JPS59147914A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS59147914A
JPS59147914A JP2349783A JP2349783A JPS59147914A JP S59147914 A JPS59147914 A JP S59147914A JP 2349783 A JP2349783 A JP 2349783A JP 2349783 A JP2349783 A JP 2349783A JP S59147914 A JPS59147914 A JP S59147914A
Authority
JP
Japan
Prior art keywords
combustion
center line
combustion chamber
pipe
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2349783A
Other languages
Japanese (ja)
Other versions
JPH0124963B2 (en
Inventor
Akihiko Hisamatsu
明彦 久松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP2349783A priority Critical patent/JPS59147914A/en
Publication of JPS59147914A publication Critical patent/JPS59147914A/en
Publication of JPH0124963B2 publication Critical patent/JPH0124963B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Combustion Of Fluid Fuel (AREA)

Abstract

PURPOSE:To increase the heat exchanging efficiency of a heat exchanger, by positioning a mixing pipe so that the extended center line of combustion flames runs along the arbitral section crossing with the longitudinal center line of a combustion chamber, and by displacing the pipe biasedly close to the outside direction of a combustion chamber by a suitable distance. CONSTITUTION:A mixing pipe 20 is positioned so that the extended center line B of combustion flames runs along the section C crossing at right angles with the longitudinal center line A extended to the discharge side of a combustion chamber 3, passing through its center part, and the pipe 20 is fitted to the combustion chamber eccentrically slipped off to the outer side of a combustion chamber 3 as much as a suitable distance D to the longitudinal center line A. The combustion gas is sprayed to the vicinity of the crossing point of the extended center line B of combustion flames and an inside wall 2a, and part of the gas flows to the direction of an arrow sign F along the surface 2a' of an inside wall, coming down to the circulation flow inlet port 16, being forcibly sucked into the mixing pipe 20, and is momentarily mixed with the mixed mist of kerosene particles and fresh air. The combustion gas dispersed to the direction of an arrow sign E flows upwardly, spirally circulating along the circumferential direction of the surface 2a' of an inside wall, and is discharged to the outside, exchanging heat with the water in a water chamber 2c. By this method, the heat exchanging efficiency of a heat exchanger can be increased.

Description

【発明の詳細な説明】 本発明は噴霧ノズルの前方に設けた混合管へ燃焼ガスを
循環させて空気と燃料の混合体をガス化燃焼させるよう
にした燃焼装置を備えてなる熱交換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchange device comprising a combustion device configured to gasify and burn a mixture of air and fuel by circulating combustion gas to a mixing pipe provided in front of a spray nozzle. .

従来、石油給湯機等の燃焼装置には、ガンタイプバーナ
ーと称するものがある。これは、送風機より送り出され
る新鮮空気と、電磁ポンプ等で加圧されて噴霧ノズルか
ら噴出される霧状燃料の混合霧を、高圧電気放電等にて
着火し、燃焼させるものである。ところが、この従来の
ものでは、混合霧中の空気量が多い黄炎燃焼となり、燃
焼効率が悪いと共に、黄炎燃焼により発生したカーボン
粒子が錐体内部の伝熱面に付着して熱交換効率を低下さ
せ、更に炎の振動による燃焼音が大きいという欠点があ
った。
BACKGROUND ART Conventionally, combustion devices such as oil water heaters include a type called a gun-type burner. This involves igniting and burning a mixture of fresh air sent from a blower and atomized fuel pressurized by an electromagnetic pump or the like and sprayed from a spray nozzle using a high-pressure electric discharge or the like. However, with this conventional method, the amount of air in the mixed mist is large, resulting in yellow flame combustion, resulting in poor combustion efficiency, and the carbon particles generated by yellow flame combustion adhere to the heat transfer surface inside the cone, reducing heat exchange efficiency. In addition, there was a drawback that the combustion noise caused by the vibration of the flame was loud.

゛ また最近では、省エネルギー及び環境上の観点から
高燃焼効率化、低騒音化及び清浄排ガス化の要求があり
、燃料油をガス化させて青炎燃焼させる、所謂ロータリ
ーガス化バーナあるいはヒーターガス化式バーナといっ
たものが開発されている。
゛ Also, recently, there has been a demand for higher combustion efficiency, lower noise, and cleaner exhaust gas from the viewpoint of energy saving and the environment, and so-called rotary gasification burners or heater gasification, which gasify fuel oil and combust it with blue flame, have been developed. Type burners have been developed.

