JPS59149046A - Monolithic planar processed intergrated circuit - Google Patents

Monolithic planar processed intergrated circuit

Info

Publication number
JPS59149046A
JPS59149046A JP58024052A JP2405283A JPS59149046A JP S59149046 A JPS59149046 A JP S59149046A JP 58024052 A JP58024052 A JP 58024052A JP 2405283 A JP2405283 A JP 2405283A JP S59149046 A JPS59149046 A JP S59149046A
Authority
JP
Japan
Prior art keywords
transistor
parastic
base
emitter
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58024052A
Other languages
Japanese (ja)
Inventor
Takuji Kadota
門田 卓治
Shingi Yokobori
横堀 進義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58024052A priority Critical patent/JPS59149046A/en
Publication of JPS59149046A publication Critical patent/JPS59149046A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • H01L27/0823Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only including vertical bipolar transistors only
    • H01L27/0826Combination of vertical complementary transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an N-P-N transistor,in which a latch-up is not generated through the operation of a thyristor, by forming an N<+> layer for further isolating a vertical P-N-P transistor and the N-P-N transistor, additionally constituting a parastic transistor and applying reverse bias to the parastic transistor to the state of interruption. CONSTITUTION:An N-P-N transistor 300 amplifies an input signal applied to a base teminal 23, and a P-N-P transistor 100 amplifies the signal and outputs an output signal from itself to a collector terminal 4. When the vertical P-N-P transistor 100 is brought to a saturated region, when collector voltage equalizes to approximately emitter voltage, currents flow through a parastic resistor 10 and the potential of a diffusion isolation layer 13 rises because a parastic transistor 9 is forward-biassed and the base currents of a parastic transistor 8 are flowed. However, a latch-up by a parastic transistor 24 and the N-P-N transitor 300 can be avoided because a parastic transistor 7 for the N-P-N transistor 300 is not operated when potential through which a section between a base and an emitter is brought to a reverse bias state at all times is connected previously to a base terminal 20.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、パーティカルPNP トランジスタラ2ベー
“ 使用した半導体集積回路に用いることができるモノリシ
ックプレナープロセス集積回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a monolithic planar process integrated circuit that can be used in a semiconductor integrated circuit using a particle PNP transistor.

従来例の構成とその問題点 パイポーラモノリシノク半導体集積回路に使用されるP
NP )ランジスタ素子として、従来のラテラル型に対
して素子面積が小さく、コレクタ電流に対する直流電流
増幅率のすぐれたパーティカル型が多く使用されている
Conventional configuration and its problems P used in bipolar monolithic semiconductor integrated circuits
As the NP) transistor element, a particle type is often used, which has a smaller element area than the conventional lateral type and has an excellent DC current amplification factor with respect to the collector current.

以下図面を参照しながら従来のモノリシックプレナープ
ロセス集積回路について説明する。
A conventional monolithic planar process integrated circuit will be described below with reference to the drawings.

第1図(丙は、従来のプレナー型バイポーラプロセスで
特にパーティカルPNP)ランジスタトNPN)ランジ
スタが隣接して形成された部分の断面図で、第1図(B
)は、第1図四の本来のトランジスタ素子以外に生じる
素子(以下、寄生素子と称する。)を含めた等価回路図
の一例を示す。
Figure 1 (C is a cross-sectional view of a part where transistors (particularly PNP) transistors (NPN) are formed adjacent to each other in a conventional planar bipolar process;
) shows an example of an equivalent circuit diagram including elements (hereinafter referred to as parasitic elements) that occur in addition to the original transistor elements shown in FIG.

なお、第1図■、(B)に於いて丸で囲んだ素子記号は
寄生素子を示す。第1図(8)で、1.2.3及び4.
6.5はそれぞれPNP及びNPN トランジ3  ゛
 ′ スタのコレクタ、エミッタ、ベース端子、13はそれぞ
れのトランジスタを電気的に分離するためのP型拡散分
離層、16はP型シリコン基板、7〜12は寄生素子を
示す。また、第1図(B)は増幅回路を構成したもので
第1回内と同一のものは同じ符号を付し、18はベース
・エミッタ間抵抗、19は電流制限抵抗を示す。
In addition, the element symbols enclosed in circles in FIGS. 1 and (B) indicate parasitic elements. In Figure 1 (8), 1.2.3 and 4.
6.5 are the collector, emitter, and base terminals of the PNP and NPN transistors, respectively; 13 is a P-type diffusion isolation layer for electrically isolating each transistor; 16 is a P-type silicon substrate; 7 to 12 indicates a parasitic element. Further, FIG. 1(B) shows the configuration of an amplifier circuit, in which the same parts as in the first circuit are given the same reference numerals, 18 is a base-emitter resistance, and 19 is a current limiting resistance.

