JPS59150838A - Control mechanism of excavator - Google Patents

Control mechanism of excavator

Info

Publication number
JPS59150838A
JPS59150838A JP2235083A JP2235083A JPS59150838A JP S59150838 A JPS59150838 A JP S59150838A JP 2235083 A JP2235083 A JP 2235083A JP 2235083 A JP2235083 A JP 2235083A JP S59150838 A JPS59150838 A JP S59150838A
Authority
JP
Japan
Prior art keywords
base
solenoid
circuit
swivel
slewing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2235083A
Other languages
Japanese (ja)
Other versions
JPH031446B2 (en
Inventor
Mitsuhiro Kishi
光宏 岸
Yokichi Nagasawa
長澤 要吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hikoma Seisakusho Co Ltd
Original Assignee
Hikoma Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hikoma Seisakusho Co Ltd filed Critical Hikoma Seisakusho Co Ltd
Priority to JP2235083A priority Critical patent/JPS59150838A/en
Priority to EP84300864A priority patent/EP0116474B1/en
Priority to DE8484300864T priority patent/DE3461666D1/en
Publication of JPS59150838A publication Critical patent/JPS59150838A/en
Priority to US06/920,924 priority patent/US4746264A/en
Publication of JPH031446B2 publication Critical patent/JPH031446B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Shovels (AREA)

Abstract

PURPOSE:To exactly synchronize the rotations of a slewing base and a working base by a method in which the rotation angles of the slewing base and the working base are detected, and on the results of calculation and processing of the detected values by a signal processor, the action of the oil-pressure motor of the slewing base is controlled. CONSTITUTION:To rotate a slewing base 14 and a working base 20, switches 62 and 63 are closed, a relay 67 is closed by a drive circuit 66, and current is supplied to a solenoid 68. A solenoid valve is actuated by the solenoid 68, oil pressure is supplied to an oil-pressure motor 41, and the working base 20 is operated in relation to the slewing base 14. On the other hand, a relay 76 is closed by a drive circuit 75, a solenoid 77 is operated, and the slewing base 14 is turned in relation to the vehicular body 10. In this case, the rotation angles of the slewing base 14 and the working base 20 are detected by magnetic pickups 53 and 54, the detected values are calculated and processed in a comparision and coincidence circuit 73, and on the basis of the processed results, the solenoid 77 and the oil-pressure motor 18 are stepwisely controlled in order to minimize the error of the synchronous rotations of the slewing base 14 and the working base 20.

Description

【発明の詳細な説明】 本発明は゛道路等の掘削を行うとともに作業中において
その旋回範囲を狭くして、他の作業を妨げたシ、道路を
占有することで車輌の進行を妨げたりすることを防ぐこ
とができる掘削機に関し、特に、その動作を円滑に行わ
せることができる掘削機の制御機構に関する。
Detailed Description of the Invention The present invention is capable of: ``During the excavation of a road, etc., the turning range is narrowed during the work, which obstructs other work, and the progress of vehicles is obstructed by occupying the road. The present invention relates to an excavator that can prevent such problems, and particularly to a control mechanism for an excavator that can smoothly operate the excavator.

従来の掘削機では車体よジアームを突出させ、このアー
ム先端に1土砂を掘取るパケットを取付けていたが、こ
の構成では掘取った土砂を車体の後方に移送する際にア
ーム、パケットが車体側面よシ大きく飛び出して付近に
立っている人に接触する危険があるとともに、作業範囲
が広くなる欠点があった。このため、車体上に旋回台と
作業台をその回転軸芯を偏心させて設けておき、パケッ
トを車体の上方で通過させ、アーム、パケットが車体の
側面よシ大きく飛び出さないように構成した掘削機が提
案されている。しかし、この新しい掘削機では旋回台と
作業台とをいずれも所定の方向で回転させなければなら
ず、しかもその回転を同期させなければパケットが確実
に車体上方を通過せず、旋回機構は複雑にならざるを得
ないものであった。このため、従来ではギヤー等を用い
て機械的な1駆動機構によって旋回台と作業台とを連動
させ、かつ、同期させていたが、応力が一点に集中する
ため故障の原因となり易いとともに、肇擦舌による動力
損失が大きく効率の悪いものであった。
In conventional excavators, an arm protrudes from the vehicle body, and a packet for excavating dirt is attached to the tip of this arm. However, with this configuration, when transferring the excavated soil to the rear of the vehicle body, the arm and packet are attached to the side of the vehicle body. There was a risk of the device jumping out and hitting people standing nearby, and it also had the disadvantage of widening the work area. For this reason, a swivel platform and a workbench were installed on the vehicle body with their rotational axes eccentric, and the packet was configured to pass above the vehicle body so that the arm and packet would not protrude too far from the side of the vehicle body. An excavator is proposed. However, with this new excavator, both the swivel platform and the work platform must be rotated in a predetermined direction, and if these rotations are not synchronized, the packet will not pass over the vehicle body reliably, and the swivel mechanism is complicated. It had no choice but to become. For this reason, in the past, the swivel platform and the work platform were linked and synchronized by a single mechanical drive mechanism using gears, etc., but this concentrated stress on one point, which could easily cause a breakdown, and The power loss due to tongue scraping was large and the efficiency was poor.

本発明は土述の欠点に鑑み、旋回台と作業台をそり、そ
れ個別のtp動力で回転させ乙とともに、両者の回転角
度を検出装置で検出し、この検出結果を比較判別するこ
とによって両原動力を制御し、旋回台と作業台の回転を
連動、かつ、同期させることができる掘削機の制御機構
を提供するものである。
In view of the above-mentioned drawbacks, the present invention has been developed by shaving the swivel table and the work table, rotating them with their own TP power, detecting the rotation angle of both with a detection device, and comparing and determining the detection results between the two. The present invention provides a control mechanism for an excavator that can control the driving force and link and synchronize the rotations of the rotating platform and the work platform.