ところが、前者のものは着火の立上がり時と消火時に、
燃料油のガス化が不十分となって臭気が発生するという
欠点があった。また後者のものはヒーターの予熱に長時
間を必要とするため、使用上の不便さがあり、しかもヒ
ーターのコントロール等に複雑な制御を要する欠点があ
った。更に、両者は燃料油のガス化構造が複雑で、保守
点検に際し、特殊な技能を必要とする欠点があった。
However, in the former case, at the time of ignition and extinguishment,
There was a drawback that gasification of fuel oil was insufficient and odor was generated. Furthermore, the latter method requires a long time to preheat the heater, which is inconvenient in use, and also has the drawback of requiring complicated control of the heater. Furthermore, both have complicated fuel oil gasification structures and require special skills for maintenance and inspection.

本願出願人は上述の欠点を解決するものとして、特願昭
57−83799号において熱交換装置を出願済みであ
る。即ち、該熱交換装置29は、第1図に示す如く、錐
体32の内部に筒状の燃焼室33が形成され、該燃焼室
33に臨んで設けられた送風管35の内部に噴霧ノズル
34が設置され、前記燃焼室33内で且つ該噴霧ノズル
34の前方位置に、保炎板31を内部に備えた混合管3
0が、該混合管30と前記送風管35との間に燃焼ガス
流入口36を形成し月つ該混合管30の燃焼炎延長中心
線Gと前記燃焼室の長手中心線l」とか直交するように
設置されたものである。
The applicant of the present application has filed a heat exchange device in Japanese Patent Application No. 57-83799 to solve the above-mentioned drawbacks. That is, as shown in FIG. 1, the heat exchange device 29 has a cylindrical combustion chamber 33 formed inside a cone 32, and a spray nozzle inside a blast pipe 35 facing the combustion chamber 33. 34 is installed in the combustion chamber 33 and in a position in front of the spray nozzle 34, a mixing pipe 3 having a flame stabilizing plate 31 therein.
0 forms a combustion gas inlet 36 between the mixing pipe 30 and the blast pipe 35, and is perpendicular to the combustion flame extension center line G of the mixing pipe 30 and the longitudinal center line l of the combustion chamber. It was set up like this.

しかし、前記熱交換装置29では、混合管の燃焼炎延長
中心線Gと燃焼室33の長手中心線Hとを直交させであ
るので、混合管30から噴出した燃焼ガス(図示省略)
は、混合管30と対向する内周壁面32a上へ吹句けら
れた後、内周壁面32aの長手方向に沿って排気側へ上
昇するガスと、内周壁面32aの周方向に沿って流れる
ガスとに分散される。
However, in the heat exchanger 29, since the combustion flame extension center line G of the mixing tube and the longitudinal center line H of the combustion chamber 33 are perpendicular to each other, the combustion gas ejected from the mixing tube 30 (not shown)
After being blown onto the inner circumferential wall surface 32a facing the mixing tube 30, the gas rises toward the exhaust side along the longitudinal direction of the inner circumferential wall surface 32a, and the gas flows along the circumferential direction of the inner circumferential wall surface 32a. It is dispersed into gas.

内周壁面32aの周方向へ沿って右回り及び左回りに分
散されたガスは、混合管30が設置されている側の内周
壁面32a上で衝突した後、混合管30に吸引されたガ
スを除いたその余のガス内周壁面32aの長手方向に沿
って排出側へ上昇する。このように、装置全体的にみれ
ば、燃焼ガスの大部分は、内周壁面32aの周方向への
運動力成分より内周壁面32aの長手方向への運動力成
分のほうが大きいので、燃焼ガスと内周壁面32aとの
接触移動距離が短くなり、燃焼ガスと伝熱面である内周
壁面32aとの接触を十分にとることなく外部へ排出さ
れる。その結果、前記従来の熱交換装置29は熱交換率
の低い欠点があった。
The gas dispersed clockwise and counterclockwise along the circumferential direction of the inner circumferential wall surface 32a collides on the inner circumferential wall surface 32a on the side where the mixing tube 30 is installed, and then the gas is sucked into the mixing tube 30. The remaining gas rises toward the discharge side along the longitudinal direction of the inner circumferential wall surface 32a. In this way, when looking at the device as a whole, most of the combustion gas is caused by the kinetic force component in the longitudinal direction of the inner peripheral wall surface 32a being larger than the kinetic force component in the circumferential direction of the inner peripheral wall surface 32a. The contact movement distance between the combustion gas and the inner circumferential wall surface 32a becomes shorter, and the combustion gas is discharged to the outside without sufficient contact with the inner circumferential wall surface 32a, which is a heat transfer surface. As a result, the conventional heat exchange device 29 has a drawback of low heat exchange efficiency.

本発明は、高燃焼効率、低騒音且つ清浄排ガスを維持さ
せつつ、燃焼ガスと伝熱面である内周壁面との接触を十
分にとることのできる熱交換効率の高い熱交換装置の提
供を目的とする。
The present invention aims to provide a heat exchange device with high heat exchange efficiency that can maintain sufficient combustion efficiency, low noise, and clean exhaust gas, while ensuring sufficient contact between the combustion gas and the inner peripheral wall surface that is the heat transfer surface. purpose.

