JPH02159599A - Determination of leakage source in nuclear reactor containment - Google Patents

Determination of leakage source in nuclear reactor containment

Info

Publication number
JPH02159599A
JPH02159599A JP63313244A JP31324488A JPH02159599A JP H02159599 A JPH02159599 A JP H02159599A JP 63313244 A JP63313244 A JP 63313244A JP 31324488 A JP31324488 A JP 31324488A JP H02159599 A JPH02159599 A JP H02159599A
Authority
JP
Japan
Prior art keywords
reactor
water
containment vessel
containment
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63313244A
Other languages
Japanese (ja)
Inventor
Masahiro Nakamura
雅博 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP63313244A priority Critical patent/JPH02159599A/en
Publication of JPH02159599A publication Critical patent/JPH02159599A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To determine a leakage source by measuring concentrations and the constitution of radioactive nuclides in an atmosphere in a nuclear reactor containment and by comparing the measured results with a concentration ratio of radioactive nuclides in a nuclear reactor water and a main steam. CONSTITUTION:A nuclear reactor pressure vessel 2 is contained in a nuclear reactor containment 1. A radioactive nuclides analyzer 21 which samples an atomospheric gas in the containment 1 and analyzes concentrations and a constitution of radioactive nuclides in the gas, and a judgement device 22 of a leakage source based on an analyzed results of the analyzer 21, are installed. In case that a leakage in a nuclear reactor primary system occurs in the containment 1, a leaking water vaporizes in the containment 1 to raise a dew point temperature and to be dried up by a drier 14 as well, flows into a sump tank 18 through a drain pipe 16 and then is discharged to outside the containment 1 through a sump water transfer pipe 20. Radioactive nuclides contained in the leaking water are discharged to an atmosphere in the containment 1, attenuates by their decaying or stick to various kinds of equipments and pipings, or move into a condensed drain water in the drier 14. The leakage sources are consequently determined by the devices 21 and 22.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子炉格納容器内で一次系から漏洩が発生した
場合にその漏洩源が原子炉炉水系であるか主蒸気系であ
るかを判定する方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention provides a method for detecting whether leakage occurs from the primary system in the reactor containment vessel, whether the source of the leak is the reactor water system or the main steam. The present invention relates to a method for determining whether the system is a system.

(従来の技術) 沸騰水型原子力発電プラントでは、原子炉格納容器内で
原子炉圧力容器を含む一次系から原子炉炉水又は主蒸気
が漏洩し、漏洩量が許容量を越えた場合にはプラントの
安全性を確保するためにプラントの運転を停止し、漏洩
源の早期発見と漏洩に対する必要な措置を講する必要が
ある。従来、漏洩源が原子炉炉水系であるか主蒸気系で
あるかを判定する方法としては、原子炉格納容器内の雰
囲気ガス中の水素濃度を測定して漏洩源を判定する方法
、あるいは原子炉格納容器内のサンプタンクに流入する
漏洩水中の放射性核種を検出して漏洩源を判定する方法
などがある。
(Prior art) In boiling water nuclear power plants, if reactor water or main steam leaks from the primary system including the reactor pressure vessel within the reactor containment vessel and the amount of leakage exceeds the allowable amount, In order to ensure the safety of the plant, it is necessary to stop plant operation, find the source of the leak early, and take necessary measures to prevent the leak. Conventionally, methods for determining whether the leak source is from the reactor water system or the main steam system include determining the leak source by measuring the hydrogen concentration in the atmospheric gas in the reactor containment vessel, or by determining the leak source from the reactor water system or the main steam system. There are methods to determine the leak source by detecting radionuclides in leaked water flowing into a sump tank in the reactor containment vessel.

しかしながら、前者の方法は水素濃度の経時変化から漏
洩源を判定するため、判定結果を得るまでに時間がかか
るという問題があった。また、後者の方法は漏洩水がサ
ンプタンクに流入する間に放射性核種が崩壊して濃度が
減少したりするため、正確な判定結果を得ることができ
ないという問題があった。
However, the former method has a problem in that it takes time to obtain a determination result because the leak source is determined from changes in hydrogen concentration over time. In addition, the latter method has the problem that accurate determination results cannot be obtained because the radionuclides decay and the concentration decreases while the leaked water flows into the sump tank.