以上のように構成された従来のモノリシノクプレナープ
ロセス集積回路について、その動作を以下に説明する。
The operation of the conventional monolithic planar process integrated circuit configured as described above will be described below.

第1図(B)に於いて、N P N トランジスタ2o
はベース端子3に加えられた入力信号を増幅し、PNP
トランジスタ100はさらにその信号を増幅してその出
力信号を、コレクタ端子4に接続される負荷に給電する
。ここで、PNPトランジスタ100が活性領域で動作
している場合すなわちコレクタ・エミッタ間電圧■cE
がある程度大きい場合は、寄生トランジスタ9は遮断状
態であり、他の寄生トランジスタ8,7も遮断状態であ
るため、増幅動作に対してなんら悪影響を与えない。
In FIG. 1(B), N P N transistor 2o
amplifies the input signal applied to base terminal 3 and converts the PNP
Transistor 100 further amplifies the signal and supplies the output signal to a load connected to collector terminal 4. Here, when the PNP transistor 100 operates in the active region, the collector-emitter voltage ■cE
When is large to a certain extent, the parasitic transistor 9 is in a cutoff state, and the other parasitic transistors 8 and 7 are also in a cutoff state, so that there is no adverse effect on the amplification operation.

しかしながら上記のような構成に於いて、PNPトラン
ジスタ100が飽和領域に入った場合すなわちコレクタ
電圧がほぼエミッタ5の電圧と等しくなった時、寄生ト
ランジスタ9が動作し、そのコレクタ電流が寄生トラン
ジスタ8のベース電流となり、寄生トランジスタ8が、
PNPトランジスタのコレクタ4から第1図(へに示し
た分離拡散層13を通って基板16に電流を流すため、
PNPI−ランジスタ周辺の分離拡散層13の電位が上
がる。これは隣接するNPN トランジスタ200の寄
生PNP トランジスタ7のエミッタ電位が上がること
になり、寄生PNP)ランジスタとNPNトランジスタ
200がサイリスタ動作をし、ラッテアップするという
問題点を有していた。なお、前記の説明でNPN)ラン
ジスタ200はPNPトランジスタ1ooを駆動する場
合で説明したが、それ以外でも比較的コレクタ電位の低
い隣接するNPN)ランジスタであれば同様の問題点を
有する事はいう壕でもない。
However, in the above configuration, when the PNP transistor 100 enters the saturation region, that is, when the collector voltage becomes approximately equal to the voltage of the emitter 5, the parasitic transistor 9 operates, and the collector current of the parasitic transistor 8 increases. The base current becomes the parasitic transistor 8,
In order to flow a current from the collector 4 of the PNP transistor to the substrate 16 through the isolation diffusion layer 13 shown in FIG.
The potential of the isolation diffusion layer 13 around the PNPI transistor increases. This causes a problem in that the emitter potential of the parasitic PNP transistor 7 of the adjacent NPN transistor 200 increases, and the parasitic PNP transistor and the NPN transistor 200 operate as thyristors, causing rattling. In the above explanation, the NPN) transistor 200 is used to drive the PNP transistor 1oo, but in other cases, the same problem may occur if the NPN) transistor 200 is an adjacent NPN) transistor with a relatively low collector potential. not.