以下、本発明を図面に示す実施例に基づいて説明する。Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

第2図及び第3図は本発明の実施例の熱交換装置1を示
すものである。該熱交換装置1の主たる改良点となった
のは、混合管2oを経て噴出される燃焼炎の延長中心線
Bが、燃焼室3の中心部を通って排気側へ延びる縦中心
線Aと直交する任意の横断面Cに沿うように混合管2o
の姿勢を位置づけし、且つ混合管20の燃焼炎延長中心
線Bが該縦中心線Aに対して適宜寸法りだけ燃焼室3の
外側寄りへ偏心するようになされている点である。
FIGS. 2 and 3 show a heat exchange device 1 according to an embodiment of the present invention. The main improvement of the heat exchange device 1 is that the extension center line B of the combustion flame ejected through the mixing tube 2o is different from the vertical center line A extending through the center of the combustion chamber 3 toward the exhaust side. Mixing pipe 2o along any perpendicular cross section C
, and the combustion flame extension center line B of the mixing tube 20 is eccentric to the outside of the combustion chamber 3 by an appropriate amount with respect to the longitudinal center line A.

錐体2は、外周壁2bと内周壁2aとの間に氷室2cを
形成した二重管構造からなり、内周壁2aで囲まれた断
面円形状、断面多角形状等の適宜断面形状からなる筒状
の燃焼室3が形成されている。該錐体2の外周は保温材
5で覆われている。なお、前記錐体2は、筒状に限定す
るものでなく、図示省略したが、球状又は錐状の如く横
断面形状が長手方向に沿って変化するものであったもよ
い。更に、前記錐体2は前記二重管構造に限定するもの
ではなく、図示省略したが、長尺小径パイプを螺旋状に
巻付ける等して内部に燃焼室を形成した構造とすること
も勿論可能であり、燃焼室を形成する内周壁面が熱交換
用の伝熱面であればその構造は問わない。前記燃焼室3
内で且つ後述する送風管1゜の前面位置には、所定間隙
W(例えば、15mm)をもって混合管20が、燃焼室
3の中心部通り排気側(図示実施例では上方)へ延びる
縦中心線Aと直交する横断面Cに沿うように燃焼炎延長
中心線Bを位置させ、且つ燃焼炎延長中心線Bを該縦中
心線Aに対して適宜寸法D(例えば、燃焼室3の半径の
1/3乃至1/2)だけ燃焼室3の外側寄りへ偏心させ
て設置されている。この間隙Wにより、混合管20と送
風筒10との間には、循環ガスの流入口(以下、循環流
入口という)16が前記燃焼室3を形成する錐体2の内
周壁2a近傍に形成されている。前記混合管20を有す
る多重管構造の保炎部15は、第4図に示す如く、その
中心寄りにステンレス鋼製パンチングメタル等からなる
保炎板17が設置されており、その外周に下流方向へ拡
開するテ−パーコーン状の保炎筒19が設置されている
。そして、この保炎筒18の外周にはステンレス鋼製パ
ンチングメタル等からなる副像炎筒19が設置され、更
に、これの外周には混合管20が設置されている。
The cone 2 has a double tube structure in which an ice chamber 2c is formed between an outer circumferential wall 2b and an inner circumferential wall 2a, and is a cylinder surrounded by the inner circumferential wall 2a and having an appropriate cross-sectional shape such as a circular cross-section or a polygonal cross-section. A combustion chamber 3 having a shape is formed. The outer periphery of the cone 2 is covered with a heat insulating material 5. Note that the cone 2 is not limited to a cylindrical shape, and may have a cross-sectional shape that changes along the longitudinal direction, such as a spherical or conical shape, although not shown. Further, the cone 2 is not limited to the double pipe structure, and although not shown, it may of course have a structure in which a long small diameter pipe is wound spirally to form a combustion chamber inside. It is possible, and any structure may be used as long as the inner circumferential wall surface forming the combustion chamber is a heat transfer surface for heat exchange. The combustion chamber 3
Inside and at the front position of the blast pipe 1°, which will be described later, a mixing pipe 20 is arranged with a predetermined gap W (for example, 15 mm) along a vertical center line that extends through the center of the combustion chamber 3 toward the exhaust side (in the illustrated embodiment, upward). The combustion flame extension center line B is located along the cross section C perpendicular to A, and the combustion flame extension center line B is set to an appropriate dimension D (for example, 1 of the radius of the combustion chamber 3) with respect to the vertical center line A. /3 to 1/2) is eccentrically installed toward the outside of the combustion chamber 3. Due to this gap W, a circulating gas inlet (hereinafter referred to as a circulating inlet) 16 is formed between the mixing pipe 20 and the blower tube 10 near the inner peripheral wall 2a of the cone 2 forming the combustion chamber 3. has been done. As shown in FIG. 4, the flame stabilizing section 15 having a multi-tube structure including the mixing tube 20 has a flame stabilizing plate 17 made of punched stainless steel metal or the like installed near the center thereof, and a flame stabilizing plate 17 made of punched metal made of stainless steel or the like is installed on the outer periphery of the flame stabilizing plate 17 in the downstream direction. A tapered cone-shaped flame-holding cylinder 19 that expands is installed. A sub-image flame tube 19 made of stainless steel punched metal or the like is installed on the outer periphery of this flame-holding tube 18, and a mixing tube 20 is further installed on the outer periphery of this.

