JPS59150597A - Dephosphorizer - Google Patents

Dephosphorizer

Info

Publication number
JPS59150597A
JPS59150597A JP2445483A JP2445483A JPS59150597A JP S59150597 A JPS59150597 A JP S59150597A JP 2445483 A JP2445483 A JP 2445483A JP 2445483 A JP2445483 A JP 2445483A JP S59150597 A JPS59150597 A JP S59150597A
Authority
JP
Japan
Prior art keywords
phosphorus
tank
liquid
solid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2445483A
Other languages
Japanese (ja)
Inventor
Isao Joko
勲 上甲
Shigeki Sawada
沢田 繁樹
Tetsuro Fukase
哲朗 深瀬
Masao Oi
正夫 大井
Masahide Shibata
雅秀 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2445483A priority Critical patent/JPS59150597A/en
Publication of JPS59150597A publication Critical patent/JPS59150597A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain the concentration of phosphorus in treated water constant, by providing an anaerobic tank, an aeration tank for aerobic treatment, a biological dephosphorizer having a means for the solid-liquid separation of an aerated liquid and then a tank for a phosphorus adsorbent. CONSTITUTION:Raw water 5 and returned sludge 6 in state mixed with each other are introduced into an anaerobic tank 1 and gently agitated therein under a condition isolated from air to perform anaerobic treatment. An aeration tank 2 is constituted in a manner such that aerobic treatment can be performed by supplying air through a sparger pipe 7, and a solid-liquid separation tank 3 is constituted in a manner such that an aerated liquid can be separated into a liquid and solid matter by precipitation. The interior of a tank 4 for a phosphorus adsorbent is packed with a phosphorus adsorbent, e.g. activated alumina, a magnesia compound, a phosphate mineral or ion-exchange resin, to form the bed of the phosphorus adsorbent. A liquid having flowed out of the solid-liquid separation tank 3 is brought into contact with the fluidized or stationary bed to adsorb or discharge phosphorus in said liquid. Thus, the concentration of phosphorus is adjusted to a constant level.

Description

【発明の詳細な説明】 この発明は生物学的にリンの除去を行う装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for biologically removing phosphorus.

下水、廃水などの有機物およびリンを含む水からリンを
除去するために、生物学的な脱リン装置が提案されてい
る。この装置はリン酸塩等のリンを含む原水を返送汚泥
と混合し、嫌気槽に30〜360分間滞留させ、次いで
曝気槽で90〜360分間滞留させて、リンとともにB
ODを除去し、曝気液は沈殿槽において処理水と沈殿汚
泥に分離し、この沈殿汚泥の一部を返送するとともに残
部を余剰汚泥として排出するものである。
Biological dephosphorization devices have been proposed to remove phosphorus from organic matter and phosphorus-containing waters such as sewage and wastewater. This equipment mixes raw water containing phosphorus, such as phosphates, with returned sludge, retains it in an anaerobic tank for 30 to 360 minutes, and then retains it in an aeration tank for 90 to 360 minutes.
After removing the OD, the aeration liquid is separated into treated water and precipitated sludge in a settling tank. A portion of the precipitated sludge is returned and the remainder is discharged as surplus sludge.