発明の目的 6ノ・ 2 本発明の目的は、寄生素子によるラッテアップ(サイリ
スタ動作)の起らないNPNバイポーラトランジスタを
可能にするモノリシソクプレナープロセス集積回路を提
供することである0発明の構成 本発明のモノリシソクプレナープロセス集積回路は、P
型基板と、前記P型基板上に形成されたパーティカルP
NP )ランジスタを具備し、前記パーティカルPNP
 )ランジスタのエミッタ部分に内包されるようにN+
拡散層を形成してエミッタとし、前記パーティカルPN
P )ランジスタのエミッタをベースとし、前記パーテ
ィカルPNPトランジスタのベースをコレクタとしてN
 P N )ランジスタを構成し、前記ノく一ティカル
PNP)ランジスタのコレクタを前記P型基板と同電位
とし、前記パーティカル’PNP)ランジスタの分離用
N領域に逆バイアス電圧を印加する様に構成したもので
あり、これによって寄生素子によるラッテアップを起さ
ないNPN トランジスタを構成可能にしたものである
OBJECTIVE OF THE INVENTION 6 No. 2 An object of the present invention is to provide a monolithic sonic planar process integrated circuit that enables an NPN bipolar transistor that does not cause latte-up (thyristor operation) due to parasitic elements. The monolithic soplanar process integrated circuit of the present invention comprises P
a type substrate, and a particle P formed on the P type substrate.
NP) is equipped with a transistor, and the particulate PNP
) N+ so that it is included in the emitter part of the transistor
A diffusion layer is formed as an emitter, and the particle PN
P) With the emitter of the transistor as the base and the base of the particle PNP transistor as the collector, N
A P N ) transistor is configured, the collector of the particle PNP transistor is set at the same potential as the P type substrate, and a reverse bias voltage is applied to the isolation N region of the particle PNP transistor. This makes it possible to construct an NPN transistor that does not cause ratte-up due to parasitic elements.

6ベーS゛ 実施例の説明 以下、本発明の実施例について、図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS OF THE 6 BASE S Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第2図(5)は本発明の実施例におけるモノリシノクプ
レナープロセス集積回路の特にNPN トランジスタと
パーティカルPNP トランジスタが隣接して形成され
た部分の断面図で、第2図(B)は第2図(5)の2つ
のトランジスタを使用して増幅器を構成した場合の寄生
素子を含めた等価回路を示す。
FIG. 2(5) is a cross-sectional view of a monolithic planar process integrated circuit according to an embodiment of the present invention, particularly a portion where an NPN transistor and a particle PNP transistor are formed adjacent to each other. 2 shows an equivalent circuit including parasitic elements when an amplifier is configured using the two transistors shown in FIG. 2 (5).

第2回内において、21,22.23および4゜6.5
はそれぞれN P N トランジスタおよびパーティカ
ルPNP トランジスタのコレクタ、ベース。
Within the second round, 21, 22.23 and 4°6.5
are the collector and base of the N P N transistor and the particle PNP transistor, respectively.

エミッタ端子、13はそれぞれのトランジスタを電気的
に分離するためのP型拡散分離層、16はP型基板、7
.24はNPN トランジスタの寄生PrJPトランジ
スタ、25はNPN トランジスタを分離するP+層の
寄生抵抗、17 、20はNPNトランジスタを分離す
るためのそれぞれP+層およびN+層の端子、1oはP
型基板の寄生抵抗、8.9はそれぞれパーティカルPN
P )ランジス7 I  ゛ タノ寄生PNP トランジスタおよび寄生NPN)ラン
ジスタ、11.12はそれぞれパーティカルPNP ト
ランジスタのコレクタP+層およびベースN層の寄生抵
抗である。また、第2図(B)において第2図(5)と
同じものは同一の符号を付し、18はベース・エミッタ
間抵抗、19は電流制限抵抗である。
an emitter terminal, 13 a P-type diffusion isolation layer for electrically isolating each transistor, 16 a P-type substrate, 7
.. 24 is a parasitic PrJP transistor of the NPN transistor, 25 is a parasitic resistance in the P+ layer that separates the NPN transistor, 17 and 20 are terminals of the P+ layer and N+ layer, respectively, to separate the NPN transistor, 1o is a P
The parasitic resistance of the mold substrate, 8.9, is a particle PN, respectively.
11.12 are the parasitic resistances of the collector P+ layer and base N layer of the particle PNP transistor, respectively. Further, in FIG. 2(B), the same parts as in FIG. 2(5) are given the same reference numerals, 18 is a base-emitter resistance, and 19 is a current limiting resistance.