該保炎板17.保炎筒18.副保炎筒19及び混合管2
0は、支持脚21.21・・・により連結されていると
共に、混合管20が送風管10に脚22.22・・・で
懸架されている。なお、前記保炎筒18及び副像炎筒1
9は必要に応じて設置されるものであり、必ず必要とす
るものではない。前記保炎部15の後方には、前記燃焼
炎延長中心線Bと略々向応で噴霧ノズル8が設置されて
おり、油圧ポンプ7(第2図参照)で加圧された燃料油
を霧状の微粒子にして噴出するように構成されている。
The flame holding plate 17. Flame-holding cylinder 18. Sub-flame holding tube 19 and mixing tube 2
0 is connected by support legs 21, 21..., and the mixing pipe 20 is suspended on the blower pipe 10 by legs 22, 22.... In addition, the flame holding cylinder 18 and the sub-image flame cylinder 1
9 is installed as needed and is not necessarily required. A spray nozzle 8 is installed behind the flame holding section 15 so as to be substantially parallel to the combustion flame extension center line B, and sprays fuel oil pressurized by a hydraulic pump 7 (see FIG. 2). It is configured to eject in the form of fine particles.

該噴霧ノズル8の外周には、送風機9(第2図参照)で
起風された新鮮空気を前記混合管20へ噴出するための
送風管10が設置されている。該送風管10(Q先端開
口部には、高速空気噴出板11が必要に応じて設置され
る。この噴出板11は、霧状燃料と新鮮空気を噴出する
中央噴出孔12と、その中心から所定距離をもって適宜
周ピッチに穿設された複数個の空気噴出孔13とを有し
ている。この空気噴出孔13は、それぞれが周方向に所
定角度傾斜しており、噴出空気に旋回流を起こして燃料
粒子を更に微細化すると共に、霧状燃料と新鮮空気の混
合を均一に分布せしめるようにしている。14は、噴霧
ノズル8の先端近傍で高圧電気によるスパークを発生さ
せ、噴出された燃料油の微粒子に点火を行なう電極棒で
ある。第1図中25は燃焼筒、24は排気煙突、26は
給水口、27は給湯口である。
A blower pipe 10 is installed around the outer periphery of the spray nozzle 8 for blowing fresh air blown by a blower 9 (see FIG. 2) to the mixing pipe 20. A high-speed air jetting plate 11 is installed at the tip opening of the blower pipe 10 (Q) as required. The air jet hole 13 has a plurality of air jet holes 13 which are bored at an appropriate circumferential pitch with a predetermined distance between each other.The air jet holes 13 are each inclined at a predetermined angle in the circumferential direction, and create a swirling flow in the ejected air. 14 generates a spark by high-voltage electricity near the tip of the spray nozzle 8 to further refine the fuel particles and evenly distribute the mixture of atomized fuel and fresh air. This is an electrode rod that ignites fine particles of fuel oil.In Fig. 1, 25 is a combustion tube, 24 is an exhaust chimney, 26 is a water supply port, and 27 is a hot water supply port.

次に、以上のように構成された熱交換装置1の動作を、
被熱交換流体を水とし、燃料油を灯油とし、更に供給灯
油量と供給新鮮空気量を一定としたときに基づいて説明
する。
Next, the operation of the heat exchange device 1 configured as described above will be explained as follows.
The explanation will be based on the case where water is used as the heat exchange fluid, kerosene is used as the fuel oil, and the amount of kerosene and fresh air supplied are constant.

噴霧ノズル8より噴出された霧状の灯油粒子は、電極棒
16のスパークによって点火され、最初のうちは、噴出
板11の先端近傍で黄炎燃焼を始める。
The atomized kerosene particles ejected from the spray nozzle 8 are ignited by the spark of the electrode rod 16, and at first begin yellow flame combustion near the tip of the ejection plate 11.

