JPS59150388A - Method of judging leakage source in reactor container - Google Patents

Method of judging leakage source in reactor container

Info

Publication number
JPS59150388A
JPS59150388A JP58022443A JP2244383A JPS59150388A JP S59150388 A JPS59150388 A JP S59150388A JP 58022443 A JP58022443 A JP 58022443A JP 2244383 A JP2244383 A JP 2244383A JP S59150388 A JPS59150388 A JP S59150388A
Authority
JP
Japan
Prior art keywords
containment vessel
reactor
water
leakage
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58022443A
Other languages
Japanese (ja)
Other versions
JPH0423235B2 (en
Inventor
前田 克治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58022443A priority Critical patent/JPS59150388A/en
Publication of JPS59150388A publication Critical patent/JPS59150388A/en
Publication of JPH0423235B2 publication Critical patent/JPH0423235B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は沸騰水形原子力発電プラントの格納容器内にお
いて漏洩事故が発生した場合に、漏洩源が蒸気系である
か冷却水系であるかを適確に判断し得る原子炉格納容器
における漏洩源の判別方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a method for determining whether the leak source is a steam system or a cooling water system when a leakage accident occurs in the containment vessel of a boiling water nuclear power plant. This invention relates to a method for accurately determining a leak source in a reactor containment vessel.

[発明の技術的背景] 沸騰水形原子力発電プラントにおいて、格納容器内で漏
洩事故が発生した場合、漏洩量が一定値を越えた際には
、プラントの安全を確保するため、プラントの運転を停
止し、漏洩源の探索と必要な対策を講する必要がある。
[Technical Background of the Invention] In a boiling water nuclear power plant, if a leakage accident occurs in the containment vessel and the amount of leakage exceeds a certain value, plant operation must be stopped to ensure plant safety. It is necessary to stop the operation, search for the source of the leak, and take necessary measures.

原子炉格納容器内に一次系からの漏洩が発生した場合に
は、まず、格納容器内の温度上昇による露点温度の上昇
、格納容器内除湿系等における凝縮水ドレン流量の増加
、あるいは格納容器内放射線モニタ指示の変化に8より
、−次系からの格納容器内漏洩を検知することができる
If a leak occurs from the primary system inside the reactor containment vessel, the first thing to do is to increase the dew point temperature due to a rise in the temperature inside the containment vessel, increase the flow rate of condensed water drain in the dehumidification system inside the containment vessel, or Based on the change in the radiation monitor instruction (8), leakage from the -order system into the containment vessel can be detected.

また、格納容器内の雰囲気ガスの放射能測定や、格納容
器除湿系凝縮水ドレンの流入するサンプ水中の放射能測
定により放射性核種が検出された場合には、原子炉水、
および蒸気系からの漏洩を知ることは可能である。
In addition, if radionuclides are detected by measuring the radioactivity of the atmospheric gas inside the containment vessel or the radioactivity of the sump water flowing into the containment vessel dehumidifying system condensed water drain, the reactor water,
It is possible to detect leaks from the steam system.

[背景技術の問題点] しかしながら、従来°は、漏洩源が原子炉水であ・るか
蒸気系であるかの選択決定や漏洩量評価を定量的に行な
っていな、かった、ため、格納容器内での一次系漏洩発
生によるプラント停止後の漏洩源調査を困難なものとし
、対策が遅、延するという不都合があった。
[Problems with the background technology] However, in the past, there was no quantitative determination of whether the leak source was reactor water or steam, or a quantitative evaluation of the amount of leakage. This has the disadvantage of making it difficult to investigate the source of the leak after the plant has been shut down due to a primary system leak occurring within the container, and countermeasures being delayed.

第1図は、原子炉格納容器内において、−次系から漏洩
が発生した場合の格納容器内水素濃度、露点温瓜、放射
線゛モニタ指示及び漏洩量の変化の様子を示している・
Figure 1 shows changes in hydrogen concentration in the containment vessel, dew point temperature, radiation monitor instructions, and leakage amount when a leak occurs from the negative system within the reactor containment vessel.
.

同図において、K点で格納容器内における一次系からの
漏洩が発生した場合、漏洩量は時間と共に曲線Aに示す
様に増加する。
In the figure, when leakage occurs from the primary system in the containment vessel at point K, the amount of leakage increases as shown by curve A with time.