以上の様に構成された本実施例のモノリシノクプレナー
プロセス集積回路について以下その動作を説明する。第
2図(B)において、NPN)ランジスタ300はベー
ス端子23に加えられた入力信号を増幅し、PNPトラ
ンジスタ100はさらにその信号を増幅して、その出力
信号をコレクタ端子4に出力する。ここで、パーティカ
ルPNPトランジスタ1o○が飽和領域に入った場合す
なわちコレクタ電圧がほぼエミッタ電圧に等しくなった
場合、寄生トランジスタ9が順バイアスされ、寄生トラ
ンジスタ8のベース電流を流すため、寄生抵抗1oに電
流が流れて拡散分離層13の電位が上がる。しかし、N
PNトランジスタ300の寄生トランジスタ7はベース
端子2oにベース・エミッタ間が常に逆バイアス状態と
なる様な電位に接続されておれば動作する事がないため
、寄生トランジスタ24とNPN )ランジスタ300
によるラッチアップ(サイリスタ動作)は回避すること
が出来る。
The operation of the monolithic planar process integrated circuit of this embodiment configured as described above will be described below. In FIG. 2(B), the NPN transistor 300 amplifies the input signal applied to the base terminal 23, and the PNP transistor 100 further amplifies the signal and outputs the output signal to the collector terminal 4. Here, when the particle PNP transistor 1o○ enters the saturation region, that is, when the collector voltage becomes almost equal to the emitter voltage, the parasitic transistor 9 is forward biased and the base current of the parasitic transistor 8 flows, so that the parasitic resistance 1o A current flows to increase the potential of the diffusion separation layer 13. However, N
Since the parasitic transistor 7 of the PN transistor 300 will not operate if the base terminal 2o is connected to a potential such that the base-emitter is always in a reverse bias state, the parasitic transistor 24 and the NPN transistor 300
Latch-up (thyristor operation) due to this can be avoided.

以上のように本実施例によれば従来のN P N トラ
ンジスタにさらに分離するための層を設けて寄生トラン
ジスタを追加し、それを逆バイアスとして遮断状態にし
たことによりサイリスタ動作によるラッテアップが起ら
ないNPNトランジスタを実現しうる。
As described above, according to this embodiment, a parasitic transistor is added by adding a layer for isolation to the conventional N P N transistor, and the parasitic transistor is reverse biased to be in a cut-off state, thereby preventing rattling due to thyristor operation. It is possible to realize an NPN transistor without

発明の効果 以上の説明から明らかな様に、本発明は従来のパーティ
カルPNPトランジスタのエミッタP層内にN+層を形
成するだけでNPNトランジスタを構成しうるので、従
来の製造プロセスを増すことなく、ラッチアップを起さ
ないNPNトランジスタが得られるという優れた効果が
得られる。その効果により、モータやスピーカなどのイ
ンゲン9べ゛ タンス負荷を駆動する場合の出力段の様に出力トランジ
スタが飽和する可能性の高い回路も集積回路内に入れる
ことができるというすぐれた効果が得られる。
Effects of the Invention As is clear from the above explanation, the present invention allows an NPN transistor to be constructed by simply forming an N+ layer within the emitter P layer of a conventional particle PNP transistor, without increasing the conventional manufacturing process. , an excellent effect can be obtained in that an NPN transistor that does not cause latch-up can be obtained. This has the excellent effect of allowing circuits with a high possibility of output transistor saturation to be included in integrated circuits, such as the output stage when driving high-velocity loads such as motors and speakers. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(5)は従来のモノリシックプレナープロセス集
積回路の要部拡大断面図、第1図(B)は第1図(8)
の等価回路図、第2図(杓は本発明の実施例に係るモノ
リシックプレナープロセス集積回路の要部拡大断面図、
第2図中)は第2図に)の等価回路図である。 7・・・・・寄生トランジスタ、10・・・・・・基板
寄生抵抗、13・・・・・・素子間拡散分離層、16・
・・・・・P型基板、17,2o・・・・・・NPN 
)ランジスタ分離層端子、21・・・・・・コレクタ端
子、22・・・・・・エミッタ端子、23・・・・・・
ベース端子、24・・・・・・寄生トランジスタ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図            (ハ〕第 2 図  
         (A)] 、4
Figure 1 (5) is an enlarged sectional view of the main part of a conventional monolithic planar process integrated circuit, and Figure 1 (B) is Figure 1 (8).
An equivalent circuit diagram of FIG.
(in Fig. 2) is an equivalent circuit diagram of Fig. 2). 7... Parasitic transistor, 10... Substrate parasitic resistance, 13... Inter-element diffusion isolation layer, 16...
...P type substrate, 17,2o...NPN
) Transistor separation layer terminal, 21... Collector terminal, 22... Emitter terminal, 23...
Base terminal, 24... Parasitic transistor. Name of agent: Patent attorney Toshio Nakao and 1 other person
Figure 1 (c) Figure 2
(A)], 4