この状態では、空気が過剰である。その後、この燃焼炎
は次第に噴霧方向へ移動し、副像炎筒19に伝播され、
更に保炎板17に移動し、この保炎板17に至る途中で
整流されて、該保炎板17で安定し、保炎筒18に案内
されて定常燃焼が維持される。このように副像炎筒19
は、燃焼炎が保炎板11へ移動するに際し、その伝播を
スムーズにさせる働きをする。なお、噴出板11.保炎
筒18及び副像炎筒19を設置していないときは、保炎
板17近傍でのスパーク点火によって、保持発根17で
安定燃焼が開始維持される。
In this condition there is an excess of air. After that, this combustion flame gradually moves toward the spray direction and is propagated to the secondary flame cylinder 19,
Further, it moves to the flame stabilizing plate 17, is rectified on the way to the flame stabilizing plate 17, becomes stable on the flame stabilizing plate 17, and is guided to the flame stabilizing tube 18 to maintain steady combustion. In this way, the sub-image flame cylinder 19
serves to smooth the propagation of the combustion flame when it moves to the flame holding plate 11. Note that the ejection plate 11. When the flame stabilizing tube 18 and the subimage flame tube 19 are not installed, stable combustion is started and maintained at the holding roots 17 by spark ignition near the flame stabilizing plate 17.

燃焼ガスは、第3図に示す如く、燃焼炎延長中心線Bと
紐体2の内周壁2aとの交差点の周囲へ吹付けられ、燃
焼ガスの有する運動エネルギーによりその一部分が紐体
2の内周壁面2a’に沿って矢符Fに流れ、氷室2c内
の水と熱交換を行いつつ循環流入口16に至る。そして
、燃焼ガスは、間隙Wを送風管10から混合管20へ高
速状態で通過する旋回空気流によって発生する負圧によ
り混合管2o内へ強制吸引され、灯油粒子と新鮮空気の
混合霧へ瞬時に混和する。他方、矢符E方向へ分散した
燃焼ガスは、燃焼ガスの有する運動エネルギーにより紐
体2の内周壁面2a’の周方向に沿って螺旋状に循環し
ながら上方へ流れ、内周壁面2a’と長時間接触する間
に氷室2C内の水と熱交換を十分に行いつつ燃焼筒25
及び排気煙突24を介して外部へ排出される。前記混合
管20内に吸引された循環燃焼ガスは、旋回空気流によ
って非常に微細化された灯油粒子と新鮮空気との混合霧
を暖め、灯油粒子を瞬時にガス化若しくはこれに近い状
態にする。
As shown in FIG. 3, the combustion gas is blown around the intersection of the combustion flame extension center line B and the inner circumferential wall 2a of the string 2, and a part of it is blown inside the string 2 due to the kinetic energy of the combustion gas. It flows along the peripheral wall surface 2a' in the direction of arrow F, and reaches the circulation inlet 16 while exchanging heat with the water in the ice chamber 2c. Then, the combustion gas is forcibly drawn into the mixing pipe 2o by the negative pressure generated by the swirling airflow passing through the gap W from the blast pipe 10 to the mixing pipe 20 at high speed, and instantaneously becomes a mixed mist of kerosene particles and fresh air. Mix with. On the other hand, the combustion gas dispersed in the direction of arrow E flows upward while circulating spirally along the circumferential direction of the inner peripheral wall surface 2a' of the string body 2 due to the kinetic energy of the combustion gas, During the long period of contact with the combustion tube 25, while sufficiently exchanging heat with the water in the ice chamber 2C,
and is exhausted to the outside via the exhaust chimney 24. The circulating combustion gas sucked into the mixing tube 20 warms the mixed mist of very fine kerosene particles and fresh air due to the swirling air flow, and instantly turns the kerosene particles into a gaseous state or a state close to this. .

このため、燃焼状態は、ガス化燃焼若しくはこれに近い
状態となり、保炎板17からの青炎燃焼が得られる。即
ち、灯油粒子と新鮮空気と循環燃焼ガスの三者が混合管
20内で混和された後に整流され、過剰空気で燃焼して
いたものが理論空気比に近い、しかも整流された理想の
燃焼となる。したがって、燃焼音は低く熱交換率に優れ
た燃焼が得られる。
Therefore, the combustion state becomes gasification combustion or a state close to this, and blue flame combustion from the flame stabilizing plate 17 is obtained. In other words, kerosene particles, fresh air, and circulating combustion gas are mixed in the mixing tube 20 and then rectified, and what used to be combustion with excess air becomes an ideal combustion that is close to the stoichiometric air ratio and is rectified. Become. Therefore, combustion with low combustion noise and excellent heat exchange efficiency can be obtained.

以後はこの胃炎燃焼が維持される。From then on, this gastritis combustion is maintained.

