JPS5914916A - Method and apparatus for cooling and curing melted resin - Google Patents

Method and apparatus for cooling and curing melted resin

Info

Publication number
JPS5914916A
JPS5914916A JP12494482A JP12494482A JPS5914916A JP S5914916 A JPS5914916 A JP S5914916A JP 12494482 A JP12494482 A JP 12494482A JP 12494482 A JP12494482 A JP 12494482A JP S5914916 A JPS5914916 A JP S5914916A
Authority
JP
Japan
Prior art keywords
chamber
container
cooling
molten resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12494482A
Other languages
Japanese (ja)
Other versions
JPS634765B2 (en
Inventor
Minoru Kaneda
金田 實
Masao Watanabe
正雄 渡邊
Tetsuro Sanno
三王 哲朗
Hisayoshi Ishibashi
石橋 久良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Rinsan Kagaku Kogyo KK
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Rinsan Kagaku Kogyo KK
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Rinsan Kagaku Kogyo KK, Arakawa Chemical Industries Ltd filed Critical Arakawa Rinsan Kagaku Kogyo KK
Priority to JP12494482A priority Critical patent/JPS5914916A/en
Publication of JPS5914916A publication Critical patent/JPS5914916A/en
Publication of JPS634765B2 publication Critical patent/JPS634765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • B29B13/022Melting the material to be shaped

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To obtain efficiently a small mass of a resin uniform in property, by charging a melted resin into a chamber of a container, the chamber being in the shape of a rotating body, and cooling the melted resin while rotating the container about its rotational axis. CONSTITUTION:When a resin that is hard and brittle at normal temperatures such as rosin-modified phenolic resin is taken out from a kettle, the melted resin is charged into the chamber 11 of the container 1 that is in the shape of a rotating body, and the chamber 11 is rotated about the rotational axis 31 to cause the melted resin to adhere to the chamber wall, during which the melted resin cooled and cured. It is preferably that a cooling liquid is forcibly brought in contact with the outer surface of the container 1 and at the same time a cooling gas is fed into the chamber of the container so that the resin is forcibly and rapidly cooled. Thus since the product can be taken out from the kettle quickly and cooled and cured, a uniform product can be obtained.

Description

【発明の詳細な説明】 本発明は例えばDジシ変性フェノール樹脂のように、常
温で硬く脆い樹脂を溶融状態から冷却固化させる方法及
び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for cooling and solidifying a resin that is hard and brittle at room temperature, such as D-disi modified phenol resin, from a molten state.

前記樹脂は反応生成後、通常固化され、破砕して小塊と
され、ついで梱包され、輸送される。
After the resin is produced, it is usually solidified, crushed into small pieces, and then packaged and shipped.

例えば、0ジシ変性フエノール樹脂は反応釜からベルト
コンベアへ溶融状態で流し出され、コシベア上を移動中
に自然放熱又は強制的に冷却されて固化し、コシベア終
端でドクターにより掻き取られ、このとき破砕してフレ
ーク又は小塊となる。
For example, 0disi-modified phenolic resin is poured out in a molten state from a reaction vessel onto a belt conveyor, solidified by natural heat dissipation or forced cooling while moving on Koshiveer, and is scraped off by a doctor at the end of Koshiveer. Crush into flakes or small pieces.

或いは前記ベルトコンベアに代えて冷却装置を内臓した
ドラムが使用されることもあるが、この場合もo p”
シ変性フェノール樹脂は反応釜からドラム上に流し出さ
れ、ドラムと共に一定角度回転する間に放熱して固化し
、その後ドクターにより掻き増られてフレークとされる
。しかし、前記いずれの場合も、反応釜内の樹脂を溶融
状態に保つために該釜内を高温に維持し続ける必要があ
る。したがって反応釜から流出する樹脂の初期のものと
終期のものとの間に熱履歴の差が生じ、その結果均一な
性質のものが得られないという欠点がある。
Alternatively, a drum with a built-in cooling device may be used instead of the belt conveyor, but in this case as well,
The modified phenolic resin is poured from the reaction vessel onto a drum, and while rotating at a certain angle with the drum, it radiates heat and solidifies, and is then scraped up by a doctor to form flakes. However, in any of the above cases, it is necessary to keep the inside of the reactor at a high temperature in order to keep the resin in the reactor in a molten state. Therefore, there is a difference in thermal history between the initial resin and the final resin flowing out from the reaction vessel, and as a result, there is a drawback that uniform properties cannot be obtained.