また1、格納容器内には一次系漏洩に伴ない放射性物質
が持ち込まれるため、格納容器放射線モニタの指示も曲
、線Bの様に上昇する。
In addition, 1. Since radioactive materials are brought into the containment vessel due to the primary system leakage, the indication of the containment vessel radiation monitor also rises as shown by curve B.

−°方、格納容器内に漏洩した一次系の冷却材により格
納容器内露点温度の指示は曲線りの様に変化する。
On the -° side, the dew point temperature indication inside the containment vessel changes in a curved manner due to the primary coolant leaking into the containment vessel.

ところで、原子炉水にあい−Cは、原子炉冷却材ぐある
水が中性子による放射線分解を受けると、2日20→2
H2+02 の様な反応で水素ガスを生成する。この発生水素ガスの
一部は主蒸気中に移行し、一部は原子炉水に溶解するこ
ととなる。
By the way, when the water in the reactor coolant undergoes radiolysis by neutrons, the amount of C in the reactor water changes from 20 to 2 in 2 days.
Hydrogen gas is produced by reactions such as H2+02. A portion of this generated hydrogen gas will migrate into the main steam, and a portion will be dissolved in the reactor water.

この場合、主蒸気及び原子炉水の水素濃度は、0℃、1
気圧の標準状態の体積換鼻で約30CIlll/眩−蒸
気、及ヒ0.22cni’/kg−原子か水となる。
In this case, the hydrogen concentration of main steam and reactor water is 0°C, 1
In a volume ventilation nostril under standard conditions of atmospheric pressure, this results in approximately 30 CIll/distillation of steam, and 0.22 cni'/kg of water.

このことから、−次系の主蒸気や原子炉水が格納容器内
に漏洩した場合には、非凝縮性ガスである水素濃度は、
時間と共に上昇し、第1図の直線C1、C2の様に変化
する。従って、原子炉水と主蒸気の漏洩量が同じ場合に
は、蒸気漏洩による水素濃度変化C1は原子炉水漏洩に
よる水素濃度上昇特性C2の約170倍になる。
From this, if main steam or reactor water in the secondary system leaks into the containment vessel, the concentration of hydrogen, which is a non-condensable gas, will be
It increases with time and changes like straight lines C1 and C2 in FIG. Therefore, when the leakage amounts of reactor water and main steam are the same, the hydrogen concentration change C1 due to steam leakage is approximately 170 times the hydrogen concentration increase characteristic C2 due to reactor water leakage.

また、涼−子炉水中に存在する放射性核種のうち沃素核
種であるI−1,31、I −” 1.35等は炉水濃
度の2×10−2程度が主蒸気中に移行し、Na−24
、Mn−56等の放射、性核種は1o−→程度が主蒸気
に移行することが経験的に知られている。
In addition, among the radionuclides present in the Ryoko reactor water, iodine nuclides such as I-1, 31 and I-''1.35 migrate into the main steam at a concentration of about 2 x 10-2 of the reactor water. Na-24
, Mn-56, etc., it is empirically known that approximately 1o-→ of radioactive nuclides such as Mn-56 is transferred to the main steam.

従って、例えば原子炉水中のl−131、Na−24の
放射能濃度をそれぞれAμc/n+J2、BμC/II
1℃とすると、主蒸気中のr−131i1!度とNa−
21!度はそれぞれ2X10−2XAμ0/IIIJ2
.1’0−4xs、czc /Ill J2となる。
Therefore, for example, the radioactive concentrations of l-131 and Na-24 in the reactor water are Aμc/n+J2 and BμC/II, respectively.
At 1°C, r-131i1 in the main steam! Degree and Na-
21! Degree is 2X10-2XAμ0/IIIJ2 respectively
.. 1'0-4xs, czc /Ill J2.

ここで、原子炉水または主蒸気中にお番ブるl−131
とNa−24の濃度比をそれぞれRW、R8とすると。
Here, the number l-131 in the reactor water or main steam is
Let the concentration ratios of and Na-24 be RW and R8, respectively.