(発明が解決しようとする課題) 上述したように従来では原子炉格納容器内の雰囲気ガス
中の水素濃度や漏洩水中の放射性核種から漏洩源を判定
していたため、判定結果を得るまでに時間を要し、しか
も正確な判定結果を得ることができなかった。
(Problems to be Solved by the Invention) As mentioned above, in the past, the source of the leak was determined from the hydrogen concentration in the atmospheric gas in the reactor containment vessel and the radionuclides in the leaked water, so it took a long time to obtain the determination result. Moreover, it was not possible to obtain accurate judgment results.

本発明の目的は上述した問題点に鑑みてなされたもので
あり、原子炉格納容器内で原子炉炉水又は主蒸気の漏洩
が発生した場合にその漏洩源が原子炉炉水系であるか主
蒸気系であるかを迅速かつ正確に判定することができる
原子炉格納容器内漏洩源判定方法を提供しようとするも
のである。
The purpose of the present invention has been made in view of the above-mentioned problems, and when a leak of reactor water or main steam occurs in the reactor containment vessel, whether the leak source is the reactor water system or the main steam is detected. It is an object of the present invention to provide a method for determining a leak source in a reactor containment vessel, which can quickly and accurately determine whether the reactor is a steam system.

[発明の構成] (課題を解決するための手段) 上記課題を解決するために本発明は、原子炉格納容器内
の雰囲気中における放射性核種の濃度及び組成を測定し
、その測定結果を原子炉炉水中及び生蒸気中における放
射性核種の濃度比と比較して原子炉一次系の漏洩源を判
定することを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention measures the concentration and composition of radionuclides in the atmosphere inside the reactor containment vessel, and transmits the measurement results to the reactor. This method is characterized by comparing the concentration ratio of radionuclides in reactor water and live steam to determine the source of leakage in the reactor primary system.

(作 用) 本発明においては、原子炉格納容器内の雰囲気中におけ
る放射性核種の濃度及び組成を′ln1定することによ
り、原子炉格納容器内の雰囲気中における放射性核種の
濃度比を知ることができる。従って、原子炉格納容器内
の雰囲気中における放射性核種の濃度比と原子炉炉水中
及び主蒸気中における放射性核種の濃度比とを比較する
ことにより、原子炉炉水中における放射性核種の濃度比
と主蒸気中における放射性核種の濃度比とは数値的に大
きく異なるため、漏洩源が原子炉炉水系であるか主蒸気
系であるかを迅速かつ正確に判定することができる。
(Function) In the present invention, by determining the concentration and composition of radionuclides in the atmosphere inside the reactor containment vessel, it is possible to know the concentration ratio of radionuclides in the atmosphere inside the reactor containment vessel. can. Therefore, by comparing the concentration ratio of radionuclides in the atmosphere inside the reactor containment vessel with the concentration ratio of radionuclides in reactor water and main steam, we can compare the concentration ratio of radionuclides in reactor water and the main steam. Since this is numerically significantly different from the concentration ratio of radionuclides in steam, it is possible to quickly and accurately determine whether the leak source is the reactor water system or the main steam system.

(実施例) 第1図は本発明方法を適用した沸騰水型原子カプラント
の概略構成を示す図で、原子炉格納容器1内には原子炉
圧力容器2が格納されている。
(Example) FIG. 1 is a diagram showing a schematic configuration of a boiling water type atomic couplant to which the method of the present invention is applied, in which a reactor pressure vessel 2 is housed in a reactor containment vessel 1.