この装置におけるリンおよびBODの除去機構は次の通
りと推定される。すなわち、汚水を返送汚泥と混合し、
嫌気槽にて攪拌すると、汚泥中の微生物は体内に蓄えて
いたリン化合物(ポリリン酸のマグネシウム塩)をエネ
ルギー源として消費し、リン(正リン酸)を放出してB
ODを吸着ないし吸収するが、次の曝気槽では吸収した
BODを呼吸により酸化するとともに放出したリンや流
入したリンを吸収してエネルギー源として前記リン化合
物の形で体内に蓄える。リンを蓄えた汚泥は嫌気槽に返
送され同様の作用をくり返す。通常の活性汚泥処理法に
おける余剰汚泥のリン含有率は汚泥乾燥重量当り1.5
〜2.5%であるが、嫌気−好気という環境を交互にく
り返すことによって、余剰汚泥のリン含有率は汚泥乾燥
重量当り8−程度となることがおる。このため汚水中の
リンは高除去率で除去されることになる。
The mechanism for removing phosphorus and BOD in this device is estimated to be as follows. That is, sewage is mixed with return sludge,
When stirred in an anaerobic tank, microorganisms in the sludge consume phosphorus compounds (magnesium salt of polyphosphoric acid) stored in their bodies as an energy source, release phosphorus (orthophosphoric acid), and produce B.
OD is adsorbed or absorbed, and in the next aeration tank, the absorbed BOD is oxidized through respiration, and the released phosphorus and inflow phosphorus are absorbed and stored in the body in the form of phosphorus compounds as an energy source. The sludge that has accumulated phosphorus is returned to the anaerobic tank and the same process is repeated. The phosphorus content of excess sludge in the normal activated sludge treatment method is 1.5 per dry weight of sludge.
~2.5%, but by alternately repeating anaerobic and aerobic environments, the phosphorus content of excess sludge can reach approximately 8% per dry weight of sludge. Therefore, phosphorus in wastewater can be removed at a high removal rate.

ところで、このような生物学的脱リン装置においては、
嫌気槽および曝気槽の滞留時間、MLSS濃度、対象水
中のBOD濃度とリン濃度の比等によって脱リン効果が
影響を受ける。特に処理水質的には嫌気槽出口すなわち
曝気槽入口におけるリン濃度が大きな因子となり、この
リン濃度は流入水量等によっても影響を受ける。
By the way, in such a biological dephosphorization device,
The dephosphorization effect is affected by the residence time of the anaerobic tank and aeration tank, the MLSS concentration, the ratio of BOD concentration to phosphorus concentration in the target water, etc. In particular, the phosphorus concentration at the anaerobic tank outlet, that is, the aeration tank inlet, is a major factor in the quality of treated water, and this phosphorus concentration is also affected by the amount of inflow water, etc.

下水を対象とする場合、流入水量は1日のサイクルで時
間変動を示し、この結果、嫌気槽および曝気槽での滞留
時間があるサイクルで変化し、嫌気槽リン濃度、処理水
リン濃度も変化する。
When dealing with sewage, the amount of inflow water shows hourly fluctuations in a daily cycle, and as a result, the residence time in the anaerobic tank and aeration tank changes in a certain cycle, and the phosphorus concentration in the anaerobic tank and in the treated water also changes. do.

例えば流入水量が減少した場合、嫌気槽での滞留時間が
長くなり、汚泥から正リン酸として放出されるリンの量
が増加し、液中のリン濃度が高くなる。このような状態
に続いて流入水量が増加すると、嫌気槽内のリン濃度の
高い液が大量に曝気槽に移ることになるが、流入水量が
多いため、曝気槽における滞留時間が短くなり、その結
果リン摂取に必要な時間がとれなくなって、処理水のリ
ン濃度が高くなる。このように、従来の生物学的脱リン
装置においては、流入水量、流入水質等の変動により処
理水質が変動し、安定して処理できないという問題点が
あった。
For example, when the amount of inflow water decreases, the residence time in the anaerobic tank increases, the amount of phosphorus released from the sludge as orthophosphoric acid increases, and the phosphorus concentration in the liquid increases. If the amount of inflow water increases following this situation, a large amount of liquid with high phosphorus concentration in the anaerobic tank will be transferred to the aeration tank, but because the amount of inflow water is large, the residence time in the aeration tank will be shortened, and the liquid with high phosphorus concentration in the anaerobic tank will be transferred to the aeration tank. As a result, the time required for phosphorus intake is not available, and the phosphorus concentration in the treated water increases. As described above, in the conventional biological dephosphorization apparatus, there was a problem that the quality of treated water fluctuated due to changes in the amount of inflow water, the quality of inflow water, etc., and stable treatment was not possible.