以下、本発明の一実施例を説明する。An embodiment of the present invention will be described below.

第1図は本実施例の斜視図、第2図は側面図、第3図は
正面図、第4図は平面図であ、る。この掘削機は自走で
きるものであり、平坦々車体10の下面にはその12!
!I隅に車輪11が軸支させてあシ、車体10の両側の
各一対の車輪11間にはそれぞれキャタピラ(無限軌道
)12が巻回しである。
FIG. 1 is a perspective view of this embodiment, FIG. 2 is a side view, FIG. 3 is a front view, and FIG. 4 is a plan view. This excavator is self-propelled, and the bottom surface of the vehicle body 10 is flat.
! A wheel 11 is pivotally supported at the I corner, and a caterpillar (endless track) 12 is wound between each pair of wheels 11 on both sides of the vehicle body 10.

この車体10の上面中央には環状形をした支持盤13が
固着してあり、この支持盤13上には変形六角形をした
旋回台14が水平方向に回転自在に軸支しである。旋回
台14は正三角形の各頂点を裁断した平面形状をしてお
り、旋回台14の後方(第2図、第4図左側)上部には
旋回台14の周辺に沿ってエンジン15.燃料タンク1
62作動油タンク17が載置、固定してあυ、旋回台1
4の上面中央より少し燃料タンク16に接近した位置に
は油圧モータ18が下方にその1駆動軸を向けて固定し
である。この旋回台14の前方(第2図。
An annular support plate 13 is fixed to the center of the upper surface of the vehicle body 10, and a deformed hexagonal swivel table 14 is pivotably supported on the support plate 13 so as to be horizontally rotatable. The swivel base 14 has a planar shape with each vertex of an equilateral triangle cut out, and an engine 15. fuel tank 1
62 Hydraulic oil tank 17 is mounted and fixed, swivel base 1
A hydraulic motor 18 is fixed at a position slightly closer to the fuel tank 16 than the center of the upper surface of the fuel tank 4, with its first drive shaft facing downward. The front of this swivel table 14 (Fig. 2).

第4図右方)の上部には環形状をした保持盤19が載置
、固定してあり、前述の支持盤13の中心軸とこの保持
盤19の中心軸とは水平方向に一偏位させ、かつ、平行
になるよう位置させである。この保持盤19上には円形
をした作業台2oが保持盤19に対して回転自在に軸支
してあシ、作業台20JcKは垂直に支持体21が固着
してあ多、支持体21にはその上下に間隔を置いて連結
具22が固着しである。前記連結具22間には基端体2
6が連結してあり、この基端体26にはく字形をしたブ
ーム27が揺動自在に連結してあり、プーム27の先端
にはアーム28が揺動自在に連結してあり、さらに、ア
ーム28の先端にはパケット29が揺動自在に連結しで
ある。そして、基端体26とブーム27の中央の間、プ
ーム27中央とアーム28の端部との間、アーム28と
パケット29の間にはそれぞれ油圧シリンダ30,31
.32を介在させである。このプーム27.アーム28
゜パケット29等で掘削機構47が構成される。また、
前記基端体26の一側には鋼板をL字形に折曲げた乗員
台23が固着してあり、この乗員台23上にはシート2
4と制御箱25が固着しである。
A ring-shaped holding plate 19 is placed and fixed on the upper part of the support plate (right side in Fig. 4), and the central axis of the aforementioned supporting plate 13 and the central axis of this holding plate 19 are offset by one horizontal direction. and position them so that they are parallel to each other. A circular workbench 2o is rotatably supported on the holding plate 19, and a support 21 is fixed vertically to the workbench 20JcK. Connectors 22 are fixedly spaced above and below. A proximal body 2 is provided between the connectors 22.
6 are connected to each other, a dogleg-shaped boom 27 is swingably connected to the proximal body 26, and an arm 28 is swingably connected to the tip of the boom 27. A packet 29 is swingably connected to the tip of the arm 28. Hydraulic cylinders 30 and 31 are provided between the base body 26 and the center of the boom 27, between the center of the boom 27 and the end of the arm 28, and between the arm 28 and the packet 29, respectively.
.. 32 is interposed. This pool 27. Arm 28
An excavation mechanism 47 is constituted by the packet 29 and the like. Also,
A passenger platform 23 made of a steel plate bent into an L shape is fixed to one side of the base body 26, and a seat 2 is mounted on the passenger platform 23.
4 and the control box 25 are firmly attached.