この原子炉圧力容器2には原子炉給水配管3と主蒸気配
管4が接続されており、原子炉給水配管3より原子炉圧
力容器2内に給水された炉水は原子炉再循環配管5に設
けられた原子炉再循環ポンプ6により循環撹拌された後
、原子炉圧力容器2内に収容された炉心(図示せず)に
下方より流入する。そして、炉心内に流入した炉水は炉
心の核反応熱によって加熱され、高温高圧の蒸気となっ
て主蒸気配管4より流出し、図示しないタービン発電系
へ送られるようになっている。また、原子炉圧力容器2
の下部には制御棒駆動機構7が設けられ、この制御棒駆
動機構7で図示しない制御棒を昇降駆動している。なお
、制御棒駆動機構7には駆動水配管8が接続されている
A reactor water supply pipe 3 and a main steam pipe 4 are connected to the reactor pressure vessel 2, and the reactor water supplied from the reactor water supply pipe 3 into the reactor pressure vessel 2 is transferred to the reactor recirculation pipe 5. After being circulated and agitated by the provided reactor recirculation pump 6, it flows into the reactor core (not shown) housed in the reactor pressure vessel 2 from below. The reactor water that has flowed into the reactor core is heated by the nuclear reaction heat of the reactor core, becomes high-temperature, high-pressure steam, flows out from the main steam pipe 4, and is sent to a turbine power generation system (not shown). In addition, reactor pressure vessel 2
A control rod drive mechanism 7 is provided at the bottom of the control rod drive mechanism 7, and the control rod drive mechanism 7 drives a control rod (not shown) up and down. Note that a drive water pipe 8 is connected to the control rod drive mechanism 7.

前記原子炉格納容器1内の雰囲気ガスはサンプルポンプ
9によってサンプリング配管10内に吸引される。この
サンプリング配管10には露点湿度計11、水素濃度計
12、放射線モニタ13が設けられ、これらの検出器に
よって原子炉格納容器1内のの露点温度と水素濃度およ
び放射線量が計測されるようになっている。また、原子
炉格納容器1内の雰囲気ガスは除湿器14の冷却水配管
15内を流れる冷却水によって常時除湿され、除湿器1
4で発生した凝縮ドレン水はドレン配管16を通り、ド
レン流量計17を経てサンプタンク18に流入する。そ
して、サンプタンク18に流入した凝縮ドレン水は移送
ポンプ19で昇圧され、サンプ水移送配管20を通って
原子炉格納容器1外へ排出されるようになっている。
Atmospheric gas within the reactor containment vessel 1 is sucked into a sampling pipe 10 by a sample pump 9. This sampling pipe 10 is provided with a dew point hygrometer 11, a hydrogen concentration meter 12, and a radiation monitor 13, and these detectors measure the dew point temperature, hydrogen concentration, and radiation dose inside the reactor containment vessel 1. It has become. In addition, the atmospheric gas inside the reactor containment vessel 1 is constantly dehumidified by the cooling water flowing through the cooling water pipe 15 of the dehumidifier 14.
The condensed drain water generated in step 4 passes through the drain pipe 16, passes through the drain flow meter 17, and flows into the sump tank 18. The condensed drain water that has flowed into the sump tank 18 is pressurized by the transfer pump 19 and is discharged to the outside of the reactor containment vessel 1 through the sump water transfer piping 20.

また、図中21は原子炉格納容器1内の雰囲気ガスをサ
ンプリングして放射性核種(例えばN−13゜F(8,
r−1:H、l−133等)の濃度と組成を分析する放
射性核種分析装置、21は上記放射性核種分析装置21
の分析結果を基に漏洩源を判定する漏洩源判定装置であ
る。
In addition, 21 in the figure samples the atmospheric gas inside the reactor containment vessel 1 to detect radioactive nuclides (for example, N-13°F (8,
r-1: a radionuclide analyzer for analyzing the concentration and composition of H, l-133, etc.; 21 is the radionuclide analyzer 21;
This is a leak source determination device that determines the leak source based on the analysis results.