Rw =FM度(1−131)/IIR(Na −24
)=A/B・・・(1) Rs=2x10−2xA/(10−’xB)=、20O
A/B・・・(2) となる。
Rw = FM degree (1-131)/IIR (Na -24
)=A/B...(1) Rs=2x10-2xA/(10-'xB)=, 20O
A/B...(2).

これらの式から明らかなように、l−131とNa−2
4のm度比は主蒸気中の刀が原子炉水中にお”けるより
も200倍も、高くなる。
As is clear from these formulas, l-131 and Na-2
The m degree ratio of 4 is 200 times higher than that of the main steam in the reactor water.

格納°嚇崩内において−次系からの漏洩が発生した場合
には、前述したように格゛納容器内の水素ガス濃度が゛
上昇するとともに、漏洩した一次冷却水中に含まれるl
−131、Na −24等の放射性核種が格納容器内で
検出されることとなるので、上述の放射能濃度比の顕著
な差異を利用すれば漏洩源が蒸気系であるか、冷却系で
あるかを適確に判別することができる。
If a leak occurs from the secondary system in the containment vessel, the hydrogen gas concentration in the containment vessel will increase as described above, and the liters contained in the leaked primary cooling water will increase.
Since radionuclides such as -131 and Na-24 will be detected in the containment vessel, the above-mentioned significant difference in the radioactivity concentration ratio can be used to determine whether the leak source is the steam system or the cooling system. It is possible to accurately determine whether

[発明の目的] 本発明は、上述の知見に基いてなされたもので、原子炉
水と蒸気中で顕著な差のある水素ガス濃度、あるいは放
射性核種組成比、放射能濃度比をもとにして、原子炉格
納容器雰囲気中の水素ガス測定又は、格納容器内雰囲気
、サンプ水中の放射性核種組成、濃度の測定によって格
納容器内への一次系からの漏洩源を判別する方法を得る
ことを目的とするものである。
[Objective of the Invention] The present invention was made based on the above-mentioned knowledge, and is based on the hydrogen gas concentration, radionuclide composition ratio, and radioactivity concentration ratio, which are significantly different between reactor water and steam. The objective is to obtain a method for determining the source of leakage from the primary system into the containment vessel by measuring hydrogen gas in the reactor containment vessel atmosphere, or by measuring the radionuclide composition and concentration in the containment vessel atmosphere and sump water. That is.

[発明の概要コ 本発明の原子炉格納容器における漏洩源の判別方法は原
子炉格納容器内の雰囲気中の水素ガス濃度と放射性核種
放射能濃度、および格納容器内のサンプ水中の放射性核
種放射能濃度を測定し、これらの測定結果に基いて漏洩
源が蒸気系であるか原子炉水系であるかを判別する方法
である。
[Summary of the Invention] The method of determining a leak source in a reactor containment vessel according to the present invention is based on hydrogen gas concentration and radionuclide radioactivity concentration in the atmosphere within the reactor containment vessel, and radionuclide radioactivity in sump water within the containment vessel. This method measures the concentration and determines whether the leak source is from the steam system or the reactor water system based on these measurement results.

[発明の実施例] 以下、本発明の詳細を第2図を参照して説明する。[Embodiments of the invention] The details of the present invention will be explained below with reference to FIG.

第2図は本発明の方法を適用する原子炉格納容器の系統
配管を略図的に、示すもので、格納容器1内には原子炉
2を中心に原子炉給水配管3、主蒸気配管4が配置され
ており、原子炉水は、原子炉再循環配管5に設けた原子
炉再循環ポンプ6により循環攪拌される。原子炉制御棒
駆動機構7には原子炉制御棒の駆動水配管8を通して駆
動水が供給される。格納容器1内の雰囲気は格納容器雰
囲気サンプルポンプ9によって格納容器サンプリング配
管10内に吸引され、露点湿度計11、水素濃度計12
、放射能モニタ13によって露点湿度、水素濃度、およ
び放射能が計測される。
Fig. 2 schematically shows the system piping of the reactor containment vessel to which the method of the present invention is applied. The reactor water is circulated and agitated by the reactor recirculation pump 6 provided in the reactor recirculation piping 5. Drive water is supplied to the reactor control rod drive mechanism 7 through a drive water pipe 8 for the reactor control rods. The atmosphere inside the containment vessel 1 is sucked into the containment vessel sampling piping 10 by a containment vessel atmosphere sample pump 9, and a dew point hygrometer 11 and a hydrogen concentration meter 12 are used.
, the dew point humidity, hydrogen concentration, and radioactivity are measured by the radioactivity monitor 13.