また、溶融した樹脂は薄く拡がるので、固化樹脂の厚み
は、せいぜい51JI%通常2乃至3 taxというよ
うに制限され、設備の単位面積当りの処理能力に限界が
あり、生産性が悪い。
Furthermore, since the molten resin spreads thinly, the thickness of the solidified resin is limited to 51 JI%, usually 2 to 3 tax, which limits the processing capacity per unit area of the equipment, resulting in poor productivity.

本発明はこれら従来技術の欠点を解消し、均−寿性質の
ロジシ変性フェノール樹脂小塊を能率よ動因化方法及び
装置を提供することを目的とする。
It is an object of the present invention to overcome these drawbacks of the prior art and to provide a method and apparatus for efficiently mobilizing logic-modified phenolic resin agglomerates with uniform longevity.

本発明は前記目的を達成するため、回転体形状の室を有
する容器の該室に溶融樹脂を入れ、該容器を前記室の回
転軸線を中心に回転させ、前記溶融樹脂の該室内壁への
付着力と、前記回転に伴い該溶融樹脂に働く遠心力とに
より、該溶融樹脂を前記室内周面に付着せしめて冷却固
化させることを特徴とする溶融樹脂の冷却同化方法を提
供し、該方法を実施するための装置として、回転体形状
の室と、該室に溶融樹脂を供給する供給口と、該室から
樹脂を取出す取出口とを有する容器、並びに前記室の回
転軸線を中心に該容器を駆動回転させる駆動装量を備え
たことを特徴とする溶融樹脂の冷却固化装置を提供する
ものである。
In order to achieve the above object, the present invention puts molten resin into a chamber of a container having a chamber shaped like a rotating body, rotates the container around the rotational axis of the chamber, and directs the molten resin to the inner wall of the chamber. Provided is a method for cooling and assimilating a molten resin, characterized in that the molten resin is made to adhere to the circumferential surface of the chamber and solidified by cooling by adhesion force and centrifugal force acting on the molten resin as the rotation occurs. As an apparatus for implementing this, there is provided a container having a chamber in the shape of a rotating body, a supply port for supplying molten resin into the chamber, and an outlet for taking out the resin from the chamber, and The present invention provides an apparatus for cooling and solidifying molten resin, characterized in that it is equipped with a drive unit for driving and rotating a container.

本発明方法においては、前記冷却は容器内外への自然放
熱のみによって行ってもよいが、より能率を上げるため
該冷却に際し、前記容器外面に冷媒を強制的に接触させ
ることができ、又は前記容器内部へ冷却ガスを供給する
こともでき、さらに前記容器外面への冷媒の強制的接触
及び前記容器内部への冷却ガスの供給循環の両方を行な
うとともできる。
In the method of the present invention, the cooling may be performed only by natural heat radiation inside and outside the container, but in order to improve efficiency, a refrigerant may be forcibly brought into contact with the outer surface of the container, or It is also possible to supply cooling gas to the interior of the container, and it is also possible to forcibly bring the refrigerant into contact with the outer surface of the container and to circulate the cooling gas inside the container.

本発明装置は、前記容器外面に冷媒を強制的に接触透せ
る外部冷却装置、及び前記室内へ冷却ガスを供給する内
部冷却装置のいずれか一方又は双方を備え、冷却能率を
上げることができる。
The apparatus of the present invention is equipped with either or both of an external cooling device that allows a refrigerant to be forcibly brought into contact with the outer surface of the container, and an internal cooling device that supplies cooling gas into the chamber, thereby increasing cooling efficiency.