上記のような構成において、原子炉格納容器1内で原子
炉一次系に漏洩が発生した場合、漏洩水は原子炉格納容
器1内で蒸発して露点温度を高めると共に除湿器14に
よって除湿され、ドレン配管16及びドレン流量計17
を経てサンプタンク18に流入した後、移送ポンプ19
によりサンプ水移送配管20を通って原子炉格納容器1
外へ排出される。一方、漏洩水中に含まれる種々の放射
性核種は原子炉格納容器1内の雰囲気中に放出され、そ
れぞれの半減期に従い崩壊して減衰したり、その化学的
性質に応じて原子炉格納容器1内の機器及び配管等に付
着したり、あるいは除湿器14の凝縮ドレン水中に移行
したりする。そして、原子炉格納容器1内で一次系から
漏洩が発生したときの原子炉格納容器1内の雰囲気中に
おける放射性核種のマスバランスは次式により示される
In the above configuration, when a leak occurs in the primary reactor system within the reactor containment vessel 1, the leaked water evaporates within the reactor containment vessel 1, increases the dew point temperature, and is dehumidified by the dehumidifier 14. Drain piping 16 and drain flow meter 17
After flowing into the sump tank 18 through the transfer pump 19
through the sump water transfer piping 20 to the reactor containment vessel 1.
Expelled outside. On the other hand, various radionuclides contained in the leaked water are released into the atmosphere inside the reactor containment vessel 1, and decay and attenuate according to their respective half-lives. may adhere to equipment, piping, etc., or may migrate into the condensed drain water of the dehumidifier 14. The mass balance of radionuclides in the atmosphere within the reactor containment vessel 1 when leakage occurs from the primary system within the reactor containment vessel 1 is expressed by the following equation.

る。Ru.

また、(2)式を変形すると原子炉格納容器1内におけ
る漏洩水の漏洩率を求める(3)式が得られる。
Furthermore, by transforming the equation (2), the equation (3) for determining the leakage rate of leaked water in the reactor containment vessel 1 can be obtained.

C1:放射性核種iの格納容器内雰囲気中濃度(μCl
 / rri+) CL:放射性核種iの漏洩水中濃度 (μc+/g) L :漏洩率(g/Hr) V :格納容器内容積(rn’) λ、:放射放射性核種部壊定数(H+”)α、:放射放
射性核種路納容器内付着係数(rr?/1lr) ここで、原子炉格納容器1内の雰囲気中における放射性
核種iの濃度C1が平衡状態にある場合は、dc+ /
d t−0とおけることから、原子炉格納容器1内の雰
囲気中における放射性核種iの平衡濃度をC0で表わす
と(1)式より(2)式が得られここで、漏洩水中に含
まれる2種類の放射性核種12 jの濃度比は次式によ
り示される。
C1: Concentration of radionuclide i in the containment vessel atmosphere (μCl
/ rri+) CL: Concentration of radionuclide i in leaked water (μc+/g) L: Leakage rate (g/Hr) V: Internal volume of containment vessel (rn') λ,: Radionuclide decay constant (H+'') α , :Adhesion coefficient of radionuclide in the containment vessel (rr?/1lr) Here, when the concentration C1 of the radionuclide i in the atmosphere in the reactor containment vessel 1 is in an equilibrium state, dc+ /
Since d t-0, if the equilibrium concentration of radionuclide i in the atmosphere inside the reactor containment vessel 1 is expressed as C0, then equation (2) is obtained from equation (1), where: The concentration ratio of the two types of radionuclides 12j is expressed by the following equation.

RL:格納容器内漏洩水中の核種濃度比C,、:核種j
の格納容器内雰囲気平衡濃度(μC1/醒) λ、:核種核種筋壊定数(Hr利) α、:核種核種路納容器内付着係数 (rd/ Hr) CL:核種jk漏洩水中濃度(μC+/g)RA:格納
容器内の雰囲気中の核種濃度比ここで、2種類の放射性
核種の付着係数が同じ場合には(4)式においてC1−
α)とおくことにより、付着係数を求める(5)式が得
られる。
RL: Nuclide concentration ratio in leaked water inside the containment vessel C, ,: Nuclide j
Equilibrium concentration of the atmosphere in the containment vessel (μC1/resistance) λ,: Nuclide myolysis constant (Hr) α,: Adhesion coefficient of nuclide in the containment vessel (rd/Hr) CL: Concentration of nuclide jk in leaked water (μC+/ g) RA: Nuclide concentration ratio in the atmosphere inside the containment vessel. Here, if the adhesion coefficients of two types of radionuclides are the same, C1- in equation (4)
By setting α), equation (5) for determining the adhesion coefficient can be obtained.