この発明は上記のような従来装置の問題点を改善するた
めのもので、生物学的脱リン装置の後に、生物学的脱リ
ン装置から排出される流水中のリン濃度を調節するリン
吸着剤層を備えることにより、流入水量、流入水質等の
変動にもかかわらず、処理水のリン濃度をほぼ一定に保
(3) つことかできる脱リン装置を提供することを目的として
いる。
This invention is intended to improve the problems of the conventional equipment as described above. After the biological dephosphorization equipment, a phosphorus adsorbent is used to adjust the phosphorus concentration in the flowing water discharged from the biological dephosphorization equipment. The purpose of the present invention is to provide a dephosphorization device that is equipped with a layer that can maintain a substantially constant phosphorus concentration in treated water (3) despite fluctuations in the amount of inflow water, quality of inflow water, etc.

この発明は返送汚泥と混合した原水を嫌気性処理する嫌
気槽、この嫌気槽において嫌気性処理された混合液を好
気性処理する曝気槽、およびこの曝気槽から排出さ九る
曝気液を固液分離する分離手段を含む生物学的脱リン装
置と、前記生物学的脱リン装置の後にリン濃度を調整す
るリン吸着剤層を備えたことを特徴とする脱リン装置で
ある。
This invention provides an anaerobic tank for anaerobically treating raw water mixed with returned sludge, an aeration tank for aerobically treating the mixed liquid that has been anaerobically treated in this anaerobic tank, and a solid liquid for converting the aerated liquid discharged from this aeration tank into a solid liquid. This dephosphorization device is characterized by comprising a biological dephosphorization device including a separation means for separating, and a phosphorus adsorbent layer for adjusting phosphorus concentration after the biological dephosphorization device.

以下、この発明を図面により説明する。図面はこの発明
の一実施例を示す系統図である。図面において、lは嫌
気槽、2は曝気槽、3は固液分離槽、4はリン吸着剤層
であし、これらはシリーズに接続されている。
Hereinafter, this invention will be explained with reference to the drawings. The drawing is a system diagram showing one embodiment of the present invention. In the drawing, 1 is an anaerobic tank, 2 is an aeration tank, 3 is a solid-liquid separation tank, and 4 is a phosphorus adsorbent layer, which are connected in series.

嫌気槽lは原水5と返送汚泥6を混合して導入し、空気
を遮断した状態で緩やかに攪拌して、嫌気処理を行える
ように構成されている。曝気槽2は散気管7から通気し
て好気性処理できるように構成され、固液分離槽3は曝
気液を沈殿(4) により固液分離できるようになっている。
The anaerobic tank 1 is configured to perform anaerobic treatment by introducing a mixture of raw water 5 and return sludge 6, and gently stirring the mixture while blocking air. The aeration tank 2 is configured to perform aerobic treatment by aeration through an aeration pipe 7, and the solid-liquid separation tank 3 is configured to perform solid-liquid separation of the aerated liquid by precipitation (4).

リン吸着剤槽4は内部に活性アルミナ、マグネシア系化
合物、リン鉱石、イオン交換樹脂等のリン吸着剤を充填
してリン吸着剤層を形成したものであり、固液分離槽3
から出た液と流動層または固定層により接触し、液中の
リンを吸着し、または放出してリン濃度を一定に調整す
るようになっている。
The phosphorus adsorbent tank 4 is filled with phosphorus adsorbents such as activated alumina, magnesia-based compounds, phosphate rock, and ion exchange resin to form a phosphorus adsorbent layer, and the solid-liquid separation tank 3
The phosphorus concentration is adjusted to a constant level by adsorbing or releasing phosphorus in the liquid through a fluidized bed or a fixed bed.