Claims (1)

【特許請求の範囲】[Claims] P型基板と、前記P型基板上に形成されたパーティカル
PNP )ランジスタを具備し、前記パーティカルPN
Pトランジスタのエミッタ部分に内包されるようにN+
拡散層を形成してエミッタとし、前記パーティカルPN
P トランジスタのエミッタをベースとし、前記パーテ
ィカルPNP トランジスタのベースをコレクタとして
NPNトランジスタを構成し、前記パーティカルPNP
 トランジスタのコレクタを前記P型基板と同電位とし
、前記パーティカルPNP トランジスタの分離用N領
域に逆バイアス電圧を印加するように構成したことを特
徴とするモノリシノクプレナープロセス集積回路。
a P-type substrate; and a particle PNP transistor formed on the P-type substrate;
N+ so that it is included in the emitter part of the P transistor
A diffusion layer is formed as an emitter, and the particle PN
An NPN transistor is configured with the emitter of the P transistor as a base and the base of the particle PNP transistor as a collector;
1. A monolithic planar process integrated circuit, characterized in that the collector of the transistor is at the same potential as the P-type substrate, and a reverse bias voltage is applied to the isolation N region of the particle PNP transistor.
JP58024052A 1983-02-15 1983-02-15 Monolithic planar processed intergrated circuit Pending JPS59149046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024052A JPS59149046A (en) 1983-02-15 1983-02-15 Monolithic planar processed intergrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024052A JPS59149046A (en) 1983-02-15 1983-02-15 Monolithic planar processed intergrated circuit

Publications (1)

Publication Number Publication Date
JPS59149046A true JPS59149046A (en) 1984-08-25

Family

ID=12127689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024052A Pending JPS59149046A (en) 1983-02-15 1983-02-15 Monolithic planar processed intergrated circuit

Country Status (1)

Country Link
JP (1) JPS59149046A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444291A (en) * 1991-11-25 1995-08-22 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Integrated bridge device for optimizing conduction power losses
WO2002011199A2 (en) * 2000-08-01 2002-02-07 Infineon Technologies Ag Compensation circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223098U (en) * 1985-07-26 1987-02-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223098U (en) * 1985-07-26 1987-02-12

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444291A (en) * 1991-11-25 1995-08-22 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Integrated bridge device for optimizing conduction power losses
WO2002011199A2 (en) * 2000-08-01 2002-02-07 Infineon Technologies Ag Compensation circuit
WO2002011199A3 (en) * 2000-08-01 2002-06-27 Infineon Technologies Ag Compensation circuit
US6800926B2 (en) 2000-08-01 2004-10-05 Infineon Technologies Ag Tracking circuit

Similar Documents

Publication Publication Date Title
JPS59149046A (en) Monolithic planar processed intergrated circuit
US6483683B1 (en) Overvoltage protection
JP3331523B2 (en) Current mirror circuit
JPH03108756A (en) Composite pnp transistor
JPH0222405B2 (en)
JP2645403B2 (en) Voltage follower circuit
US3668540A (en) Integrated video amplifier
JP2001144262A (en) Semiconductor device
JPH07235601A (en) Bipolar semiconductor integrated circuit
JPS6410101B2 (en)
JP3979763B2 (en) Differential amplifier circuit
JP3349334B2 (en) Differential amplifier
JP4214879B2 (en) Constant current circuit
JPH0271555A (en) Semiconductor integrated circuit
JPH07104743B2 (en) Power supply circuit
JPS6130805A (en) Current mirror circuit
JPS59171317A (en) Output circuit
JPS6329835B2 (en)
JPH03108726A (en) Overcurrent limiting type semiconductor device
JPH05206385A (en) Semiconductor device
JPS6146981B2 (en)
JPH04355696A (en) Fan motor driver circuit and motor controller
JPS58159366A (en) Current mirror circuit
JPH0249047B2 (en)
JPS59157728A (en) Current inverting circuit