前記容器室内周面に固化付着した樹脂は、収縮により自
然に、或いは前記容器に衝撃を与えてき裂を生じさせ、
該衝撃により剥落させて小塊とせしめられるのであるが
、前記室が回転体形状であるので、第6図に示すように
き裂(101)が容器(100)半径方向に発生し、該
き裂により形成された断面扇形状部分(102)が互い
に作用し合って、いわゆるづリッジをなし、容器室内周
面から落下しないことがある。
The resin solidified and adhered to the inner peripheral surface of the container causes cracks either naturally due to shrinkage or by applying an impact to the container,
The impact causes the container to flake off into small pieces, but since the chamber is in the shape of a rotating body, cracks (101) occur in the radial direction of the container (100) as shown in FIG. The fan-shaped cross-section portions (102) formed by the cracks interact with each other to form a so-called ridge, and may not fall from the circumferential surface of the container chamber.

本発明は、このような場合に備えて、前記装置において
、前記容器が室内周面に尖頭状突起を有した装置をも提
供するものである。
In preparation for such a case, the present invention also provides an apparatus in which the container has a pointed protrusion on the inner peripheral surface thereof.

該尖頭状突起は前記室内周面上に連続して延びる突条と
することができる。また、該突条は前記室の回転軸線を
中心とする螺旋又は螺旋状とすることができ、この場合
は前記容器が一定方向に回転した時に生じる該螺旋又は
螺旋状突条による送りねじ効果により、固化後破砕した
樹脂小塊の取出しを自動的に、或いは容易に行なうこと
ができる。
The pointed protrusion may be a protrusion that continuously extends on the inner peripheral surface of the chamber. Further, the protrusion may be spiral or spiral-shaped around the rotational axis of the chamber, and in this case, the feed screw effect of the spiral or helical protrusion that occurs when the container rotates in a certain direction After solidification, the crushed resin lumps can be taken out automatically or easily.

次に本発明方法の実施例をロジυ変性フェノール樹脂の
冷却固化装置例と共に添付図面を参照して説明する。
Next, embodiments of the method of the present invention will be described with reference to the accompanying drawings together with an example of a cooling solidification apparatus for logiυ modified phenolic resin.

第1図及び第2図に示すロジシ変性フェノール樹脂の冷
却固化装置は、容器+1)と該容器外周面圧冷却液を供
給する外部冷却装置(2)と、前記室内へ冷却ガスを供
′給し循環させる内部冷却装置(3)とを備えている。
The cooling and solidifying device for logic-modified phenolic resin shown in FIGS. and an internal cooling device (3) for circulating water.

容器(1)はその胴部が円筒状とされ、内部に室(11
)を有し、円筒中心軸線が略水平となるように支持駆動
装置(4)により支持されている。支持駆動装置(4)
は容器(1)を支える4つの0−ラー(4X)と、該0
−ラーを変速機(4謁及びベルト装置(4□□□を介し
て駆動する電動上−ターC4)とを備えている。
The container (1) has a cylindrical body and a chamber (11) inside.
), and is supported by a support drive device (4) so that the center axis of the cylinder is substantially horizontal. Support drive device (4)
is four 0-lers (4X) that support the container (1), and the
- Equipped with an electric upper gear C4 that drives the roller through a transmission (4 seats and a belt device (4□□□).

容器(+)は一端側を閉じられ、他端側に固化樹脂の取
出口θ2)を備えている。取出口(12)は容器(1)
他端側全面に開いた開口と該開口を締め具(14)によ
り開閉自在に密閉する閉蓋(131を備えている。容器
+1)はさらに、閉蓋(131中夫の開口及び該開口に
密嵌する溶融樹脂供給口(+5)を備えている。供給口
(15)はロータリージョイシト(■6)を介して供給
パイづ(5)に接続され、取出口(12)下方には同化
樹脂の取出し時に該樹脂を受けるポツパー(6)が配設
されている。
The container (+) is closed at one end and has a solidified resin outlet θ2) at the other end. The outlet (12) is the container (1)
The container +1 is provided with an opening that opens on the entire surface of the other end, and a closing lid (131) that freely seals the opening with a fastener (14). It is equipped with a molten resin supply port (+5) that fits tightly.The supply port (15) is connected to the supply pipe (5) via a rotary joyseat (■6), and an assimilation port (+5) is provided below the outlet port (12). A popper (6) is provided to receive the resin when it is taken out.