次に、第5図は本実施例における旋回機構を詳しく示す
もので、第4図中A−A矢視断面図に対応するものであ
る。前述の支持盤13上には外径がほぼ支持盤13と同
じで・内周に歯形を切削形成しである円形の原動歯車3
3が固着してあシ、この原動歯車33の外周にはベアリ
ング34を介して環形状をしたスライダ35が回転自在
に嵌合させてあり、このスライダ35上面に前記旋回台
14が固着してあシ、旋回台14はこの原動歯車33を
中心に回転することができる。そして、前記油圧モータ
18の出力軸36にはビニオン37が軸着してあり、ビ
ニオン37は原動歯車33の内歯面に噛合せである。ま
た、前記保持盤19上にはこの保持盤19とほぼ同一外
径の環形状をしだ軸支体38が固着してあり、軸支体3
8の内周には環形状をして外径をほぼ軸支体38の内径
とし、その内周に歯形を切削形成した従動歯車39を位
置させ、軸支体38と従動歯車39の間にはベアリング
40を介在させである。そして、前述の作業台20はこ
の従動歯車39の上面に載置固定させてあフ、作業台2
0は軸支体38の中心軸をその回転中心として回転する
ことができることになる。前記旋回台14の前方上面で
保持盤19の内部に位置して油圧モータ41が固定して
あり、この油圧モータ41の出力軸42にはビニオン4
3が軸着してあシ、ビニオン43は従動m車39の内歯
面に噛合せである。そして、支持盤13上で原動両車3
3の軸芯位↑或には支柱44が垂直に固定してあり、こ
の支柱44に垂直に対応する旋回台14の下面には角度
検出器45が固定してあυ、支柱44と角度検出器45
とは接近させである。そして、旋回台14上で従動歯車
39の軸芯の位置にも支柱46が垂直に固定してあり、
対応する作業台20の下面にも角度検出器47が固定し
てあり、支柱46と角度検出器47とは接近させである
。なお、第6図はこの旋回機構の回転部材を分解した斜
視図であシ、第7図は同上の回転部材の位置関係を示す
平面図である。
Next, FIG. 5 shows the turning mechanism in this embodiment in detail, and corresponds to the sectional view taken along the line A--A in FIG. 4. On the support plate 13 mentioned above, there is a circular driving gear 3 having an outer diameter almost the same as that of the support plate 13 and having a tooth profile cut and formed on the inner circumference.
A ring-shaped slider 35 is rotatably fitted to the outer periphery of the drive gear 33 via a bearing 34, and the swivel base 14 is fixed to the upper surface of the slider 35. The swivel base 14 can rotate around this driving gear 33. A pinion 37 is rotatably attached to the output shaft 36 of the hydraulic motor 18, and the pinion 37 meshes with an internal tooth surface of the drive gear 33. Further, a shaft support 38 is fixed on the holding plate 19 and has an annular shape having approximately the same outer diameter as the holding plate 19.
A driven gear 39 is positioned on the inner periphery of the shaft support 38, which has an annular shape and whose outer diameter is approximately the inner diameter of the shaft support 38, and has a tooth profile cut on the inner periphery. A bearing 40 is interposed therebetween. Then, the aforementioned workbench 20 is placed and fixed on the upper surface of this driven gear 39, and then the workbench 20 is placed and fixed on the upper surface of this driven gear 39.
0 can rotate about the central axis of the shaft support 38 as its rotation center. A hydraulic motor 41 is fixed inside the holding plate 19 on the upper front surface of the swivel base 14, and an output shaft 42 of the hydraulic motor 41 has a pinion 4 attached thereto.
The pinion 43 is engaged with the inner tooth surface of the driven m wheel 39. Then, the motive vehicle 3 is placed on the support plate 13.
3, or a support 44 is fixed vertically, and an angle detector 45 is fixed to the bottom surface of the swivel base 14 that corresponds perpendicularly to the support 44. vessel 45
It's a matter of getting closer. A support 46 is also vertically fixed to the axis of the driven gear 39 on the swivel base 14.
An angle detector 47 is also fixed to the lower surface of the corresponding workbench 20, and the support column 46 and the angle detector 47 are placed close to each other. In addition, FIG. 6 is an exploded perspective view of the rotating member of this turning mechanism, and FIG. 7 is a plan view showing the positional relationship of the rotating member same as the above.

第8図は本実施例における回転角度の検出と制御系を示
す電気回路のブロック図である。前述の角度検出器45
.47内にはそれぞれ外周に等間隔に磁極を付けた円盤
形の磁気ディスク51.52と磁気ピックアップ54.
55が収納してあり、磁気ディスク51は支柱4.4の
頂部に固定してあり、磁気ディスク52は支柱46の頂
部に固定してあり、これによシ磁気ディスク51.52
は旋回台141作業台20が回転することで相対的に回
転することになる。磁気ピックアップ53の出力は入力
信号に応じた数量のパルスを発生させるパルス発生回路
55.バッファ回路561周波数を半分に逓減させる分
周回路57を経てゲート回路58に入力しておシ、磁気
ピックアップ54の出力はパルス発生回路59.バッフ
ァ回路6oを経てゲート回路61に入力している。次に
、62゜63は前記制御箱25付近に設けられて油圧モ
ータ18 、’41を作動させる旋回スイッチであり、
両者は同時に運動するものである。この旋回スイッチ6
2にはチャタリング防止回路64が接続してあり、チャ
タリング防止回路64にはバッファ回路65を介してゲ
ート回路61と駆動回路66に接続してあシ、駆動回路
66にはリレー67が接続しである。このリレー67の
一端には電源が接続してあり、他端にはソレノイド68
が接続しである。また、旋回スイッチ63にはチャタリ
ング防止回路69.バッファ回路7oを介してゲート回
路58が接続しである。前記ゲート回路61の出力はカ
ウンタB71のカウント人力Tに入力して卦り、ゲート
回路58の出力はカウンタA72のカウント入力Tに入
力して卦シ、両カウンタA72、B71の出力は比較一
致回路73に入力している。比較一致回路73はカウン
タA72.B71のカウント出力を判別するもので、面
出カが不一致の場合に出力する比較出力にと面出カが一
致の場合に出力する一致出力Jがあり、比較出力にはR
Sフリップフロップ74のS端に入力し、一致出力Jは
RSフリップフロップ74のR端に入力している。RS
フリップフロップ74のQ出力には駆動回路75に接続
してあシ、駆動回路75にはリレー76が接続してあり
、リレー76の一端Ki″i電源が、他端にはソレノイ
ド77が接続し。
FIG. 8 is a block diagram of an electric circuit showing a rotation angle detection and control system in this embodiment. The aforementioned angle detector 45
.. Inside the disk-shaped magnetic disks 51, 52 and magnetic pickups 54.
The magnetic disk 51 is fixed to the top of the column 4.4, and the magnetic disk 52 is fixed to the top of the column 46.
The rotating table 141 rotates relative to the work table 20. The output of the magnetic pickup 53 is sent to a pulse generation circuit 55 which generates a number of pulses according to the input signal. The output of the magnetic pickup 54 is input to the gate circuit 58 via a frequency dividing circuit 57 that reduces the frequency of the buffer circuit 561 by half, and the output of the magnetic pickup 54 is input to the pulse generating circuit 59. The signal is input to the gate circuit 61 via the buffer circuit 6o. Next, reference numerals 62 and 63 are swing switches provided near the control box 25 to operate the hydraulic motors 18 and '41;
Both are exercised at the same time. This turning switch 6
2 is connected to a chattering prevention circuit 64, the chattering prevention circuit 64 is connected to a gate circuit 61 and a drive circuit 66 via a buffer circuit 65, and a relay 67 is connected to the drive circuit 66. be. A power supply is connected to one end of this relay 67, and a solenoid 68 is connected to the other end.
is connected. The swing switch 63 also has a chattering prevention circuit 69. A gate circuit 58 is connected via a buffer circuit 7o. The output of the gate circuit 61 is input to the count input T of the counter B71, the output of the gate circuit 58 is input to the count input T of the counter A72, and the outputs of both counters A72 and B71 are input to the comparison matching circuit. 73 is entered. The comparison and coincidence circuit 73 uses a counter A72. It discriminates the count output of B71, and there is a comparison output that is output when the surface outputs do not match, and a coincidence output J that is output when the surface outputs match.
The matching output J is input to the S end of the S flip-flop 74, and the coincidence output J is input to the R end of the RS flip-flop 74. R.S.
The Q output of the flip-flop 74 is connected to a drive circuit 75, and the drive circuit 75 is connected to a relay 76. One end of the relay 76 is connected to the Ki''i power supply, and the other end is connected to a solenoid 77. .