而して、上述の胃炎燃焼を得るためには、新鮮空気と灯
油粒子の混合霧に燃焼ガスを適当量だけ混合させること
が必要であり、循環流入口16に発生する負圧(吸引作
用)の大きさが問題になる。そこで、本実施例では、上
記負圧に最も影響を与える噴出空気の流速を変えて実験
を行った結果、理想の空気比に必要な燃焼ガス量を吸引
するに足る流速を設定づるに到った。噴出空気の流速に
影響を及ぼ4因子は、送III機9の出力及び送風管1
0の内径(この場合、直径を8On+m )を一定とす
ると、中央噴出孔12と空気噴出孔13の孔径及び両噴
出孔12ど13の面積比である。なお、空気噴出孔13
の数及び中央噴出孔12と空気噴出孔13の距離は、噴
出空気の流速にはほとんど影響を与えず、無視できるも
のである。ただし、両噴出孔12と13間の距離は、そ
れが最適値を越えると、灯油粒子と空気の良好な混合が
得られなくなる。送風管10の直径を80mmとした本
実施例(燃焼出力が35,0OOK cal /[(r
)の場合は、中央噴出孔12と空気噴出孔13の距離は
32mmが適当であった。
In order to obtain the gastritis combustion described above, it is necessary to mix an appropriate amount of combustion gas into the mixed mist of fresh air and kerosene particles, and to reduce the negative pressure (suction effect) generated at the circulation inlet 16. The size of is a problem. Therefore, in this example, we conducted an experiment by changing the flow rate of the ejected air, which has the greatest effect on the negative pressure, and as a result, we were able to set a flow rate that was sufficient to suck in the amount of combustion gas required for the ideal air ratio. Ta. The four factors that affect the flow velocity of the blowing air are the output of the blower III 9 and the blower pipe 1.
If the inner diameter of 0 (in this case, the diameter is 8 On+m 2 ) is constant, then the hole diameters of the central nozzle 12 and the air nozzle 13 and the area ratio of both nozzles 12 and 13 are the same. In addition, the air jet hole 13
The number of and the distance between the central nozzle 12 and the air nozzle 13 have almost no effect on the flow velocity of the ejected air and can be ignored. However, if the distance between the two nozzle holes 12 and 13 exceeds an optimum value, good mixing of kerosene particles and air will not be obtained. In this embodiment, the diameter of the blast pipe 10 is 80 mm (combustion output is 35,0OOK cal/[(r
), the appropriate distance between the central nozzle 12 and the air nozzle 13 was 32 mm.

表−1及び表−2は、噴出孔12.13の孔径と噴出孔
12.13から自然大気中へ噴出したときの空気流速及
び供給空気量との関係を示す実験結果である。
Tables 1 and 2 are experimental results showing the relationship between the hole diameter of the nozzle 12.13 and the air flow rate and amount of supplied air when ejected from the nozzle 12.13 into the natural atmosphere.

表−1 表−1から明らかなように、空気噴出孔13の孔径を小
さくすれば、噴出空気の流速は速くなり、循環流入口1
6で発生ずる負圧は大きくなる。ところが、供給空気量
は空気噴出孔13の径が小さくなると減少する傾向にあ
る。このため、供給空気量が十分にとれ、且つ流速の速
い孔の直径としては8mmが必要である。
Table 1 As is clear from Table 1, if the diameter of the air jet hole 13 is made smaller, the flow velocity of the jet air becomes faster, and the circulation inlet 1
6, the negative pressure generated becomes larger. However, the amount of supplied air tends to decrease as the diameter of the air jet hole 13 becomes smaller. Therefore, the diameter of the hole must be 8 mm to ensure a sufficient amount of supplied air and a high flow rate.

(以下余白) 表−2 但し、上記孔12の開口率とは、中央噴出孔12の開口
面積を中央噴出孔12及び空気噴出孔13の開口面積の
総和で除した値に 100を乗した値である。
(Left below) Table 2 However, the aperture ratio of the holes 12 is the value obtained by dividing the opening area of the central nozzle 12 by the sum of the opening areas of the central nozzle 12 and the air nozzle 13 multiplied by 100. It is.

また、表−2から明らかなように、中央噴出孔12もそ
の孔径を小さくずれば流速は速くなるが、供給空気量は
少なくなる。しかも、中央噴出孔12と空気噴出孔13
の全体の開口面積に対する中央噴出孔12の開口面積の
割合は、空気量に比例した値を取る。そこで供給空気量
と、噴出空気流速のバランスを考慮すれず、中央噴出孔
12の直径は、18乃至20111111が最適である
Further, as is clear from Table 2, if the hole diameter of the central jet hole 12 is made smaller, the flow velocity increases, but the amount of air supplied decreases. Moreover, the central nozzle 12 and the air nozzle 13
The ratio of the opening area of the central jet hole 12 to the entire opening area of the central jet hole 12 takes a value proportional to the amount of air. Therefore, the diameter of the central ejection hole 12 is optimally 18 to 20111111, without considering the balance between the amount of supplied air and the flow rate of ejected air.