外部冷却装置(2)は、容器(1)上方に略水平に取付
けられ下面に多数の小孔が並設されたパイ−5(2])
を備え、冷却液は圧送されて前記小孔から容器外周面に
供給される。
The external cooling device (2) is a pie-5 (2) that is installed approximately horizontally above the container (1) and has many small holes arranged in parallel on the bottom surface.
The cooling liquid is pumped and supplied to the outer peripheral surface of the container through the small holes.

内部冷却装置(3)は容器f+)閉端側の壁を貫通する
パイ−5(3]1、(32を備え、圧送されてきた冷却
ガスはパイづイl)から供給され、室(11)内を循環
した後、パイプ(32から排出される。パイづt3tl
、(32は複式内管固定式ロータリージョイシト測によ
り容器(1)に回転可能かつ気密に接続されている。ロ
ジシ変性フェノール樹脂を冷却固化させるには、まず供
給口(1荀より室(11)へ溶融樹脂を適量流し入れた
後、外部冷却装置(2)及び内部冷却装置(3)から各
々冷却液及び冷却ガスを供給しつつ、モーター+44>
により容器(1)を駆動回転させる。室(11)へ流し
入れられる樹脂の量は図から明らかhように溶融樹脂供
給口(1荀及び内部冷却装置のパイづ(31)を越えな
い量とされる。
The internal cooling device (3) is equipped with pipes 5 (3) 1 and (32) penetrating the wall on the closed end side of the container f+, and the compressed cooling gas is supplied from the pipe pipe l), ) and then discharged from pipe (32).
, (32 is rotatably and airtightly connected to the container (1) by a double inner tube fixed type rotary joysite. In order to cool and solidify the logic modified phenolic resin, first, the supply port (11) is connected to the chamber (11). ) After pouring an appropriate amount of molten resin into the motor +44>, while supplying cooling liquid and cooling gas from the external cooling device (2) and internal cooling device (3), respectively.
The container (1) is driven to rotate. As is clear from the figure, the amount of resin poured into the chamber (11) is such that it does not exceed the molten resin supply port (1 tube) and the pipe tube (31) of the internal cooling device.

溶融樹脂は最初容器(I下部に溜まっているが、温度が
低下するにつれて粘着性を増し、室(lり内周面への付
着力と、容器+1)の回転に伴い室(11>内周面に付
着した樹脂に働く遠心力との作用により、重力に抗して
室(11)内周面全体に拡がり逐次厚みが増大する。か
くして、樹脂を室(11)内周面に略均−厚さに拡げ、
固化させ、室(11)内周面に沿う円筒状の固化樹脂層
(7)を得る。固化樹脂層(7)は収縮によシ自然にき
裂を生じるが、容器+1)に衝撃を与えられてさらにき
裂を生じ、該衝撃により容器内周面から剥落せしめられ
、同時に破砕する。破砕した樹脂は閉蓋03)を開かれ
た取出口(12)からホッパー(6)へ移される。
The molten resin initially accumulates at the bottom of the container (I), but as the temperature decreases, it becomes more sticky, and as the chamber (11>inner periphery increases due to the adhesion force to the inner circumferential surface and the rotation of the chamber (container + 1)). Due to the action of the centrifugal force acting on the resin adhered to the surface, it spreads over the entire inner peripheral surface of the chamber (11) against gravity and gradually increases in thickness.In this way, the resin is spread almost evenly on the inner peripheral surface of the chamber (11). Spread it to a thickness,
It is solidified to obtain a cylindrical solidified resin layer (7) along the inner peripheral surface of the chamber (11). The solidified resin layer (7) naturally cracks due to shrinkage, but further cracks occur when the container +1) is subjected to an impact, and the impact causes it to peel off from the inner circumferential surface of the container and fracture at the same time. The crushed resin is transferred to the hopper (6) through the outlet (12) with the closed lid 03) opened.