格納容器内の雰囲気はまた、常時除湿器14において、
冷却水配管15から導入される冷却水によって冷却、除
湿される。除湿された凝縮水ドレンは、除湿器ドレン配
管16を通り、ドレン流量計17で流量監視され゛た後
、格納容器内サンプ18に流入し、更にサンプ吐出ポン
プ19で加圧され、吐出配管20を経て、格納容器1外
に排出される。
The atmosphere inside the containment vessel is also maintained by a constant dehumidifier 14.
It is cooled and dehumidified by the cooling water introduced from the cooling water pipe 15. The dehumidified condensed water drain passes through the dehumidifier drain piping 16, and after its flow rate is monitored by the drain flow meter 17, it flows into the sump 18 in the containment vessel, is further pressurized by the sump discharge pump 19, and then flows into the discharge piping 20. After that, it is discharged outside the containment vessel 1.

上述のように構成した原子炉格納容器内において一次系
に漏洩が発生した場合、漏洩した冷却材は格納容器内で
蒸発し、露点温度を高めると共に、格納容器除湿器14
によって除湿され、格納容器サン718に流入した後、
格納容器1外に排出される。一方、漏洩−次系冷却材中
に含まれる水素ガスは非凝縮性のため、格納容器内に蓄
積し、増加することとなる。
If a leak occurs in the primary system within the reactor containment vessel configured as described above, the leaked coolant will evaporate within the containment vessel, increasing the dew point temperature and causing the containment vessel dehumidifier 14 to evaporate.
After being dehumidified by and flowing into the containment vessel sun 718,
It is discharged outside the containment vessel 1. On the other hand, since the hydrogen gas contained in the leaked secondary coolant is non-condensable, it accumulates and increases in the containment vessel.

本発明においては、格納容器内の水素濃度計12の指示
変化と、格納客器内サン118の排出水量、又は格納容
器除湿器ドレン流量計16の指示から次式をもちいて一
次系冷却材漏洩源を判別し、必要に応じて漏洩量の妥当
性を評価する。
In the present invention, the primary coolant leakage is determined using the following equation based on the change in the indication of the hydrogen concentration meter 12 in the containment vessel, the amount of water discharged from the sun 118 in the containment vessel, or the indication of the containment vessel dehumidifier drain flow meter 16. Determine the source and assess the adequacy of the leak amount if necessary.

即ち、主蒸気配管4で代表される蒸気系から一次系冷却
材が漏洩した場合、格納容器1内の水素濃度は次式で表
わされる。、 X=30XLXT/V・・・・・・(3)ただし、X:
漏洩発生後1時間後における格納容器内の水素1度(p
pm) L:主蒸気系統からの一次系冷却材漏 洩率(kg/ hr 、) ■=格納容器容積(T113) Tニー次系漏洩発生後の経過時間 (hr、) 同様に、原子炉再循環配管5等で代表される原子炉−次
系配管からの原子炉水漏洩の場合、格納容器1内の水素
濃度は次式で表わされる。
That is, when the primary coolant leaks from the steam system represented by the main steam pipe 4, the hydrogen concentration in the containment vessel 1 is expressed by the following equation. , X=30XLXT/V...(3) However, X:
Hydrogen in the containment vessel 1 hour after the leak occurred (p
pm) L: Primary system coolant leakage rate from the main steam system (kg/hr,) ■ = Containment vessel volume (T113) T: Elapsed time after secondary system leakage (hr,) Similarly, reactor recirculation In the case of reactor water leakage from the reactor-subsystem piping represented by the piping 5, etc., the hydrogen concentration in the containment vessel 1 is expressed by the following equation.