中央噴出孔12の直径を18mm、空気噴出孔13の直
径を8nua 、空気噴出孔13の直径を8mm 、送
風管10の直径を80mmとして、尖塔の空気流速を測
定したところ21m /secであった。参考までに、
従来市販されている燃焼装置の空気流速は、通常12.
5m/ sec程度であった。
When the diameter of the central nozzle 12 was 18 mm, the diameter of the air nozzle 13 was 8 nua, the diameter of the air nozzle 13 was 8 mm, and the diameter of the blast pipe 10 was 80 mm, the air flow velocity in the spire was measured to be 21 m/sec. . For your reference,
The air flow velocity of conventional commercially available combustion devices is usually 12.
The speed was about 5m/sec.

要するに、保炎部15は、混合管20内において、灯油
粒子を循環燃焼ガスで暖めることにより、ガス化若しく
はこれに近い状態にすると共に、空気と灯油粒子の混合
霧に燃焼ガスを加えて理論空気比に近い空気比で胃炎燃
焼させているので、一定量の燃料に対する発生熱量が多
く、優れた熱効率が得られる。更には、整流された胃炎
燃焼であるため、燃焼音も低いという利点もある。
In short, the flame stabilizing section 15 warms the kerosene particles in the mixing tube 20 with circulating combustion gas to turn them into a gasified state or a state close to this, and also adds combustion gas to the mixed mist of air and kerosene particles. Since gastritis combustion is performed at an air ratio close to the air ratio, a large amount of heat is generated for a given amount of fuel, resulting in excellent thermal efficiency. Furthermore, since gastritis combustion is rectified, there is also the advantage that the combustion noise is low.

以上説明したように本発明に係る熱交換装置は、次の如
き優れた効果を有する。
As explained above, the heat exchange device according to the present invention has the following excellent effects.

■ 混合管を経て噴出される燃焼炎の延長中心線が、燃
焼室の中心部を通って排気側へ延びる縦中心線と直交す
る任意の横断面に沿うように、混合管の姿勢を位置づけ
、且つ混合管の燃焼炎延長中心線が前記縦中心線に対し
て適宜寸法だけ前記燃焼室の外側寄りに偏心するように
向けられているので、燃焼ガスの大部分が、錐体の内周
壁面の周方向に沿って螺旋状に循環しながら上方へ流れ
、内周壁面と長時間接触する間に熱交換を十分に行った
後、外部へ排出されるから熱交換効率を向上させること
が出来る。
■ Position the mixing tube so that the extended center line of the combustion flame ejected through the mixing tube is along an arbitrary cross section perpendicular to the vertical center line extending through the center of the combustion chamber to the exhaust side; In addition, since the combustion flame extension center line of the mixing tube is oriented eccentrically toward the outside of the combustion chamber by an appropriate dimension with respect to the vertical center line, most of the combustion gas is directed toward the inner circumferential wall surface of the cone. It flows upward while circulating in a spiral along the circumferential direction, and after sufficient heat exchange occurs while in contact with the inner circumferential wall surface for a long time, it is discharged to the outside, improving heat exchange efficiency. .

■ また、燃焼ガスを混合管に循環させて燃料粒子を暖
めることにより、ガス化若しくはこれに近い状態にする
と共に、新鮮空気と燃料粒子との混合物に燃焼ガスを加
えて理論空気比に近い空気比で燃焼させることにより、
胃炎燃焼させることができ、一定量の燃料に対する発生
熱量が多く、装置の熱効率に優れている。
■ In addition, by circulating the combustion gas through the mixing tube and warming the fuel particles, it is possible to achieve gasification or a state close to this, and by adding the combustion gas to the mixture of fresh air and fuel particles, the air ratio is close to the stoichiometric air ratio. By burning at a ratio of
It can burn gastritis, generates a large amount of heat for a given amount of fuel, and has excellent thermal efficiency.