したがって、樹脂を反応釜から本装置へ移した後は、も
はや樹脂は高温に維持されることはないので、固化初期
の樹脂と終期の樹脂との間に熱履歴の差は生じない。ま
た、溶融樹脂の付着力と該樹脂に働く遠心力とにより該
樹脂を容器室内周面に付着せしめるので、厚い固化樹脂
層を得ることができ、コシバクトな装置により高い生産
性を得ることができる。さらに、固化樹脂は容器の取出
口から直接ホッパーへ移すことができるので回収が容易
である。また、該実施例のように樹脂の冷却が容器f+
)外部及び内部の両方から強制的に行なわれる場合には
、固化が迅速に進行し能率が向上する。さらに、該実施
例では取出口(12)は閉蓋0■により密閉され、供給
口(1荀は供給パイプ(5)に、パイプ(31)、G3
2は容器ft’)に各々ロータリージョイシト(16)
、(晴により気密に接続されているので、熱及び臭気を
大気中に放出することがガく、作業環境が良好に保たれ
る。
Therefore, after the resin is transferred from the reaction vessel to the present apparatus, the resin is no longer maintained at a high temperature, so there is no difference in thermal history between the resin at the initial stage of solidification and the resin at the final stage of solidification. In addition, since the adhesive force of the molten resin and the centrifugal force acting on the resin cause the resin to adhere to the periphery of the container interior, a thick solidified resin layer can be obtained, and high productivity can be achieved with a compact device. . Furthermore, since the solidified resin can be transferred directly from the outlet of the container to the hopper, recovery is easy. In addition, as in this example, the cooling of the resin is carried out in the container f+.
) When forced both externally and internally, solidification proceeds quickly and efficiency is improved. Further, in this embodiment, the outlet (12) is sealed with a closing lid 0, and the supply port (1) is connected to the supply pipe (5), the pipe (31), and the G3
2 is a rotary joyseat (16) for each container ft')
, (Since the connection is airtight, heat and odor are not released into the atmosphere, and a good working environment is maintained.

第3図及び第4図は冷却固化装置における容器の他の例
の要部を示す。該容器(白は前述の容器(1)と同様の
室(1白、取出口(12’)及び供給口を備えているが
、さらに尖頭状突条(17>を備えている。突条07)
は断面三角形の帯状をなし、容器(1′)内周面に円筒
中心軸線に略平行に、かつ互いに向き合うよう2本取付
けられている。
FIGS. 3 and 4 show the main parts of other examples of containers in the cooling and solidifying apparatus. The container (white is equipped with a chamber (1 white) similar to the above-mentioned container (1), an outlet (12') and a supply port, but is further provided with a pointed ridge (17). 07)
are strip-shaped with a triangular cross section, and two of them are attached to the inner circumferential surface of the container (1') substantially parallel to the cylindrical center axis and facing each other.

したがって、樹脂固化後、容器(白に与えられる衝撃に
より、き裂(201)が第7図に示すように容器半径方
向に発生し該き裂により固化樹脂の一部に断面扇形状部
分(202)が形成されても、突条0?)に接する部分
は断面四角形状又は逆用形状(208)となるため、い
わゆるブリッジは形成されることなく、確実に容器内周
面から剥落する。
Therefore, after the resin solidifies, a crack (201) is generated in the radial direction of the container due to the impact applied to the container (white) as shown in FIG. ) is formed, the portion in contact with the protrusion 0?) has a rectangular cross section or a reverse shape (208), so that a so-called bridge is not formed and it reliably peels off from the inner circumferential surface of the container.