である。また、RSフリップフロップ74の百出力には
ワンショットマルチ回路78が接続してあシ、ワンショ
ットマルチ回路78の出力はカウンタA72.B71の
それぞれのクリア端CLに入力している。
It is. Further, a one-shot multi-circuit 78 is connected to the 100 output of the RS flip-flop 74, and the output of the one-shot multi-circuit 78 is connected to the counter A72. It is input to each clear end CL of B71.

次に、第9図は本実施例の油圧系を示す系統図であり、
油圧ポンプ81の吐出路82id2つに分岐Lテア、!
2、この吐出路82の分岐したそレソレには絞シ弁83
.84を介して電磁弁85.86に接続してあシ、絞シ
弁84の流量は絞シ弁83のそれの2倍に設定しである
。電磁弁85は前記ソレノイド77によ・って作動され
、電磁弁86は前記ソレノイド68によって作動される
ものである。電磁弁85には油圧モータ18が接続シて
あシ、電磁弁86には油圧モータ41が接続してあシ、
両油圧モータ18.41の出力端には回収路87が接続
してあシ、回収路87の終端は圧力油タンク88に連通
しである。この圧力油タンク88内には圧力油が満して
あシ、前記油圧ポンプ81の吸入路89は圧力油タンク
88内に導入しである。
Next, FIG. 9 is a system diagram showing the hydraulic system of this embodiment,
The discharge path 82id of the hydraulic pump 81 is branched into two, L tear!
2. A throttle valve 83 is installed at the branch of this discharge passage 82.
.. The flow rate of the throttle valve 84 is set to twice that of the throttle valve 83 by connecting to the solenoid valves 85 and 86 through the solenoid valves 84 and 84. The solenoid valve 85 is operated by the solenoid 77, and the solenoid valve 86 is operated by the solenoid 68. The hydraulic motor 18 is connected to the solenoid valve 85, and the hydraulic motor 41 is connected to the solenoid valve 86.
A recovery path 87 is connected to the output ends of both hydraulic motors 18 and 41, and the terminal end of the recovery path 87 communicates with a pressure oil tank 88. This pressure oil tank 88 is filled with pressure oil, and the suction passage 89 of the hydraulic pump 81 is introduced into the pressure oil tank 88.

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

パケット29を上下動させて道路、地面を掘削する動作
は従来がら分動の動作であシ、シート24に搭乗した操
作者が制御箱25を操作することによシ各油圧シリンダ
30.31.32をそれぞれ協動させて運動させて行わ
せる。掘取った土砂はパケット29を第3図に示す様に
水平に持上げ、パケット29の下面を旋回台14上の機
器の上面より少し高くし、この状態でパケット29を車
体10の後方に旋回させることでトラック等に移すこと
ができる。
The operation of moving the packet 29 up and down to excavate the road and the ground is conventionally a separate operation, and the operator sitting on the seat 24 operates the control box 25 to control each hydraulic cylinder 30, 31, . 32 are made to work together and move. The excavated soil lifts the packet 29 horizontally as shown in FIG. 3, making the bottom surface of the packet 29 slightly higher than the top surface of the equipment on the swivel table 14, and in this state turns the packet 29 to the rear of the vehicle body 10. This allows it to be transferred to a truck, etc.