上記リン吸着剤は液中のリン(正リン酸)を吸着する性
質を有するものであり、液中のリン濃度によってリンの
吸着量が異なってくる。すなわち、液中のリン濃度が高
い条件下では、リンの吸着量も大きくなり、液中のリン
濃度が低い条件下では、リンの吸着量が小さくなり、さ
らにリン濃度が低くなると、逆にリン吸着剤から液中に
リンが溶出する。このため、リン濃度が変動する液をこ
のような吸着剤と接触させると、リン濃度の変動幅は小
さくなり、液中のリン濃度がほぼ一定となるように調整
される。
The above-mentioned phosphorus adsorbent has the property of adsorbing phosphorus (orthophosphoric acid) in the liquid, and the amount of phosphorus adsorbed differs depending on the phosphorus concentration in the liquid. In other words, under conditions where the phosphorus concentration in the liquid is high, the amount of phosphorus adsorbed increases, under conditions where the phosphorus concentration in the liquid is low, the amount of phosphorus adsorbed decreases, and when the phosphorus concentration further decreases, the amount of phosphorus adsorbed increases. Phosphorus is eluted from the adsorbent into the liquid. Therefore, when a liquid with varying phosphorus concentration is brought into contact with such an adsorbent, the range of fluctuation in phosphorus concentration becomes small and the phosphorus concentration in the liquid is adjusted to be approximately constant.

リン吸着剤の粒径は種類によって相違するが、一般的に
は4〜70メツシ一程度のものを使用する。このうち大
きいものは固定層に適し、小さいものは流動層に適する
。固定層の場合、4〜60メツシユの粒径のリン吸着剤
を充填し、流速SV2〜10hr−’で上向流または下
向流で通液して接触させるようにする。
The particle size of the phosphorus adsorbent varies depending on the type, but in general, a particle size of about 4 to 70 mesh is used. Among these, the larger one is suitable for a fixed bed, and the smaller one is suitable for a fluidized bed. In the case of a fixed bed, it is filled with a phosphorus adsorbent having a particle size of 4 to 60 mesh, and brought into contact by flowing upward or downward at a flow rate of SV2 to 10 hr-'.

流動床の場合、lO〜70メツシュのリン吸着剤を使用
し、LV1〜50 m/ hrの上向流で通液して接触
させるようにする。
In the case of a fluidized bed, a phosphorus adsorbent of lO~70 mesh is used, and contact is made by passing the liquid through with an upward flow of LV1~50 m/hr.

上記のように構成された生物学的脱リン装置においては
、基本的な処理は前記従来のものと同様に行われ、有機
物およびリンの除去が行われる。まず原水5を返送汚泥
6と混合して嫌気槽1に滞留させ、溶存酸素も、N 0
2やNO,も殆ど存在しない条件下で嫌気処理を行う。
In the biological dephosphorization device configured as described above, basic processing is performed in the same manner as in the conventional device, and organic matter and phosphorus are removed. First, the raw water 5 is mixed with the returned sludge 6 and retained in the anaerobic tank 1, and the dissolved oxygen is also removed by N 0
Anaerobic treatment is performed under conditions in which 2 and NO are hardly present.

ここで汚泥中のリンが放出され、原水中の有機物が一部
ないし全部が汚泥中にとり込まれる。次いで嫌気槽から
の流水液は曝気槽2へ送り、曝気槽2において散気管7
から通気して曝気し、好気性処理を行う。ここで活性汚
泥は液中のリンを摂取するとともに、BODを分解する
。また、原水中にアンモニア性窒素が含まれる場合には
曝気槽においてNO2、N 03に酸化される。この窒
素を除去する場合には通常のとおり、脱窒槽を付加する
ことができる。
At this point, phosphorus in the sludge is released, and some or all of the organic matter in the raw water is incorporated into the sludge. Next, the flowing water from the anaerobic tank is sent to the aeration tank 2, where it is passed through the aeration pipe 7.
Ventilate and aerate to perform aerobic treatment. Here, the activated sludge takes in phosphorus in the liquid and decomposes BOD. Furthermore, if ammonia nitrogen is contained in the raw water, it is oxidized to NO2 and N03 in the aeration tank. When removing this nitrogen, a denitrification tank can be added as usual.

