は環状の切欠き空間が一重であるのに対
し、本実施例は二重であり、かつ、外側の環状空間の圧
力を内側の空°間より高くした点である。本体蓋2には
3本の0リング25が配設され、各Oリング25相互間
に切欠き空間20゜21.26.30が設けられ、外側
の環状空間20.21はそれぞれ細孔9,22を介しM
lo。
FIG. 8 shows another embodiment, and the difference from the above embodiment is that the above embodiment has a single annular notch space, whereas this embodiment has a double annular notch space, and the outer annular cutout space is double. The point is that the pressure in the space is higher than that in the inner space. Three O-rings 25 are arranged on the main body lid 2, and cutout spaces 20° 21, 26, 30 are provided between each O-ring 25, and the outer annular spaces 20, 21 are provided with pores 9, 26, 30, respectively. M via 22
lo.

ストップパルプ取付部29に接続されている。内側の空
間26.30はそれぞれ細孔27,31を介し蓋28、
ストップバルブ取付部32に接続されている。そして、
空間20.21と空間26゜30とは互に独立しておシ
、空間26.30の封入気体圧力よシも外側の空間20
.21の封入圧力の方が高く形成されている。従って、
空間26゜30内の気体は容器外に出ることはなく内部
5に入るばかシであシ、シかも、空間26.30から容
器内に入った気体と同量の気体が常に空間20゜21か
ら補給され、上記実施例よシも更に確実な密封効果を期
待できる。また、第7図のように本体側だけに設けた環
状空間で二重環状空間を設け □てもよい。
It is connected to the stop pulp attachment part 29. The inner spaces 26 and 30 are connected to the lid 28 through the pores 27 and 31, respectively.
It is connected to the stop valve attachment part 32. and,
The space 20.21 and the space 26.30 are independent of each other, and the pressure of the sealed gas in the space 26.30 is also the same as the outside space 20.
.. No. 21 has a higher sealing pressure. Therefore,
The gas in the space 26.30 never leaves the container and enters the interior 5.Also, the same amount of gas as the gas that entered the container from the space 26.30 always flows into the space 20.21. In the above embodiments, even more reliable sealing effects can be expected. Further, as shown in FIG. 7, a double annular space may be provided with an annular space provided only on the main body side.

〔発明の効果〕〔Effect of the invention〕

以上記述した如く本発明の放射性物質の輸送容器は、容
器内からの放射性物質の漏洩を皆無にして気密漏洩試験
を不要として作業工数を著しく低減できると共に安全性
を向上できる効果を有するものである。
As described above, the radioactive material transport container of the present invention has the effect of eliminating any leakage of radioactive material from inside the container, eliminating the need for airtight leakage tests, significantly reducing the number of work steps, and improving safety. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の放射性物質の輸送容器の縦断面図、第2
図は第1図のA部詳細図、第3図は第1図のB部詳細図
、第4図は第1図の輸送容器の気密漏洩試験状態の説明
図、第5図は本発明の放射性物質の輸送容器の実施例の
本体蓋取付部の縦断面図、第6図は第5図のC部詳細図
、第7図、第8図はそれぞれ本発明の放射性物質の輸送
容器の他の実施例を示し第7図は第6図と同部分の詳細
図、第8図は第5図と同部分の縦断面図である。 l・・・本体、2・・・本体蓋、5・・・内部、20,
21゜第 1 図 第21 第4図 19
Figure 1 is a vertical cross-sectional view of a conventional transport container for radioactive materials;
Figure 3 is a detailed view of part A in Figure 1, Figure 3 is a detailed view of part B in Figure 1, Figure 4 is an explanatory diagram of the airtight leakage test state of the transport container in Figure 1, and Figure 5 is a detailed view of part B in Figure 1. FIG. 6 is a detailed view of the section C in FIG. 5, and FIGS. 7 and 8 are a longitudinal cross-sectional view of the main body lid attachment part of the embodiment of the radioactive material transport container, and FIG. 7 and FIG. 7 is a detailed view of the same portion as FIG. 6, and FIG. 8 is a longitudinal sectional view of the same portion as FIG. 5. l...Body, 2...Body lid, 5...Inside, 20,
21゜Figure 1 Figure 21 Figure 4 19