旋回台14及び作業台20を回転させるには旋回スイッ
チ62.=−63を閉成することで旋回の指示を行いチ
ャタリング防止回路64.69、バッファ回路65’、
70を介して駆動回路66とゲート回路58.61には
それぞれ旋回スイッチ62゜63を閉成している間だけ
発生するパルスPC,Pdが伝えられる。このため駆動
回路66はリレー67を閉じさせてソレノイド68に電
流を供給させ、電磁弁86を作動させて油圧ポンプ81
からの油圧を絞シ弁84を通じて油圧モータ41に供給
させる。このため、油圧モータ41の出力軸42及びビ
ニオン43は回転して、噛合った従動歯車39を軸支体
38に沿って回転させる。このため、従動歯車39上に
載置した作業台20.支持体21゜掘削機構47を旋回
台14に対して回転させる。
To rotate the swivel table 14 and workbench 20, use the swivel switch 62. By closing =-63, a turning instruction is given and chattering prevention circuits 64, 69, buffer circuits 65',
Pulses PC and Pd, which are generated only while the pivot switches 62 and 63 are closed, are transmitted to the drive circuit 66 and the gate circuits 58, 61 via the drive circuit 70, respectively. Therefore, the drive circuit 66 closes the relay 67 to supply current to the solenoid 68, operates the solenoid valve 86, and operates the hydraulic pump 81.
The hydraulic pressure is supplied to the hydraulic motor 41 through the throttle valve 84. Therefore, the output shaft 42 and the pinion 43 of the hydraulic motor 41 rotate, causing the meshed driven gear 39 to rotate along the shaft support 38. For this reason, the workbench 20 placed on the driven gear 39. The support body 21° excavation mechanism 47 is rotated relative to the swivel table 14.

次に、比較−数回路73は比較信号Kを出力することか
ら(旋回スイッチ62.63を押す前は一致信号Jを出
力していることが条件)RSフリップフロップ74は反
転してQ (M号を出力して駆動回路75に伝え、駆動
回路75はリレー76を閉成してソレノイド77に電源
を供給させる。このソレノイド’t 7が作動して電磁
弁77が導通し、油圧モータ18には絞シ弁83を介し
て油圧ポンプ81からの油圧が供給されて油圧モータ1
8は作動する。この油圧モータ18が作動すると出力@
36.ピニオン37は回転し、噛合った原動歯車33の
歯車を転回することからスライダ35は原動歯車33に
沿って回転することになシ、旋回台14は車体10に対
して旋回することになる。
Next, since the comparison-number circuit 73 outputs the comparison signal K (the condition is that it outputs the coincidence signal J before the rotation switch 62, 63 is pressed), the RS flip-flop 74 is inverted and the Q (M The signal is output and transmitted to the drive circuit 75, and the drive circuit 75 closes the relay 76 to supply power to the solenoid 77.When this solenoid 't7 is activated, the solenoid valve 77 becomes conductive, and the hydraulic motor 18 is turned on. Hydraulic pressure is supplied from the hydraulic pump 81 via the throttle valve 83 to the hydraulic motor 1.
8 works. When this hydraulic motor 18 operates, the output @
36. Since the pinion 37 rotates and turns the engaged gear of the driving gear 33, the slider 35 rotates along the driving gear 33, and the swivel base 14 turns with respect to the vehicle body 10.

ここにおいて、油圧モータ18.41のそれぞれの回転
方向を逆向きに設定しておくことで旋回台14と作業台
20の回転方向はそれぞれ逆向きとなシ、作業台20上
に固定した掘削機構47は旋回台14の上方を通過する
ことに々る。また、絞多弁83.84の流量は絞シ弁8
3が「1」に対しそ絞)弁84は「2」に々る様に設定
してあり、これによシ、作業台20の回転速度は旋回台
140回転速度の2倍で回転することになる。
Here, by setting the respective rotational directions of the hydraulic motors 18 and 41 in opposite directions, the rotational directions of the swivel table 14 and the workbench 20 are respectively reversed, and the excavation mechanism fixed on the workbench 20 is 47 often passes above the swivel base 14. In addition, the flow rate of the throttle valves 83 and 84 is
The valve 84 is set so that the rotation speed of the work platform 20 is twice the rotation speed of the swivel table 140. become.