■ 更には、燃焼炎が定常の青炎であることと、混合管
による整流効果により、燃焼音が低いという利点がある
(2) Another advantage is that combustion noise is low because the combustion flame is a steady blue flame and the mixing tube has a rectifying effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱交換装置の横断面図、第2図は本発明
に係る熱交換装置の実施例を示す縦断面図、第3図は同
上の横断面図、第4図は混合管及び送風管等を示す部分
切欠き斜視図である。 2・・・紐体  3・・・燃焼室  8・・・噴霧ノズ
ル10・・・送風管  16・・・循環流入口20・・
・混合管  A・・・縦中心線  B・・・燃焼炎延長
中心線  C・・・横断面 特許出願人  伊奈製陶株式会社 代 理 人  弁理士 内田敏彦 第3図 /L /
Fig. 1 is a cross-sectional view of a conventional heat exchange device, Fig. 2 is a longitudinal cross-sectional view showing an embodiment of the heat exchange device according to the present invention, Fig. 3 is a cross-sectional view of the same, and Fig. 4 is a mixing tube. FIG. 2... String 3... Combustion chamber 8... Spray nozzle 10... Air pipe 16... Circulation inlet 20...
・Mixing tube A...Vertical center line B...Central line of combustion flame extension C...Cross section Patent applicant Ina Seito Co., Ltd. Representative Patent attorney Toshihiko Uchida Figure 3/L/

Claims (1)

【特許請求の範囲】[Claims] 1、置体の内部に燃焼室が形成され、該燃焼室に先端部
を臨ませた送風管の内部に噴霧ノズルが設置され、前記
送風管の前面位置に、保炎板内蔵の混合管が前記送風管
の先端部との間に燃焼ガス流入口を形成するように設置
されてなる熱交換装置において、前記混合管の設置姿勢
は、該混合管を経て噴出される燃焼炎の延長中心線が、
前記燃焼室の中心部を通って排気側へ延びる縦中心線と
直交する任意の横断面に沿うように位置づけられ、且つ
前記縦中心線に対して適宜寸法だけ前記燃焼室の外側寄
りに偏心するように向けられていることを特徴とする熱
交換装置。
1. A combustion chamber is formed inside the stationary body, a spray nozzle is installed inside a blow pipe whose tip faces the combustion chamber, and a mixing pipe with a built-in flame holding plate is installed in the front position of the blow pipe. In the heat exchange device installed so as to form a combustion gas inlet between the tip of the blast pipe, the installation orientation of the mixing pipe is such that the installation position of the mixing pipe is aligned with the extension center line of the combustion flame ejected through the mixing pipe. but,
It is positioned along an arbitrary cross section perpendicular to a longitudinal center line extending through the center of the combustion chamber to the exhaust side, and is eccentric to the outside of the combustion chamber by an appropriate dimension with respect to the longitudinal center line. A heat exchange device characterized in that it is oriented in such a manner.
JP2349783A 1983-02-14 1983-02-14 Heat exchanger Granted JPS59147914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2349783A JPS59147914A (en) 1983-02-14 1983-02-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2349783A JPS59147914A (en) 1983-02-14 1983-02-14 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS59147914A true JPS59147914A (en) 1984-08-24
JPH0124963B2 JPH0124963B2 (en) 1989-05-15

Family

ID=12112122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2349783A Granted JPS59147914A (en) 1983-02-14 1983-02-14 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS59147914A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520123A (en) * 1978-07-17 1980-02-13 Nippon Pirooburotsuku Seizou K Crack detector for bottle head
JPS5616008A (en) * 1979-07-12 1981-02-16 Combustion Eng Steam generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520123A (en) * 1978-07-17 1980-02-13 Nippon Pirooburotsuku Seizou K Crack detector for bottle head
JPS5616008A (en) * 1979-07-12 1981-02-16 Combustion Eng Steam generator

Also Published As

Publication number Publication date
JPH0124963B2 (en) 1989-05-15

Similar Documents

Publication Publication Date Title
JPS58200911A (en) Combustion method for liquid fuel and device therefor
JPH0820047B2 (en) Low NOx short flame burner
EP0025219A2 (en) Apparatus for heating a gas flowing through a duct
US3816061A (en) Fuel mixing chamber for heating torches
RU2660592C1 (en) Burner head of burner device
JPS6248779B2 (en)
JPS59147914A (en) Heat exchanger
JP2590278B2 (en) Low NOx boiler and boiler burner
JPS59147913A (en) Heat exchanger
JPS59147912A (en) Heat exchanger
CN206958900U (en) A kind of Researched of Air Staging Combustion Burning Pulverized Coal device
JPS59147911A (en) Heat exchanger
JPS59158907A (en) Combustion apparatus
JP2019211095A (en) Oil-fired burners and multitube once-through boiler
JPH0721326B2 (en) Spraying method of coal / water slurry burner
JP3107713B2 (en) Burner for oil water heater
JPS58127007A (en) Combustion device for liquid fuel
JPS59157903A (en) Heat exchanger
JPS59153021A (en) Heat exchanger
CN208671001U (en) A kind of flat flame side burning low NOx gas burner
JPS6222748Y2 (en)
JPS6226665Y2 (en)
JPS59164810A (en) Combustion device
JP2023154262A (en) Burner
JPH0247643B2 (en)