曝気槽2内の混合液は一部づつ抜出し、固液分離槽3に
おいて固液分離し、分離液は流へ8を介してリン吸着剤
槽4へ送る。また分離汚泥は一部を余剰汚泥9として排
出し、残部を返送汚泥6として嫌気槽lに返送する。な
お、固液分離槽3は遠心分離、浮上など他の分離手段を
採用してもよい。前述した通り、生物学的脱リン装置か
らの流出水中のリン濃度は、原水の水量やリン濃度、B
OD#度などの変動に伴って、変化する。従って生物学
的脱リン方法だけでは、含有リン濃度が高くて、そのま
までは放流できないことがある。
The mixed liquid in the aeration tank 2 is drawn out in portions and subjected to solid-liquid separation in the solid-liquid separation tank 3, and the separated liquid is sent to the phosphorus adsorbent tank 4 via a stream 8. Further, part of the separated sludge is discharged as surplus sludge 9, and the remainder is returned to the anaerobic tank 1 as return sludge 6. Note that the solid-liquid separation tank 3 may employ other separation means such as centrifugation or flotation. As mentioned above, the phosphorus concentration in the effluent from the biological dephosphorization equipment depends on the amount of raw water, the phosphorus concentration, and the B
It changes as the OD# degree changes. Therefore, if the biological dephosphorization method is used alone, the phosphorus concentration may be too high to be discharged as is.

本発明では、前記生物学的脱リン装置に続いて、さらに
リン吸着剤層に通液することによって、処理水中のリン
濃度をほぼ一定の低いレベ(7) ルにおさえることができる。その結果、原水量や成分含
量が変動しようとも、処理水水質にほとんど影響を及ば
ず仁となく、通常通りの運転を続けることができる。
In the present invention, the phosphorus concentration in the treated water can be kept at a substantially constant low level (7) by passing the liquid through the phosphorus adsorbent layer subsequent to the biological dephosphorization device. As a result, even if the amount of raw water or the component content fluctuates, the quality of the treated water is hardly affected and normal operation can be continued.

本発明で用いられるリン吸着剤は、リンの吸着と脱着現
象を利用したものであるため、一般的な吸着剤と違って
再生する必要がない。但し、リン吸着剤の表面がスライ
ムなど他の要因で汚染された場合には、従来通り逆洗を
行なって表面を清浄に維持する。
Since the phosphorus adsorbent used in the present invention utilizes phosphorus adsorption and desorption phenomena, it does not need to be regenerated unlike general adsorbents. However, if the surface of the phosphorus adsorbent is contaminated by other factors such as slime, backwashing is performed as usual to keep the surface clean.

さらに、本発明のリン吸着剤層を固定床とすると、生物
学的脱リン装置からの流出水中に含まれるSS性のリン
も沖過作用により除去されるため、さらに安定した水質
の処理水を得ることができる。なお、この場合には、捕
捉した固形物を除去するために、適宜逆洗した方が好ま
しい。以上に述べたように、本発明においては、原水量
や原水水質の変動の影響を受ける生物学的脱リン装置に
続いて、リン濃度を謂整するリン成層剤層を備えたこと
により、処理水中のす(8) ンmiの変動幅を小さくし、これにより処理水のリン濃
度をほぼ一定に保つことができる効果がある。
Furthermore, when the phosphorus adsorbent layer of the present invention is used as a fixed bed, SS phosphorus contained in the outflow water from the biological dephosphorization equipment is also removed by the offshore overaction, resulting in more stable water quality treated water. Obtainable. In this case, it is preferable to perform backwashing as appropriate in order to remove captured solids. As described above, in the present invention, a phosphorus stratification agent layer is provided to adjust the phosphorus concentration, following the biological dephosphorization device that is affected by fluctuations in the amount and quality of raw water. This has the effect of making it possible to reduce the range of fluctuation in the phosphorus concentration in the water, thereby keeping the phosphorus concentration in the treated water almost constant.

次に本発明の試験例について説明する。Next, test examples of the present invention will be explained.

試  験  例 pH7,0,アルカリ度100m9/13 、  リン
濃度4m9/E。
Test Example: pH 7.0, alkalinity 100m9/13, phosphorus concentration 4m9/E.