前記尖頭状突条は第5図に示すように、容器(白の円筒
中心軸線を中心とし、容器内周面に沿う螺旋をなす突条
(へ)とすることができる。こうすることにより、固化
した樹脂は前述と同様に確実に容器内壁から剥落すると
共に、破砕した樹脂が容器(1”)の回転につれて螺旋
突条(18)により室(1白の一端側へ寄せられる。回
転方向を適切に選ぶことにより(第5図に示す例では取
出口(12’)  から見て右回りに回転させることに
よシ)、樹脂小塊は取出口(12’)へ送られホッパー
(6)内へ落下せしめられる。
As shown in FIG. 5, the pointed protrusion can be a protrusion that forms a spiral along the inner circumferential surface of the container, centered on the center axis of the white cylinder. As described above, the solidified resin reliably peels off from the inner wall of the container, and as the container (1") rotates, the crushed resin is brought to one end of the chamber (1") by the spiral protrusion (18). By appropriately selecting the hopper (in the example shown in Figure 5, by rotating it clockwise when viewed from the outlet (12')), the resin pellets are sent to the outlet (12') and into the hopper (6). ) is forced to fall inside.

突条(+8!は連続した螺旋とする必要はなく、短い直
線状突起を螺旋状に配列した場合にも同様の効果が得ら
れる。また、突起の数、頂角の大きさ及び高さは樹脂の
種類に応じ適宜のものとすることができる。
The protrusions (+8!) do not need to be continuous spirals, and the same effect can be obtained by arranging short linear protrusions in a spiral.Also, the number of protrusions, the size of the apex angle, and the height It can be made as appropriate depending on the type of resin.

実施例では容器が略水平な軸線を中心に回転する場合に
ついて説明したが、該容器は略垂直な軸容器の支持及び
駆動には前述のもの以外の適宜の手段を用いることが可
能である。
In the embodiment, a case has been described in which the container rotates around a substantially horizontal axis, but the container has a substantially vertical axis. Appropriate means other than those described above may be used to support and drive the container.

外部冷却装置及び内部冷却装置は、各々容器周壁を冷却
し得るもの及び容器室内へ冷却ガスを供給し得るもので
あれば、種々の装置とすることができる。例えば外部冷
却装置は容器の一部を浸漬し得る冷却槽を備えた装置と
してもよい。
The external cooling device and the internal cooling device can be various devices as long as they are capable of cooling the peripheral wall of the container and supplying cooling gas into the interior of the container. For example, the external cooling device may include a cooling bath in which a portion of the container can be immersed.

冷却ガスとしては空気、不活性カス、窒素等適宜のもの
が使用可能である。
As the cooling gas, appropriate gases such as air, inert gas, nitrogen, etc. can be used.

固化した樹脂を容器内周面から剥落させるには、第2図
に示すように、カム機構、歯車機構等適宜の間欠運動機
構により容器が一定量回転する毎に該容器を打撃するハ
シマー装置(8)を設けることにより行左っでもよい。
In order to peel off the solidified resin from the inner circumferential surface of the container, as shown in FIG. 8) may be provided on the left side.