Y−0,・22XLXT/V・・・・・・(4)ただし
、Y:漏洩発生後1時間後における格納容器内の水素濃
度(ppm) (3)、(4)式から明らかな様に、主蒸気系からの漏
洩である場合には原子炉水漏洩に比べて、格納容器内水
素濃度は同一量の漏洩量に対して約170倍も高くなり
、漏洩源により顕著な差異を生ずるので、サンプ排出水
量等との比較により漏洩源を判別できる。
Y-0,・22XLXT/V... (4) However, Y: Hydrogen concentration in the containment vessel 1 hour after the leakage occurrence (ppm) As is clear from equations (3) and (4) In the case of a leak from the main steam system, the hydrogen concentration in the containment vessel will be about 170 times higher than that in a reactor water leak for the same amount of leakage, and there will be significant differences depending on the leak source. The source of the leak can be determined by comparing it with the amount of water discharged from the sump, etc.

また、主蒸気、原子炉水が格納容器内に漏洩した場合、
漏洩原子炉水の大部分は格納容器内で蒸発し、除湿器1
4で冷却凝縮され、除湿器ドレン配管16を経て格納容
器サンプ18に流入し、一部は直接格納容器サンプ18
に流入する。その結果、格納容器内に漏洩した一次系冷
却材中に含まれる放射性核種は最終的には格納容器サン
プ18に流入する。
In addition, if main steam or reactor water leaks into the containment vessel,
Most of the leaked reactor water evaporates inside the containment vessel, and dehumidifier 1
4, and flows into the containment vessel sump 18 via the dehumidifier drain pipe 16, and a portion directly flows into the containment vessel sump 18.
flows into. As a result, radionuclides contained in the primary coolant leaking into the containment vessel eventually flow into the containment vessel sump 18.

そこで格納容器サンプ水中の放射性核種である1−13
1、Na−24等を測定し、その濃度比、R=(I−1
31)、/<Na −24)を求める。このm度比Rが
原子炉水における■−131、Na−24の濃度比に等
しい時には、格納容器内への一次系冷却材漏洩は原子炉
水そのものということになる。
Therefore, the radionuclide 1-13 in the containment vessel sump water
1.Measure Na-24, etc., and calculate the concentration ratio, R=(I-1
31), /<Na −24). When this m degree ratio R is equal to the concentration ratio of ■-131 and Na-24 in the reactor water, the primary coolant leaking into the containment vessel is the reactor water itself.

また、濃度比Rが原子炉水の濃度比より高く、100(
8程度の時には主蒸気等、蒸気系からの漏洩と判断され
る。これは、主蒸気等の蒸気相への沃素の移行率がNa
 −24等に比べ約200倍も高いことによる。
In addition, the concentration ratio R is higher than the concentration ratio of reactor water, and is 100 (
When it is around 8, it is determined that there is a leak from the steam system, such as the main steam. This means that the transfer rate of iodine to the vapor phase such as main steam is Na
This is because it is about 200 times higher than -24 mag.

[発明の効果コ 上述の如く、本発明によれば、格納容器内の雰囲気中水
素濃度を測定し、格納容器内除湿系からの発生凝縮水ド
レン母、又は格納容器内サンプ排出水量の比較評価を行
なうことにより、格納容器内における一次系漏洩源の推
定が可能であり、漏洩量を推定することも可能となる。
[Effects of the Invention] As described above, according to the present invention, the hydrogen concentration in the atmosphere inside the containment vessel is measured, and the amount of water drained from the condensed water drain from the dehumidification system inside the containment vessel or the water discharged from the sump inside the containment vessel is comparatively evaluated. By performing this, it is possible to estimate the source of the primary leak within the containment vessel, and it is also possible to estimate the amount of leakage.

また、−次系漏洩により格納容器サンプ水中に存在する
こととなるl−131とNa−24の濃度比を求めて評
価することにより、格納容器内にお【プる一次系漏洩源
の判別が可能となる。その結果、−次系漏洩源の早期確
認、ブラント停止時の対応処置等が極めて容易となり、
沸1騰水形原子ノj発電プラントの安全性確保、向上に
大きく寄与することができる。
In addition, by determining and evaluating the concentration ratio of l-131 and Na-24, which will be present in the containment vessel sump water due to secondary system leakage, it is possible to determine the source of the primary system leak inside the containment vessel. It becomes possible. As a result, it is extremely easy to quickly identify secondary leakage sources and take appropriate action when the blunt is stopped.
This can greatly contribute to ensuring and improving the safety of boiling water atomic power plants.