Claims (1)

【特許請求の範囲】[Claims] 1、照射筒核燃料物質、照射済金属材料等の放射性物質
を本体の内部に収納して輸送する輸送容器において、上
記内部を密封する境界部に空間を設け、輸送のため上記
内部に上記放射性物質を収納している間、上記空間内に
該放射性物質の外部に対する放散を阻止する高圧気体を
封入してなることを特徴とする放射性物質の輸送容器。
1. Irradiation cylinder In a transportation container that stores and transports radioactive materials such as nuclear fuel materials and irradiated metal materials inside the main body, a space is provided at the border that seals the interior, and the radioactive materials are stored inside the container for transportation. A container for transporting radioactive substances, characterized in that a high-pressure gas is sealed in the space to prevent the radioactive substances from dispersing to the outside while the radioactive substances are contained therein.
JP58024673A 1983-02-18 1983-02-18 Transporting container for radioactive material Pending JPS59151098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024673A JPS59151098A (en) 1983-02-18 1983-02-18 Transporting container for radioactive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024673A JPS59151098A (en) 1983-02-18 1983-02-18 Transporting container for radioactive material

Publications (1)

Publication Number Publication Date
JPS59151098A true JPS59151098A (en) 1984-08-29

Family

ID=12144650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024673A Pending JPS59151098A (en) 1983-02-18 1983-02-18 Transporting container for radioactive material

Country Status (1)

Country Link
JP (1) JPS59151098A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174300U (en) * 1986-04-25 1987-11-05
JP2013242322A (en) * 2006-11-08 2013-12-05 Commissariat A L'energie Atomique Device for transportation of nuclear fuel and method for loading/unloading the device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749894A (en) * 1980-07-08 1982-03-24 Nuklear Service Gmbh Gns Container for transporting and storing shield for radioactive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749894A (en) * 1980-07-08 1982-03-24 Nuklear Service Gmbh Gns Container for transporting and storing shield for radioactive material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174300U (en) * 1986-04-25 1987-11-05
JP2013242322A (en) * 2006-11-08 2013-12-05 Commissariat A L'energie Atomique Device for transportation of nuclear fuel and method for loading/unloading the device
US8855260B2 (en) 2006-11-08 2014-10-07 Commissariat A L'energie Atomique Device for the transportation of nuclear fuel and method for loading/unloading of the said device

Similar Documents

Publication Publication Date Title
US5182076A (en) Method for monitoring the emplacement of a transportable element and the tightness of its joint with a fixed structure, and the use of this method
US6223587B1 (en) Device and method for permanently controlling the tightness of closing lids of containers for radioactive materials
US4118972A (en) Apparatus for detecting leaks in composite packages
US4983352A (en) Closure system for a spent fuel storage cask
US3247706A (en) Leak testing of nuclear reactor fuel elements
JPS59151098A (en) Transporting container for radioactive material
US5012672A (en) Hydrogen gas sensor and method of manufacture
GB1273379A (en) Method of apparatus for testing the fluid tightness of an article etc.
Marr Leakage testing handbook
GB2166680A (en) Closure system for a spent fuel storage cask
JP2006017609A (en) Element test method of gasket for cask and its device
JPH0226756B2 (en)
JPS61130843A (en) Leak test for heat exchanger
Blacic et al. Effects of long-term exposure of tuffs to high-level nuclear waste-repository conditions. Preliminary report
Madding Jr et al. $ sup 239$ Pu--Be neutron source surveillance and testing.
Hayes PRTR CONTAINMENT VESSEL LEAK RATE TEST EXPERIENCE.
JP2002250447A (en) Suppression system of air transmission from gasket
Madding Jr et al. 239 Pu--Be neutron source surveillance and testing
Umek et al. FFTF in-containment cell liner design and installation experience
Eyvindson et al. Environmental qualification testing of TFE valve components
Trapp Helium Leak Test of a General Purpose Fissile Package (GPFP)
Niemeyer Leak testing encapsulated radioactive sources
Rolle et al. Verification of activity release compliance with regulatory limits within spent fuel transport casks
Seagren Safety analysis of ORNL bulk radioisotope shipping cask
JPH0634003B2 (en) Leakage inspection device for canned cans for used core components