また、(5)式を(3)式に代入すると、2種類の放射
性核種i、jの付着係数が同じ場合に、その濃度比から
漏洩率を求める(6)式が得られる。
Furthermore, by substituting equation (5) into equation (3), equation (6) is obtained which calculates the leakage rate from the concentration ratio when the adhesion coefficients of two types of radionuclides i and j are the same.

従って、本発明においては原子炉格納容器1内に放出さ
れた放射性核種の濃度を測定し、原子炉炉水及び主蒸気
中に存在する放射性核種の濃度比と比較することにより
、漏洩源が原子炉炉水系であるか主蒸気系であるかを判
定できる。たとえば、原子炉格納容器1内のN−13,
F−18と漏洩水中のN−13,F−18との関係は(
7)式により表わされる。
Therefore, in the present invention, by measuring the concentration of radionuclides released in the reactor containment vessel 1 and comparing it with the concentration ratio of radionuclides present in the reactor water and main steam, it is possible to determine whether the leak source is an atom. It can be determined whether it is the reactor water system or the main steam system. For example, N-13 in the reactor containment vessel 1,
The relationship between F-18 and N-13 and F-18 in the leaked water is (
7) It is expressed by the formula.

CL :漏洩水中のN−13放射能濃度(μC+/g) λN−13: N−13崩壊定数(4,175Hr−’
)αN−l3 : N−13の格納容器内付着係数(r
d/)lr) C,、:N−13の格納容器内濃度 (μC,/イ) V :格納容器体fa(m’) CL  :漏洩水中のF−18放射能濃度(μc、/g
) λp−+s : P−18崩壊定数(0,379Hr 
−’)αp−+s : F−18の格納容器内付着係数
(rr?/Hr) C−*  :F−18の格納容器内濃度(μC1/rr
1′) ここで、(7)式においてN−13,F−18の化学的
性質から原子炉格納容器1内における付着係数は無視で
きることから(7)式より(8)式が得られる。
CL: N-13 radioactivity concentration in leaked water (μC+/g) λN-13: N-13 decay constant (4,175Hr-'
) αN-l3: Adhesion coefficient of N-13 inside the containment vessel (r
d/)lr) C,,: Concentration of N-13 in the containment vessel (μC, /i) V: Containment vessel body fa (m') CL: F-18 radioactivity concentration in leaked water (μc, /g
) λp-+s: P-18 decay constant (0,379Hr
-') αp-+s: Adhesion coefficient of F-18 in the containment vessel (rr?/Hr) C-*: Concentration of F-18 in the containment vessel (μC1/rr
1') Here, in equation (7), the adhesion coefficient in the reactor containment vessel 1 can be ignored due to the chemical properties of N-13 and F-18, so equation (8) is obtained from equation (7).

(8)式を用いることにより原子炉格納容器1内の雰囲
気中におけるN−13とF−18との濃度比から漏洩水
中のN−13とF−18との濃度比を求め、原子炉炉水
中のN−13/F−18濃度比が25/1程度、主蒸気
中のN−13/F−18濃度比が4/1程度であること
を利用して漏洩源の判定を行なう。また、(3)式を用
いることにより漏洩率の評価が可能となる。
By using equation (8), the concentration ratio of N-13 and F-18 in the leaked water is determined from the concentration ratio of N-13 and F-18 in the atmosphere inside the reactor containment vessel 1, and the The leak source is determined using the fact that the N-13/F-18 concentration ratio in water is about 25/1 and the N-13/F-18 concentration ratio in main steam is about 4/1. Furthermore, by using equation (3), it is possible to evaluate the leakage rate.