上述の旋回台141作業台20が回転すると角度検出器
45.47は支柱46.48に対してその角度位置を相
対的に変化させ、角度検出器45゜47内にある磁気デ
ィスク51.52Fi支柱46゜48に固定しであるた
め、角度検出器45 、47内で回転し、磁気ピックア
ップ53.54はいずれも磁気ディスク51.52の外
周に設定した磁極の変動を検出して電気信号に変換させ
パルス発生回路55.59に伝える。パルス発生回路5
5゜59では磁気ピックアップ53.5.4からの検出
信号によって所定パルス幅で波形整形されたパルスe 
’fr: 磁気ディスク51.52の一定回転角度ごと
に発生させることになる。パルス発生回路55゜59か
らのパルス波はバラ・ファ回路56.60を通じて角度
信号pa、 pb としてゲート回路61゜分周回路5
7に出力される。ゲート回路61では旋回スイッチ62
からの旋回信号Pcとパルス波pb/がいずれも入力し
ている間にパルス波Pbと同一のパルス波Peを出力し
、パルス波PeはカウンタB71のカウンタ入力Tに入
力させてこのカウンタB71によってそのパルス数をカ
ウントさせる。カウンタB71のカウント出力は比較−
数回路73に伝えられる。次に、分周回路57に入力し
た角度信号Paはその周波数を1/2に逓減されてPa
/2のパルス数としてゲート回路58に伝えられ、この
ゲート回路58では旋回信号Pdが入力している間にP
a/2ト同−ハルス数のパルス波Pfを出力し、パルス
波PfはカウンタA72のカウンタ入力Tに入力させて
このカウンタA72によってそのパルス数をカウントさ
せる。カウンタA72のカウント出力は比較−数回路7
3に伝えられ、比較−数回路73ではカウンタB71か
らのカウント出力とこのカウント出力を比較し、両出力
が不一致の場合には比較出力Kによ)信号を出力し、両
者が一致した場合には一致出力Jよ多信号を出力する。
When the above-mentioned swivel table 141 workbench 20 rotates, the angle detector 45.47 changes its angular position relative to the column 46.48, and the magnetic disk 51.52Fi column located within the angle detector 45. Since it is fixed at 46°48, it rotates within the angle detectors 45 and 47, and the magnetic pickups 53 and 54 both detect fluctuations in the magnetic poles set on the outer periphery of the magnetic disk 51 and 52 and convert it into an electrical signal. The signal is then transmitted to the pulse generation circuits 55 and 59. Pulse generation circuit 5
At 5°59, a pulse e whose waveform is shaped with a predetermined pulse width by the detection signal from the magnetic pickup 53.5.4 is generated.
'fr: Generated at every fixed rotation angle of the magnetic disk 51, 52. The pulse waves from the pulse generation circuits 55 and 59 are sent to the gate circuit 61 and the frequency dividing circuit 5 as angle signals pa and pb through the barrier circuits 56 and 60.
7 is output. In the gate circuit 61, the turning switch 62
While both the turning signal Pc and the pulse wave pb/ are being input, the pulse wave Pe, which is the same as the pulse wave Pb, is output, and the pulse wave Pe is input to the counter input T of the counter B71, and the pulse wave Pe is input by this counter B71. Count the number of pulses. The count output of counter B71 is compared -
It is transmitted to the number circuit 73. Next, the frequency of the angle signal Pa input to the frequency dividing circuit 57 is reduced to 1/2, and the frequency is reduced to 1/2.
/2 pulses are transmitted to the gate circuit 58, and in this gate circuit 58, while the turning signal Pd is input,
A pulse wave Pf having the same Hals number as a/2 is output, and the pulse wave Pf is input to the counter input T of the counter A72, and the number of pulses is counted by the counter A72. The count output of counter A72 is the comparison-number circuit 7
The comparison circuit 73 compares the count output from the counter B71 with this count output, and if the two outputs do not match, outputs a signal from the comparison output K. outputs multiple signals such as the coincidence output J.

この比較−数回路73の比較出力KがrlJである場合
にはRSフリップフロップ7.4はQ端がrljの出力
を続けて油圧モータ18を作動させ続ける。油圧モーフ
18が作動を続けて旋回台14を回転させることによシ
、旋回台14の回転角度が作業台20の回転角度の1/
2になったとき、カウンタA72とB71のカウント出
カイ直は一致し、比較−数回路73は一致出力Jは「1
」となり、RSフリップフロップ74を反転させてQ端
を「0」とさせ、駆動回路75を停止させてリレー76
を開成して油圧モータ18の作動を一時停止させる。こ
れによって旋回台14の回転は一時に停止する。同時に
■端は「1」の出力となシ、ワンショットマルチ回路7
8によって所定パルス幅(F)−個ノパルス波を発生さ
せ、このワンショットマルチ回路78のパルス波はカウ
ンタA72.B7ノのそれぞれのクリア端CLに伝達さ
れて両カウンタA72.B71のカウント記憶を零にリ
セットさせる。このため、カウンタA72.B71ハ再
ヒパルス波P6 * Pfのパルス数をカウントし始め
、比較−数回路73は比較出力にと一致出力Jを交互に
出力し、ソレノイド77、油圧モータ18をステップ的
に制御し、累積誤差を小さくさせるとともtで、油圧モ
ータ14の作動に対して常に一定の追従動作を行わせる
ことになる。このため、磁気ディスク51.52は常に
1対2の比率によって回転することになり、従って旋回
台14と作業台20は1対2の回転角度で常に比例した
関係で回転することになる。そして、作業台2oが旋回
台14の回転角よシも犬きぐ回転すると比較−数回路7
3は比較出力KをRSフリップフロップ74に伝えて駆
動回路75.リレー76、ソレノイド77を作動させて
油圧モータ18を追従して回転させるので回転角度の誤
差は極めて小さくな・る。
When the comparison output K of the comparison-number circuit 73 is rlJ, the Q terminal of the RS flip-flop 7.4 continues to output rlj, and the hydraulic motor 18 continues to operate. As the hydraulic morph 18 continues to operate and rotate the swivel base 14, the rotation angle of the swivel base 14 becomes 1/1 of the rotation angle of the workbench 20.
2, the count outputs of counters A72 and B71 match, and the comparison and number circuit 73 outputs a match output J of "1".
”, the RS flip-flop 74 is reversed to set the Q terminal to “0”, the drive circuit 75 is stopped, and the relay 76 is
is opened to temporarily stop the operation of the hydraulic motor 18. As a result, the rotation of the swivel table 14 is temporarily stopped. At the same time, the terminal outputs "1", one-shot multi circuit 7
A pulse wave of a predetermined pulse width (F) is generated by the one-shot multi-circuit 78 by the counter A72.8. B7 is transmitted to each clear end CL of both counters A72. The count memory of B71 is reset to zero. Therefore, the counter A72. B71 starts counting the number of pulses of the pulse wave P6*Pf, and the comparison circuit 73 outputs the comparison output and the coincidence output J alternately, controls the solenoid 77 and the hydraulic motor 18 in a stepwise manner, and calculates the cumulative error. By making t smaller, a constant follow-up operation is always performed with respect to the operation of the hydraulic motor 14. Therefore, the magnetic disks 51, 52 always rotate at a ratio of 1:2, and therefore the swivel table 14 and the workbench 20 always rotate in a proportional relationship at a rotation angle of 1:2. Then, if the workbench 2o rotates as much as the rotation angle of the swivel table 14, then compare - number circuit 7
3 transmits the comparison output K to the RS flip-flop 74 and drives the drive circuit 75.3. Since the relay 76 and the solenoid 77 are operated to follow the hydraulic motor 18 and rotate it, the error in the rotation angle becomes extremely small.