なお、格納容器内への漏洩は単に主蒸気、原子炉水のみ
に限らず、除湿器冷却水、原子炉給水、制御棒駆動水等
の放射能をほとんど含まない水の漏洩が考えられるが、
本発明に述べ/q方法によると、放射能の有無、水素濃
度上昇の有無にJ二り漏洩源の大まかな分類も可能とな
る。
Note that leakage into the containment vessel is not limited to main steam and reactor water, but can also include water that contains almost no radioactivity, such as dehumidifier cooling water, reactor feed water, and control rod drive water.
According to the method described in the present invention, it is possible to roughly classify leak sources based on the presence or absence of radioactivity and the presence or absence of an increase in hydrogen concentration.

又、主蒸気中、原子炉水中に存在する多種の核種濃度や
酸素(02)?11度等に着目し、上記と同様の手法に
より、漏洩源と、漏洩量を評価することも可能である。
Also, the concentration of various nuclides and oxygen (02) present in main steam and reactor water? It is also possible to evaluate the source of leakage and the amount of leakage by focusing on 11 degrees or the like and using the same method as above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、格納容器内に一次系からの漏洩が発生した場
合の格納容器内雰囲気露点温度、水素濃度、放射線モニ
タ指示及び漏洩量変化の様子を例示するグラフ、第2図
は沸騰水形原子力発電プラントの原子炉格納容器内の概
要を示す説明図である。 1・・・・・・・・・・・・原子炉格納容器2・・・・
・・・・・・・・原子寮 3・・・・・・・・・・・・原子炉給水配管4・・・・
・・・・・・・・主蒸気配管5・・・・・・・・・・・
・原子炉再循環配管6・・・・・・・・・・・・原子炉
再循環ポンプ7・・・・・・・・・・・・原子炉制御棒
駆動彎構8・・・・・・・・・・・・駆動水配管9・・
・・・・・・・・・・格納容器雰囲気サンプルポンプ1
0・・・・・・・・・・・・格納容器サンプリング配管
11・・・・・・・・・・・・露点湿度計12・・・・
・・・・・・・・水素濃度計13・・・・・・・・・・
・・放射能モニタ14・・・・・・・・・・・・除湿器 15・・・・・・・・・・・・冷却水配管16・・・・
・・・・・・・・除湿器ドレン配管17・・・・・・・
・・・・・ドレン流量計18・・・・・・・・・・・・
格納容器内サンプ19・・・・・・・・・・・・サンプ
吐出ポンプ20・・・・・・・・・・・・吐出配管代理
人弁理士   須 山 佐 −
Figure 1 is a graph illustrating the atmospheric dew point temperature, hydrogen concentration, radiation monitor instructions, and changes in leakage amount in the containment vessel when leakage occurs from the primary system in the containment vessel, and Figure 2 is a graph showing boiling water. FIG. 2 is an explanatory diagram showing an overview of the inside of a reactor containment vessel of a nuclear power plant. 1... Reactor containment vessel 2...
・・・・・・・・・Nuclear dormitory 3・・・・・・・・・Reactor water supply piping 4・・・・・・
・・・・・・・・・Main steam piping 5・・・・・・・・・・・・
・Reactor recirculation piping 6...Reactor recirculation pump 7...Reactor control rod drive curve 8... ...... Drive water piping 9...
・・・・・・・・・Containment vessel atmosphere sample pump 1
0...... Containment vessel sampling piping 11... Dew point hygrometer 12...
......Hydrogen concentration meter 13...
...Radioactivity monitor 14...Dehumidifier 15...Cooling water piping 16...
......Dehumidifier drain piping 17...
・・・・・・Drain flow meter 18・・・・・・・・・・・・
Sump in the containment vessel 19...Sump discharge pump 20...Discharge piping agent Patent attorney Sa Suyama -

Claims (2)