第2図は原子炉格納容器1内で一次系から漏洩が発生し
た場合に原子炉格納容器1内に放出される放射性核種の
濃度比を示したもので、N−13及びF−18は共に5
11KeV程度のγ線のみを出すため、その測定は原子
炉格納容器1内の雰囲気ガスより採取したサンプルのγ
線ピーク強度を連続的に測定し、第2図に示すようなサ
ンプルの減衰曲線を作成する。サンプルの減衰曲線はN
−13の減衰曲線aaF−18の減衰曲線すとの合成曲
線となり、その形はN−13とF−18との濃度比に依
存することになる。ここで、原子炉炉水中のN−13/
F−111濃度比は25/1程度とF−18が少ないた
め、漏洩源が原子炉炉水系である場合にはサンプルの減
衰曲線は曲線Cに示すようになる。また、漏洩源が主蒸
気系である場合には主蒸気中のN −13/ F−18
濃度比は4/1程度とF−18が多くなるため、サンプ
ルの減衰曲線はdのようになる。
Figure 2 shows the concentration ratio of radionuclides released into the reactor containment vessel 1 when a leak occurs from the primary system within the reactor containment vessel 1, and both N-13 and F-18 are 5
Since only gamma rays of about 11 KeV are emitted, the measurement is based on the gamma rays of a sample taken from the atmospheric gas inside the reactor containment vessel 1.
The line peak intensity is continuously measured and a sample attenuation curve as shown in FIG. 2 is created. The decay curve of the sample is N
-13's attenuation curve aaF-18's attenuation curve is a composite curve, and its shape depends on the concentration ratio of N-13 and F-18. Here, N-13/ in the reactor water
Since the F-111 concentration ratio is about 25/1 and F-18 is small, the attenuation curve of the sample will be as shown by curve C when the leak source is the reactor water system. In addition, if the leak source is the main steam system, N-13/F-18 in the main steam
Since the concentration ratio is about 4/1 and F-18 is large, the attenuation curve of the sample is as shown in d.

従って、原子炉格納容器1内の雰囲気中におけるN−1
3とF−18との濃度比を測定し、その減衰曲線を求め
ることにより、漏洩源が原子炉炉水系であるか主蒸気系
であるかを判定することができる。
Therefore, N-1 in the atmosphere inside the reactor containment vessel 1
By measuring the concentration ratio of F-3 and F-18 and finding the attenuation curve, it is possible to determine whether the leak source is the reactor water system or the main steam system.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えば、上記実施例では原子炉格納容器1内の雰囲気中
におけるN−13とF−18との濃度比をa1定したが
、l−131とl−133との濃度比を測定し、その測
定結果を原子炉炉水中及び主蒸気中のI −131/ 
l−133濃度比と比較して漏洩源を判定するようにし
てもよい。
For example, in the above embodiment, the concentration ratio of N-13 and F-18 in the atmosphere inside the reactor containment vessel 1 was determined as a1, but the concentration ratio of l-131 and l-133 was measured, and the The results are summarized as I-131/ in the reactor water and main steam.
The leak source may be determined by comparing with the l-133 concentration ratio.

具体的に説明すると、原子炉格納容器1内におけるI 
−131、1−113の挙動は同一と考えられ、原子炉
格納容器1内における付着係数は同じと考えられること
からI −131、l−133の濃度比と漏洩率との関
係は次式で示される。
To explain specifically, I in the reactor containment vessel 1
The behavior of I-131 and 1-113 is considered to be the same, and the sticking coefficient in the reactor containment vessel 1 is considered to be the same. Therefore, the relationship between the concentration ratio of I-131 and l-133 and the leakage rate is expressed by the following equation. shown.