以上から明らかなように、本発明によれば、均一な性質
の0ジシ変性フエノール樹脂小塊を能率よく得るのみな
らず、広く一般に、常温で硬く脆い熱可塑性樹脂の小塊
を得るのに有利な溶融樹脂の冷却固化装置を提供するこ
とができる。
As is clear from the above, according to the present invention, it is not only possible to efficiently obtain 0-di-modified phenolic resin pellets with uniform properties, but also to be generally advantageous in obtaining thermoplastic resin pellets that are hard and brittle at room temperature. It is possible to provide an apparatus for cooling and solidifying molten resin.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明の実施例を示すもので、第1
図は1実施例装置を一部断面により示す側面図、第2図
は第1図に示す装置を一部断面により示す正面図、第3
図は他の実施例容器要部の縦断面図、第4図は第3図の
A−A線に沿う切断端面図、第5図はさらに他の実施例
容器要部の縦断面図、第6図は第1図に示す容器の一部
を固化樹脂と共に示す横断面図、第7図は第3図に示す
容器の一部を固化樹脂と共に示す横断面図である。 (1)・・・・・・・・・容器       (2)・
・・・・・・・・外部冷却装置(3)・・・・・・・・
・内部冷却装置   (4)・・・・・・・・・支持駆
動装置(7)・・・・−・・・・固化樹脂層    (
11)・・・・・・・・・室(+2)・・・・・・・・
・取出口      (15)・・・・・・・・・供給
口0η・・・・・・・−・尖頭状突条    (+8)
・・・・・・・・・螺旋突条(以 上)
1 to 5 show embodiments of the present invention.
The figure is a side view partially showing the device according to the first embodiment, FIG. 2 is a front view partially showing the device shown in FIG. 1, and FIG.
4 is a cross-sectional view taken along the line A-A in FIG. 3, and FIG. 6 is a cross-sectional view showing a part of the container shown in FIG. 1 together with solidified resin, and FIG. 7 is a cross-sectional view showing a part of the container shown in FIG. 3 together with solidified resin. (1)・・・・・・Container (2)・
......External cooling device (3)...
・Internal cooling device (4)・・・・・・・Support drive device (7)・・・・−・・Solidified resin layer (
11)・・・・・・・・・Room (+2)・・・・・・・・・
・Outlet port (15)・・・・・・・Supply port 0η・・・・・・・−・Pointed protrusion (+8)
・・・・・・・・・Spiral protrusions (and above)

Claims (1)

【特許請求の範囲】 ■ 回転体形状の室を有する容器の該室に溶融樹脂を入
れ、該容器を前記室の回転軸線を中心に回転させ、前記
溶融樹脂の該室内壁への付着力と、前記回転に伴い該溶
融樹脂に働く遠心力とにより、該溶融樹脂を前記室内周
面に付着せしめて冷却固化させることを特徴とする溶融
樹脂の冷却固化方法。 ■ 前記冷却に際し、前記容器外面に冷媒を強制的に接
触させることを特徴とする特許請求の範囲第1項に記載
の溶融樹脂の冷却固化方法。 ■ 前記冷却に際し、前記容器室内へ冷却ガスを供給す
ることを特徴とする特許請求の範囲第1項又は第2項に
記載の溶融樹脂の冷却固化方法。 ■ 回転体形状の室と、該室に溶融樹脂を供給する供給
口と、核室から樹脂を取出す取出口とを有する容器、並
びに前記室の回転軸線を中心に該容器を駆動回転させる
駆動装置を備えたことを特徴とする溶融樹脂の冷却固化
装置。 ■ 回転体形状の室と、該室に溶融樹脂を供給する供給
口と、該室から樹脂を取出す取出口と、該室内周面上に
配設された尖頭状突起とを有する容器、並びに前記室の
回転軸線を中心に該容器を駆動回転−させる駆動装置を
備えたことを特徴とする溶融樹脂の冷却同化装置。 ■ 前記尖頭状突起が前記室内周面上に連続して延びる
突条であることを特徴とする特許請求の範囲第5項に記
載の溶融樹脂の冷却固化装置。 ■ 前記突条が前記室の回転軸線を中心とする螺旋又は
螺旋状に延びていることを特徴とする特許請求の範囲第
6項に記載の溶融樹脂の冷却固化装置。
[Claims] ■ A molten resin is placed in a chamber of a container having a chamber shaped like a rotating body, and the container is rotated about the rotation axis of the chamber to increase the adhesion force of the molten resin to the inner wall of the chamber. . A method for cooling and solidifying a molten resin, characterized in that the molten resin is caused to adhere to the inner circumferential surface of the chamber and is cooled and solidified by a centrifugal force acting on the molten resin as the molten resin rotates. (2) A method for cooling and solidifying a molten resin according to claim 1, characterized in that during the cooling, a refrigerant is forcibly brought into contact with the outer surface of the container. (2) The method for cooling and solidifying a molten resin according to claim 1 or 2, characterized in that during the cooling, a cooling gas is supplied into the container chamber. ■ A container having a rotating body-shaped chamber, a supply port for supplying molten resin into the chamber, and an outlet for taking out the resin from the core chamber, and a drive device that drives and rotates the container about the rotation axis of the chamber. A molten resin cooling and solidifying device characterized by comprising: ■ A container having a rotating body-shaped chamber, a supply port for supplying molten resin to the chamber, an outlet for taking out the resin from the chamber, and a pointed projection disposed on the circumferential surface of the chamber, and An apparatus for cooling and assimilating molten resin, comprising a drive device that drives and rotates the container about the rotation axis of the chamber. (2) The apparatus for cooling and solidifying molten resin according to claim 5, wherein the pointed projection is a protrusion extending continuously on the circumferential surface of the chamber. (2) The apparatus for cooling and solidifying molten resin according to claim 6, wherein the protrusion extends in a spiral or helical shape centered on the rotational axis of the chamber.
JP12494482A 1982-07-16 1982-07-16 Method and apparatus for cooling and curing melted resin Granted JPS5914916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12494482A JPS5914916A (en) 1982-07-16 1982-07-16 Method and apparatus for cooling and curing melted resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12494482A JPS5914916A (en) 1982-07-16 1982-07-16 Method and apparatus for cooling and curing melted resin