【特許請求の範囲】[Claims] (1)原子炉格納容器内の雰囲気中の水素ガス濃度と放
射性核種放射能濃度、および格納容器内のサンプ水中の
放射性核種放射能濃度を測定し、これらの測定結果に基
いて漏洩源が蒸気系であるか原子炉水系であるかを判別
することを特徴とする原子炉格納容器における漏洩源の
判別方法。
(1) Measure the hydrogen gas concentration and radionuclide radioactivity concentration in the atmosphere inside the reactor containment vessel, as well as the radionuclide radioactivity concentration in the sump water inside the containment vessel, and based on these measurement results, determine whether the leak source is steam. 1. A method for determining a leak source in a reactor containment vessel, the method comprising determining whether the leak source is a nuclear reactor water system or a reactor water system.
(2)放射性核種としてl−131とNa −24を利
用し、それらの雰囲気中およびサンプ水中の放射能濃度
比に基いて漏洩源の判別を行なうことを特徴とする特許
請求の範囲第1項記載の原子炉格納容器における漏洩源
の判別方法。
(2) 1-131 and Na-24 are used as radionuclides, and the leak source is determined based on the radioactivity concentration ratio in the atmosphere and in the sump water. Method for determining the source of leakage in the reactor containment vessel described.
JP58022443A 1983-02-14 1983-02-14 Method of judging leakage source in reactor container Granted JPS59150388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58022443A JPS59150388A (en) 1983-02-14 1983-02-14 Method of judging leakage source in reactor container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58022443A JPS59150388A (en) 1983-02-14 1983-02-14 Method of judging leakage source in reactor container

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3280148A Division JPH0769456B2 (en) 1991-10-28 1991-10-28 Method of identifying leakage source in containment vessel

Publications (2)

Publication Number Publication Date
JPS59150388A true JPS59150388A (en) 1984-08-28
JPH0423235B2 JPH0423235B2 (en) 1992-04-21

Family

ID=12082846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58022443A Granted JPS59150388A (en) 1983-02-14 1983-02-14 Method of judging leakage source in reactor container

Country Status (1)

Country Link
JP (1) JPS59150388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096345A (en) * 2006-10-13 2008-04-24 Hitachi Ltd System for and method of monitoring leakage in nuclear facility
JP2013019883A (en) * 2011-06-15 2013-01-31 Toshiba Corp Apparatus and method for monitoring atmosphere in nuclear reactor containment vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096345A (en) * 2006-10-13 2008-04-24 Hitachi Ltd System for and method of monitoring leakage in nuclear facility
JP2013019883A (en) * 2011-06-15 2013-01-31 Toshiba Corp Apparatus and method for monitoring atmosphere in nuclear reactor containment vessel

Also Published As

Publication number Publication date
JPH0423235B2 (en) 1992-04-21

Similar Documents

Publication Publication Date Title
JP4755061B2 (en) Nuclear facility leakage monitoring system and leakage monitoring method thereof
US3712850A (en) Method for determining reactor coolant system leakage
US3073767A (en) Reactor fuel elements testing container
Jung et al. Extended storage and transportation: evaluation of drying adequacy
Mays et al. Distribution and behavior of tritium in the coolant-salt technology facility
JPS59150388A (en) Method of judging leakage source in reactor container
RU2622107C1 (en) Method of inspection of the fuel collision of the shells of fuels of the worked heat-fuel assembly of transport nuclear energy installations
JPH05249278A (en) Method for identifying leak source in reactor containment
US3989945A (en) Method for determining the concentration of fission products in a reactor coolant
Sung et al. Development of accuracy enhancement system for boron meters using multisensitive detector for reactor safety
Steward Final summary report on the peach bottom end-of-life program
RU2191437C1 (en) Leak inspection method for steam generator of nuclear power plant
Guilbert et al. Radiolytic oxidation of iodine in the containment at high temperature and dose rate
RU2352005C1 (en) Method of steam and gas generators control tightness of ship nuclear engine installation with water heat transfer medium under pressure
JP2011137700A (en) Leakage detector
JP2005098741A (en) Leak detection method
Holmes et al. Sodium technology at EBR-II
Goldman et al. Sodium technology
SU813213A1 (en) Method of determination of boron concentration
JPH0226754B2 (en)
Xianggui et al. Research and Application of Radioactive Control Methods on the Primary Circuit of PWR Fuel Cladding with Loss of Air Tightness
JPH02159599A (en) Determination of leakage source in nuclear reactor containment
Zverev et al. Monitoring of Technical Condition of the Core in the BN-1200 Advanced Commercial Sodium-Cooled Reactor
LaPointe et al. Radioactive Material Control at the Shippingport Atomic Power Station
Rhodes Primary source of radionuclides leaking into the ICPP fuel storage basin.[EBR-II fuel is leaking]