L :漏洩率(g/1lr) RL :漏洩水中のl−1317I−133濃度比(−
)RA:格納容器内雰囲気中の1−1317!−133
濃度比(−) ■ =格納容器内容積(rr?) λr−+*、: l−131崩壊定数 (3,591x 1O−3Hr−’) cL: l−131の漏洩水中の濃度 (μC+ /g) C□  : l−131の格納容器雰囲気中の濃度(u
 C+ / rn’) λI−+33 : l−133崩壊定数(3,316X
1O−211r−り RL−:漏洩水中のl−133/l−131濃度比(−
)RA:格納容器内雰囲気中のl−1337I−131
濃度比(−) CL    : l−133の漏洩水中の濃度(μC+
/g) 夏−133 C、、: J−133の格納容器内雰囲気中の濃度(u
 C+ / rrI′) 前述の(9)式及び(10)式を用い、原子炉格納容器
1内の雰囲気中におけるI −131、l−133の濃
度比から原子炉格納容器1内の漏洩源を原子炉炉水若し
くは主蒸気と仮定してそれぞれ想定漏洩率の評価を実施
する。この漏洩率評価と原子炉格納容器内サンプ水排出
量若しくはドレン流量系の指示値から求めた漏洩率とを
比較することにより漏洩源を判別することができる。
L: Leak rate (g/1lr) RL: l-1317I-133 concentration ratio in leaked water (-
) RA: 1-1317 in the atmosphere inside the containment vessel! -133
Concentration ratio (-) ■ = Containment vessel internal volume (rr?) λr-+*,: l-131 decay constant (3,591x 1O-3Hr-') cL: Concentration of l-131 in leaked water (μC+ /g ) C□: Concentration of l-131 in the containment vessel atmosphere (u
C+/rn') λI-+33: l-133 decay constant (3,316X
1O-211r-RL-: l-133/l-131 concentration ratio in leaked water (-
) RA: l-1337I-131 in the containment vessel atmosphere
Concentration ratio (-) CL: Concentration of l-133 in leaked water (μC+
/g) Summer-133 C,,: Concentration in the atmosphere inside the containment vessel of J-133 (u
C+ / rrI') Using the above equations (9) and (10), determine the leak source inside the reactor containment vessel 1 from the concentration ratio of I-131 and l-133 in the atmosphere inside the reactor containment vessel 1. Evaluate the assumed leakage rate assuming that it is reactor water or main steam. The leak source can be determined by comparing this leak rate evaluation with the leak rate determined from the sump water discharge amount in the reactor containment vessel or the indicated value of the drain flow rate system.

[発明の効果] 以上述べたように本発明によれば、原子炉格納容器内の
雰囲気中における放射性核種の濃度及び組成をII定し
、その測定結果を原子炉炉水中及び主蒸気中の放射性核
種の濃度比と比較して漏洩源を判定するようにしたので
、漏洩源が原子炉炉水系であるか主蒸気系であるかを正
確かつ迅速に判定することができる。従って、−次系漏
洩源の早期発見及びプラント停止時の対応措置等が極め
て容易となり、沸騰水型原子力発電プラントの安全性及
び信頼性向上に大きく寄与することができる。
[Effects of the Invention] As described above, according to the present invention, the concentration and composition of radionuclides in the atmosphere inside the reactor containment vessel are determined, and the measurement results are used to determine the radioactivity in the reactor water and main steam. Since the leak source is determined by comparing the nuclide concentration ratio, it is possible to accurately and quickly determine whether the leak source is the reactor water system or the main steam system. Therefore, early detection of secondary system leakage sources and countermeasures when the plant is shut down become extremely easy, which can greatly contribute to improving the safety and reliability of boiling water nuclear power plants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明による原子炉格納容器内漏洩
源判定方法を説明するための図で、第1図は沸騰水型原
子カプラントの概略構成図、第2図は原子炉格納容器内
に放出された放射性核種の減衰曲線を示す図である。 1・・・原子炉格納容器、2・・・原子炉圧力容器、3
・・・原子炉給水配管、4・・・主蒸気配管、5・・・
原子炉再循環配管、6・・・原子炉再循環ポンプ、7・
・・制御棒駆動機構、8・・・駆動水配管、9・・・サ
ンプリングポンプ、10・・・サンプリング配管、14
・・・除湿器、16・・・ドレン流量計、21・・・放
射性核種分析装置、 2・・・漏洩源判定装置。
Figures 1 and 2 are diagrams for explaining the method of determining leakage sources in the reactor containment vessel according to the present invention, in which Figure 1 is a schematic configuration diagram of a boiling water type nuclear couplant, and Figure 2 is a diagram of the reactor containment vessel. FIG. 3 is a diagram showing a decay curve of radionuclides released within the lumen. 1... Reactor containment vessel, 2... Reactor pressure vessel, 3
...Reactor water supply piping, 4...Main steam piping, 5...
Reactor recirculation piping, 6...Reactor recirculation pump, 7.
... Control rod drive mechanism, 8... Drive water piping, 9... Sampling pump, 10... Sampling piping, 14
...Dehumidifier, 16...Drain flow meter, 21...Radioactive nuclide analyzer, 2...Leak source determination device.