Publications (2)

Publication Number Publication Date
JPS5914916A true JPS5914916A (en) 1984-01-25
JPS634765B2 JPS634765B2 (en) 1988-01-30

Family

ID=14898055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12494482A Granted JPS5914916A (en) 1982-07-16 1982-07-16 Method and apparatus for cooling and curing melted resin

Country Status (1)

Country Link
JP (1) JPS5914916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710113A (en) * 1985-11-23 1987-12-01 Hermann Berstorff Maschinenbau Gmbh Apparatus for granulating plastics materials

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890936A (en) * 1972-02-28 1973-11-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890936A (en) * 1972-02-28 1973-11-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710113A (en) * 1985-11-23 1987-12-01 Hermann Berstorff Maschinenbau Gmbh Apparatus for granulating plastics materials

Also Published As

Publication number Publication date
JPS634765B2 (en) 1988-01-30

Similar Documents

Publication Publication Date Title
AU685650B2 (en) Method and apparatus for used aluminum can recycling
US20110134717A1 (en) Method and device for producing a coating material
CN102725058A (en) Shearing type dispersing device, circulation type dispersing system, and circulation type dispersing method
CN208879610U (en) A kind of sand mixer device of improvement
JPS5914916A (en) Method and apparatus for cooling and curing melted resin
JP2004275937A (en) Pulverizer
CN210385721U (en) Many raw materials mixing apparatus of feed processing usefulness
JP5611454B2 (en) Method and apparatus for producing glassy slag
CN109624125A (en) Plastic crushing mixing granulator all-in-one machine and granulation recovery method
JPH0816795B2 (en) Toner manufacturing method and apparatus
CN207385620U (en) Pharmaceutical stirring ball mill
CN209599623U (en) Plastic crushing mixing granulator all-in-one machine
JP2005199124A (en) Medium agitation type crusher
CN209221936U (en) The stirring attachment device of super-fine powder attachment raw particles
HU215360B (en) Process for the manufacture of grinding powder
CN210547833U (en) Novel tectorial membrane sand swing sieve device
JPH0417348B2 (en)
CN214553151U (en) Rust-resistant coating powder agitating unit
US5393141A (en) Method for operating cooling mixer for bulk material in powder and granular form
CN210638466U (en) Device for drying micro silicon powder
CN107754648A (en) A kind of wettable powder mixer
JP3685625B2 (en) Particle processing method using a substance that melts by heating
CN217275013U (en) Cooling device for aquatic feed processing
CN207360745U (en) Disk cooler and dry cooling packing device
JP2002317228A (en) Method for treating iron ore powder hard to be granulated