BOD l Oomt2/!3の合成下水を返送汚泥と
混合して嫌気槽にo、85hr滞留させた後、好気槽に
2、Ohr滞留させ、MLS 82,000〜4,00
0m9/1で好気処理し、最終沈殿槽において固液分離
した。分離汚泥は返送率30%となるように、一部を嫌
気槽へ返送し、残部は余剰汚泥として処理した。
BOD l Oomt2/! The synthetic sewage from step 3 was mixed with the returned sludge and retained in the anaerobic tank for 85 hours, and then in the aerobic tank for 2 hours, resulting in an MLS of 82,000 to 4,000.
Aerobic treatment was carried out at 0 m9/1, and solid-liquid separation was performed in a final settling tank. A portion of the separated sludge was returned to the anaerobic tank to achieve a return rate of 30%, and the remainder was treated as surplus sludge.

一方、上澄液は、内径30+m%長さ500闘のアクリ
ル樹脂製カラムに粒径0.5〜1.Ommの活性アルミ
ナxsotnlを充てんした層に300 ml/ hr
の流速で上向流で通液処理した。また、活性アルミナの
充てん層に捕捉さnたSSを除去するために1回/2日
〜3日の頻度で、最終処理水を用いて活性アルミナの充
てん層の洗#操作を行なった。
On the other hand, the supernatant liquid was transferred to an acrylic resin column with an inner diameter of 30+m% and a length of 500mm with a particle size of 0.5-1. 300 ml/hr in a layer filled with Omm activated alumina xsotnl
The liquid was passed in an upward flow at a flow rate of . In addition, in order to remove the SS trapped in the activated alumina filled layer, the activated alumina filled layer was washed once every 2 to 3 days using the final treated water.

上記条件で1ケ月間連続通水処理した結果、処理水のリ
ン濃度は継続して0.1m9/13以下であった。 、 続いて、原水リン濃度を4〜7 m9/13の範囲で数
時間毎に変動させる条件下で1ケ月間連続処理した。処
理水のリン濃度は継続してO,l タ/β以下であった
As a result of continuous water flow treatment under the above conditions for one month, the phosphorus concentration of the treated water was continuously below 0.1 m9/13. Subsequently, the raw water was continuously treated for one month under conditions in which the phosphorus concentration of the raw water was varied every few hours in the range of 4 to 7 m9/13. The phosphorus concentration in the treated water continued to be below O,lta/β.

比  較  例 比較例として、上記試験例において活性アルミナの充て
ん層に通液処理しなかった場合の生物学的脱リン処理水
のリン濃度を継続的に測定した。
Comparative Example As a comparative example, the phosphorus concentration of the biologically dephosphorized water was continuously measured in the case where the liquid was not passed through the activated alumina packed layer in the above test example.

原水リン濃度4m97Bの条件で1ケ月間連続通水処理
した場合の処理水リン濃度はo、t −0,7In9/
13であった。
When the raw water phosphorus concentration is 4m97B and water is continuously passed for one month, the phosphorus concentration in the treated water is o,t -0,7In9/
It was 13.

また、原水リン濃度を4〜7ダ/形の範囲で数時間毎に
変動させる条件下で1ケ月間連続処理した。処理水のリ
ン濃度は0.1〜1.61n9/lの範囲で変動した。
In addition, continuous treatment was carried out for one month under conditions in which the raw water phosphorus concentration was varied every few hours in the range of 4 to 7 Da/form. The phosphorus concentration of the treated water varied in the range of 0.1 to 1.61 n9/l.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示す系統図である。 図中、lは嫌気槽、2は曝気槽、3は固液分離槽、4は
リン吸着剤槽を、それぞれ示す。 特許出願人  栗田工業株式会社
The drawing is a system diagram showing an embodiment of the present invention. In the figure, l represents an anaerobic tank, 2 represents an aeration tank, 3 represents a solid-liquid separation tank, and 4 represents a phosphorus adsorbent tank. Patent applicant Kurita Industries Co., Ltd.