Claims (1)

【特許請求の範囲】[Claims] 原子炉格納容器内の雰囲気中における放射性核種の濃度
及び組成を測定し、その測定結果を原子炉炉水中及び主
蒸気中における放射性核種の濃度比と比較して原子炉一
次系の漏洩源を判定することを特徴とする原子炉格納容
器内漏洩源判定方法。
Measures the concentration and composition of radionuclides in the atmosphere inside the reactor containment vessel, and compares the measurement results with the radionuclide concentration ratio in the reactor water and main steam to determine the source of leakage in the reactor primary system. A method for determining a leak source in a reactor containment vessel, characterized by:
JP63313244A 1988-12-12 1988-12-12 Determination of leakage source in nuclear reactor containment Pending JPH02159599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63313244A JPH02159599A (en) 1988-12-12 1988-12-12 Determination of leakage source in nuclear reactor containment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63313244A JPH02159599A (en) 1988-12-12 1988-12-12 Determination of leakage source in nuclear reactor containment

Publications (1)

Publication Number Publication Date
JPH02159599A true JPH02159599A (en) 1990-06-19

Family

ID=18038853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63313244A Pending JPH02159599A (en) 1988-12-12 1988-12-12 Determination of leakage source in nuclear reactor containment

Country Status (1)

Country Link
JP (1) JPH02159599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096345A (en) * 2006-10-13 2008-04-24 Hitachi Ltd System for and method of monitoring leakage in nuclear facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096345A (en) * 2006-10-13 2008-04-24 Hitachi Ltd System for and method of monitoring leakage in nuclear facility

Similar Documents

Publication Publication Date Title
JP4755061B2 (en) Nuclear facility leakage monitoring system and leakage monitoring method thereof
JPH06300849A (en) Method for detecting leakage of radioactive gas of nuclear reactor and radioactivity monitor for nuclear reactor
US3712850A (en) Method for determining reactor coolant system leakage
US3644172A (en) System for determining leakage inside a reactor containment
CN112857696A (en) Leakage detection device and detection method for radioactive gas sealed container
JPH02159599A (en) Determination of leakage source in nuclear reactor containment
Buell et al. A neutron scatterometer for void-fraction measurement in heated rod-bundle channels under CANDU LOCA conditions
Alberman et al. Technique for power ramp tests in the ISABELLE 1 loop of the OSIRIS reactor
Sung et al. Development of accuracy enhancement system for boron meters using multisensitive detector for reactor safety
RU2191437C1 (en) Leak inspection method for steam generator of nuclear power plant
CN110780332B (en) System and method for measuring transformation rate of element state T and oxidation state T in environment
Carroll et al. Techniques for In-Pile Measurements of Fission-Gas Release
JPH0423235B2 (en)
Jabs et al. The development of an environmental monitoring system for the continuous detection of low-level radioactive gases
JP3289010B2 (en) Shipping equipment
Philbin Containment Vessel Leakage Under Maximum Credible Accident Conditions
Braid et al. Operation of cover-gas system during SLSF tests
Freitag et al. THAI experiments on iodine behavior in a room chain representing flow conditions in large containments
KR100264629B1 (en) The production method of gamma calibration source of radioactive gas and a device for gas separation
CN117872454A (en) Tritium monitor calibration device with calibration chamber and tritium monitor calibration method
Wetchagarun et al. A study of residence time distribution in a lab scale stirred tank reactor using radiotracer technique
JPH052093A (en) Abnormality diagnosis device for pressurized water reactor
Rose Nuclear-power-plant instrumentation evaluation
JPH05249278A (en) Method for identifying leak source in reactor containment
Porsch et al. Accelerated high-temperature tests with spent PWR and BWR fuel rods under dry storage conditions