この2つの油圧モータ18,41の回転により旋回台1
4と作業台2oの相対的な関連を第10図によって説明
すると、油圧モータ41によって作業台20は図中X方
向に回転を始め、油圧モータ18によって旋回台14は
図中Y方向に回転を始める(第10図中(イ))。前述
の様に作業台2゜と旋回台14はそれぞれの回転角度が
制御されているためにその回転速度は2対1に規制され
ている。従って、作業台20は旋回台14の倍の速度で
回転することになシ、旋回台14が90度可回転ると作
業台20は180度回転し、両者は逆回転しているため
作業台20は相対的に90度可回転、掘削機viは車体
10に対して直角に位置して第10図(ロ)の状態とな
る。このため、作業台20は車体10の一方に最大限に
偏位し、掘削機構47は旋回台14の上方に位置して車
体10の他方の側面よシ突出しなくそのまま通過する。
By the rotation of these two hydraulic motors 18 and 41, the swivel base 1
4 and the workbench 2o will be explained with reference to FIG. Start ((a) in Figure 10). As mentioned above, since the rotation angles of the workbench 2° and the swivel table 14 are controlled, their rotational speeds are regulated at a ratio of 2:1. Therefore, the workbench 20 must rotate at twice the speed of the swivel table 14, and when the swivel table 14 rotates 90 degrees, the workbench 20 rotates 180 degrees, and since both rotate in the opposite direction, the workbench 20 is relatively rotatable by 90 degrees, and the excavator vi is positioned perpendicular to the vehicle body 10, as shown in FIG. 10(b). Therefore, the workbench 20 is maximally deviated to one side of the vehicle body 10, and the excavation mechanism 47 is located above the swivel base 14 and passes through the other side of the vehicle body 10 without protruding.

さらに、旋回台14が90度可回転ると作業台20は1
80度回転し、作業台20け爪体10の右側にまで移動
し、掘削機構47は車体10の反対側に突出し、第10
図<<の状態と丁度反転した位置にまで移動する。
Furthermore, when the swivel table 14 is rotatable by 90 degrees, the work table 20 is rotated by 1
The workbench 20 is rotated 80 degrees and moved to the right side of the claw body 10, and the excavation mechanism 47 protrudes to the opposite side of the car body 10, and the 10th
Move to a position that is exactly the opposite of the state shown in the figure <<.

この第10図P)の状態で旋回スイッチ62.63を開
放すれば油圧モータ18.41はその作動を停止し、旋
回台141作業台20はその回転を停止する。つまり、
掘削機構47は旋回金工4の草体10上での旋回運動と
、作業台20の旋回台14上での逆方向に向けた旋回運
動を受け、二重に旋回することになり、掘削機構47は
車体10の前方から後方に向って回転するときには必ら
ず旋回台14の上方を通過して回転し、掘削機構47を
草体10の側方に突出しないように最大限の範囲で旋回
することになる。掘削機構47を第10図中(ハ)の位
置から(イ)の位置に反転させるには旋回スイッチ62
.63を再度押し、旋回台14を180度回転させれば
前述と同様の動作を行い、旋回台14、作業台20を一
定の比率で回転させる。
If the swing switch 62.63 is opened in the state shown in FIG. 10P), the hydraulic motor 18.41 stops its operation, and the swing table 141 and the work table 20 stop their rotation. In other words,
The excavation mechanism 47 receives the rotation movement of the turning metalwork 4 on the grass 10 and the rotation movement of the workbench 20 on the swivel table 14 in the opposite direction, so that the excavation mechanism 47 rotates doubly. When rotating from the front to the rear of the vehicle body 10, the vehicle body 10 always passes above the swivel base 14 and rotates, and the excavation mechanism 47 is rotated within the maximum range so as not to protrude to the side of the grass body 10. Become. To reverse the excavation mechanism 47 from the position (c) to the position (a) in FIG.
.. 63 is pressed again to rotate the swivel table 14 by 180 degrees, the same operation as described above is performed, and the swivel table 14 and the work table 20 are rotated at a constant ratio.

本発明は上述の様に構成したので、掘削機の二くケラト
を極力偏心させて先方から後方に旋回させることができ
、パケットを車体の側面から突出させることがないため
、他の車線の運行に支障を生じなく、道路の使用を掘削
作業に占有させることもなく、道路を効率良く使用させ
ることかできる。
Since the present invention is configured as described above, it is possible to make the excavator's second kerato as eccentric as possible and turn it from the front to the rear, and since the packet does not protrude from the side of the vehicle body, it is possible to make the two kerats of the excavator as eccentric as possible and turn from the front to the rear. The road can be used efficiently without causing any hindrance, and without having the road occupied by excavation work.