Claims (1)

【特許請求の範囲】 (11返送汚泥と混合した原水を嫌気性処理する嫌気槽
、この嫌気槽において嫌気性処理された混合液を好気性
処理する曝気槽、およびこの曝気槽から排出される曝気
液を固液分離する分離手段を含む生物学的脱リン装置と
、前記生物学的脱リン装置の後にリン濃度を調整するリ
ン吸着剤層を備えたことを特徴とする脱リン装置。 (2)  リン吸着剤は活性アルミナ、マグネシア系化
合物、リン鉱石およびイオン交換樹脂から選ばれる1種
以上のものである特許請求の範囲第1項記載の脱リン装
置。 (3)リン吸着剤層は固定層または流動層である特許請
求の範囲第1項または第2項記載の脱リン装置。
[Claims] (11) An anaerobic tank for anaerobically treating raw water mixed with returned sludge, an aeration tank for aerobically treating the mixed liquid anaerobically treated in this anaerobic tank, and aeration discharged from this aeration tank. A dephosphorization device comprising a biological dephosphorization device including a separation means for separating a liquid into solid and liquid, and a phosphorus adsorbent layer for adjusting phosphorus concentration after the biological dephosphorization device. (2 ) The dephosphorization device according to claim 1, wherein the phosphorus adsorbent is one or more selected from activated alumina, magnesia-based compounds, phosphate rock, and ion exchange resins. (3) The phosphorus adsorbent layer is fixed. The dephosphorization device according to claim 1 or 2, which is a bed or a fluidized bed.
JP2445483A 1983-02-16 1983-02-16 Dephosphorizer Pending JPS59150597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2445483A JPS59150597A (en) 1983-02-16 1983-02-16 Dephosphorizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2445483A JPS59150597A (en) 1983-02-16 1983-02-16 Dephosphorizer

Publications (1)

Publication Number Publication Date
JPS59150597A true JPS59150597A (en) 1984-08-28

Family

ID=12138603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2445483A Pending JPS59150597A (en) 1983-02-16 1983-02-16 Dephosphorizer

Country Status (1)

Country Link
JP (1) JPS59150597A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120067800A1 (en) * 2009-05-27 2012-03-22 Ecodigm Co., Ltd. System and method for sewage and wastewater treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120067800A1 (en) * 2009-05-27 2012-03-22 Ecodigm Co., Ltd. System and method for sewage and wastewater treatment
US8323494B2 (en) * 2009-05-27 2012-12-04 Ecodigm Co., Ltd. System and method for sewage and wastewater treatment

Similar Documents

Publication Publication Date Title
KR960013341B1 (en) Two-stage water treatment
JPH01254296A (en) Two-stage waste water treatment
CZ283462B6 (en) Process for treating waste water containing phosphates and nitrogen-containing compounds
Rahmani et al. Use of ion exchange for removal of ammonium: a biological regeneration of zeolite
KR100432437B1 (en) Method and Apparatus for Treating N-containing Wastewater Using Granular Zeolites
KR100825518B1 (en) Device and method for Biological Treatment of Wastewater using MBR and Zeolite Powder
JP3555807B2 (en) Organic wastewater nitrogen removal method
JPS6317513B2 (en)
KR101769198B1 (en) bilogical nitrogen removal apparatus for treating wastewater
JPS59150597A (en) Dephosphorizer
KR100243729B1 (en) Method for treating wastewater biologically by continuously cycling and regenerating powdered zeolite in the bioreactor
JP3555812B2 (en) Advanced treatment method for organic wastewater
KR100438022B1 (en) Method for waste water treatment using float media
JP2000107797A (en) Purification method and apparatus
JP4647814B2 (en) Organic wastewater treatment equipment
JPS5959295A (en) Apparatus for biological dephosphorization
JPS6274496A (en) Method for treating waste water
JP2520798B2 (en) Method and apparatus for biological dephosphorization of organic wastewater
JPH0975987A (en) Method for removing nitrogen in high level from organic sewage
JPH024360B2 (en)
JPH06170388A (en) Treatment of sewage
JPH0133237B2 (en)
KR101769199B1 (en) bilogical nitrogen removal apparatus for treating wastewater
KR101769200B1 (en) bilogical nitrogen removal apparatus for treating wastewater
JP2556409B2 (en) Treatment of organic wastewater containing nitrogen and phosphorus