また、道路が車体の幅とほぼ同じ程度であっ−てもパケ
ット等が車体から突出しないので、狭い使用条件下でも
作業を進めることができる。そして、旋回台と作業台は
それぞれ別個の油圧モータで回転させ、両者の回転角度
位置は回転角検出手段で検出し、両者の回転角度を一定
の比率になるよう1・て制御するため、円滑でしかも掘
削機構が必らず旋回台上を;:F3 ib’4 j、、
複雑な機械的連動機構を必要とし々いので無用の応力が
発生したり、エネルギー損失が極めて小さくすることが
できるものである。
Further, even if the width of the road is approximately the same as the width of the vehicle body, the packet etc. will not protrude from the vehicle body, so work can be carried out even under narrow usage conditions. The swivel table and the work table are each rotated by separate hydraulic motors, and the rotation angle position of both is detected by a rotation angle detection means, and the rotation angle of both is controlled to be a constant ratio. Moreover, the excavation mechanism is always on the swivel table; :F3 ib'4 j...
Since a complicated mechanical interlocking mechanism is often required, unnecessary stress is generated, and energy loss can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2図は同上
の仰1面図、第3図は同上の正面図、第4図は同上の平
面図、第5図は旋回機構を詳しく示す第4図中A−A矢
視の断面図、第6図は同一ヒの旋回機構の構成を示す分
解斜視図、第7図は旋回機構の配置を示す説明図、第8
図は電気制御系を示すブロック図、第9図は油圧系を示
す配管図、第10図は回転の順序を示す説明図である。 10・・・車体、  14・・・旋回台、  20・・
・作業台、18.41・・・油圧モータ、  47・・
・掘削機構、45.47・・・角度検出器。 第3図 12                    1ど第
4図 第6図 第7図 3へ
Fig. 1 is a perspective view showing an embodiment of the present invention, Fig. 2 is a top view of the same as above, Fig. 3 is a front view of the same as above, Fig. 4 is a plan view of same as above, and Fig. 5 is a turning mechanism. FIG. 6 is an exploded perspective view showing the configuration of the turning mechanism of the same vehicle, FIG. 7 is an explanatory diagram showing the arrangement of the turning mechanism, and FIG.
9 is a block diagram showing the electrical control system, FIG. 9 is a piping diagram showing the hydraulic system, and FIG. 10 is an explanatory diagram showing the rotation order. 10...Vehicle body, 14...Swivel base, 20...
・Workbench, 18.41...Hydraulic motor, 47...
- Excavation mechanism, 45.47... Angle detector. Figure 3 12 1 Go to Figure 4 Figure 6 Figure 7 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 移動可能力車体上方に水平に回転できる旋回台を設ける
とともに、旋回台上面には旋回台の回転中心よシ偏位さ
せて作業台を回転自在に設け、作業台には掘削機構を固
着した掘削機において、旋回台を回転させる油圧モータ
と作業台を回転させる油圧モータをそれぞれ別個に設け
、旋回台の回転角度を検出する第1の回転角検出手段と
、作業台の回転角度′fc検出する第2の回転角検出手
段の両信号を信号処理手段に伝え、とのイa号処理手段
によって演算処理した結果によシ前記両油圧モータの作
動を制御して両油圧モータによって回転される旋回台と
作業台の回転角速度を所定の比率に保持して作動させる
ことを・特徴とする掘削機の制御機構。
A swivel table that can rotate horizontally is provided above the movable power vehicle body, and a work table is installed on the top surface of the swivel table so that it can rotate freely, offset from the center of rotation of the swivel table, and an excavation mechanism is fixed to the work table. In the machine, a hydraulic motor for rotating the swivel table and a hydraulic motor for rotating the work table are provided separately, and a first rotation angle detection means for detecting the rotation angle of the swivel table and a rotation angle 'fc of the work table are provided. The two signals of the second rotation angle detection means are transmitted to the signal processing means, and the operations of the two hydraulic motors are controlled based on the results of the arithmetic processing by the processing means (a). A control mechanism for an excavator, characterized in that the excavator is operated while maintaining the rotational angular velocity of the platform and workbench at a predetermined ratio.
JP2235083A 1983-02-12 1983-02-12 Control mechanism of excavator Granted JPS59150838A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2235083A JPS59150838A (en) 1983-02-12 1983-02-12 Control mechanism of excavator
EP84300864A EP0116474B1 (en) 1983-02-12 1984-02-10 Earth-working machine
DE8484300864T DE3461666D1 (en) 1983-02-12 1984-02-10 Earth-working machine
US06/920,924 US4746264A (en) 1983-02-12 1986-10-16 Earth-working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2235083A JPS59150838A (en) 1983-02-12 1983-02-12 Control mechanism of excavator

Publications (2)

Publication Number Publication Date
JPS59150838A true JPS59150838A (en) 1984-08-29
JPH031446B2 JPH031446B2 (en) 1991-01-10

Family

ID=12080207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2235083A Granted JPS59150838A (en) 1983-02-12 1983-02-12 Control mechanism of excavator

Country Status (1)

Country Link
JP (1) JPS59150838A (en)

Also Published As

Publication number Publication date
JPH031446B2 (en) 1991-01-10

Similar Documents

Publication Publication Date Title
US4746264A (en) Earth-working machine
JPS59150838A (en) Control mechanism of excavator
EP0156546B1 (en) Earth-working machine
JPS59161528A (en) Control mechanism for excavator
JPS59161529A (en) Control mechanism for excavator
JP6695288B2 (en) Construction machinery
JPS6138294B2 (en)
JPH0321727A (en) Hydraulic shovel
JP2020183612A (en) Working machine
JPS60188542A (en) Position setting mechanism for excavator
JPH031450B2 (en)
JPS5826454B2 (en) excavator
JPS6337210B2 (en)
JPH02229331A (en) Travel control device for vehicle and its control method
JPH0759823B2 (en) Running direction control device for construction machinery
JPH08158405A (en) Excavating machine
JPH052700Y2 (en)
JPH0721655Y2 (en) Operator&#39;s cab interference prevention device for hydraulic excavators
JPS6059240A (en) Oil-pressure circuit for excavator
JPH05162583A (en) Constructing machine
JPH0660658U (en) Slewing speed adjustment device for construction machinery
JPH0213719B2 (en)
JP2000073410A (en) Swing synchronizing device for swing type hydraulic shovel
JPS6342024Y2 (en)
JPH02229330A (en) Travel control device for vehicle and its control method