JPS59147913A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS59147913A
JPS59147913A JP2349683A JP2349683A JPS59147913A JP S59147913 A JPS59147913 A JP S59147913A JP 2349683 A JP2349683 A JP 2349683A JP 2349683 A JP2349683 A JP 2349683A JP S59147913 A JPS59147913 A JP S59147913A
Authority
JP
Japan
Prior art keywords
combustion
combustion chamber
mixing pipe
flame
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2349683A
Other languages
Japanese (ja)
Other versions
JPH028203B2 (en
Inventor
Akihiko Hisamatsu
明彦 久松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP2349683A priority Critical patent/JPS59147913A/en
Publication of JPS59147913A publication Critical patent/JPS59147913A/en
Publication of JPH028203B2 publication Critical patent/JPH028203B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the inner diameter of a tubular combustion chamber to a smaller one, maintaining high combustion efficiency and low noise, by constituting a mixing pipe so that the extended center line of injected combustion flames runs along the longitudinal direction of a combustion chamber, as well as to form a combustion gas inlet port between the mixing pipe and the tip end of a draft pipe. CONSTITUTION:A mixing pipe 20 is constituted in such a manner that the extended center line B of injected combustion flames runs along the longitudinal direction of a combustion chamber 3, together with a gap W of specified width being formed between the mixing pipe 20 and the end of a draft pipe 10. Combustion gas is injected from the mixing pipe 20 to the downward direction that is the longitudinal direction of a combustion chamber 3. Part of the gas rising up along the inside of a combustion chamber 3 by its own floating force reaches a circulation flow inlet port 16, forcibly sucked into the mixing pipe 20 from the gap W, and is mixed with the mixed mist of kerosene particles and fresh air. On the other hand, the combustion gas flowing out of the opening 4a at the lower end of a combustion cylinder 4 flows into a combustion exhaust gas passage 23, and is exhausted to the outside, after sufficiently exchanging heat with water in a water chamber 2c, contacting with all the periphery of side walls 2a of a can body 2. By this method, the inner diameter of a can body can be reduced to a smaller one, keeping high combustion efficiency and low noise in a heat exchanger.

Description

【発明の詳細な説明】 本発明は噴霧ノズルの前方に設けた混合管へ燃焼ガスを
循環させて空気と燃料の混合体をガス化燃焼させるよう
にした燃焼装置を備えてなる熱交換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchange device comprising a combustion device configured to gasify and burn a mixture of air and fuel by circulating combustion gas to a mixing pipe provided in front of a spray nozzle. .

従来、石油給湯機等の燃焼装置には、ガンタイプバーナ
ーと称するものがある。これは、送風機より送り出され
る新鮮空気と、電磁ポンプ等で加圧されて噴霧ノズルか
ら噴出される霧状燃料の混合霧を、高圧電気放電等にて
着火し、燃焼させるものである。ところが、この従来の
ものでは、混合霧中の空気量が多い黄炎燃焼となり、燃
焼効率が悪いと共に、黄炎燃焼により発生したカーボン
粒子が罐体内部の伝熱面に付着して熱交換効率を低下さ
せ、更に炎の振動による燃焼音が大きいという欠点があ
った。
BACKGROUND ART Conventionally, combustion devices such as oil water heaters include a type called a gun-type burner. This involves igniting and burning a mixture of fresh air sent from a blower and atomized fuel pressurized by an electromagnetic pump or the like and sprayed from a spray nozzle using a high-pressure electric discharge or the like. However, with this conventional method, the amount of air in the mixed mist is large, resulting in yellow flame combustion, resulting in poor combustion efficiency, and the carbon particles generated by yellow flame combustion adhere to the heat transfer surface inside the casing, reducing heat exchange efficiency. In addition, there was a drawback that the combustion noise caused by the vibration of the flame was loud.

また最近では、省エネルギー及び環境上の観点から高燃
焼効率化、低騒音化及び清浄排ガス化の要求があり、燃
料油をガス化させて青炎燃焼させる、所謂ロータリーガ
ス化バーナあるいはヒーターガス化式バーナといったも
のが開発されている。
Recently, there has been a demand for high combustion efficiency, low noise, and clean exhaust gas from the viewpoint of energy conservation and the environment, and so-called rotary gasification burners or heater gasification systems that gasify fuel oil and combust it with blue flame have recently been introduced. Burners are being developed.

ところが、前者のものは着火の立上がり時と消火時に、
燃料油のガス化が不十分となって臭気が発生するという
欠点があった。また後者のものはヒーターの予熱に長時
間を必要とするため、使用上の不便さがあり、しかもヒ
ーターのコントロール等に複雑な制御を要する欠点があ
った。更に、両者は燃料油のガス化構造が複雑で、保守
点検に際し、特殊な技能を必要とする欠点があった。
However, in the former case, at the time of ignition and extinguishment,
There was a drawback that gasification of fuel oil was insufficient and odor was generated. Furthermore, the latter method requires a long time to preheat the heater, which is inconvenient in use, and also has the drawback of requiring complicated control of the heater. Furthermore, both have complicated fuel oil gasification structures and require special skills for maintenance and inspection.

本願出願人は上述の欠点を解決するものとして、特願昭
57−83799号において熱交換装置を出願済みであ
る。即ち、該熱交換装@29は、第1図に示づ−如く、
錐体32の内部に筒状の燃焼室33が形成され、該燃焼
室33に臨んで設けられた送風管35の内部に噴霧ノズ
ル34が設置され、前記燃焼室33内で且つ該噴霧ノズ
ル34の前方位置に、保炎板31を内部に備えた混合管
30が、該混合管30と前記送風管35との間に燃焼ガ
ス流入口36を形成し且つ該混合管30の燃焼炎延長中
心線Gと前記燃焼室の長手中心線Hとが直交するように
設置されたものである。
The applicant of the present application has filed a heat exchange device in Japanese Patent Application No. 57-83799 to solve the above-mentioned drawbacks. That is, the heat exchange device @29 is as shown in FIG.
A cylindrical combustion chamber 33 is formed inside the cone 32 , and a spray nozzle 34 is installed inside a blast pipe 35 provided facing the combustion chamber 33 . A mixing tube 30 having a flame stabilizing plate 31 therein forms a combustion gas inlet 36 between the mixing tube 30 and the blast tube 35, and a combustion flame extension center of the mixing tube 30. The combustion chamber is installed so that the line G and the longitudinal center line H of the combustion chamber are perpendicular to each other.

ところで、熱交換装@29の設置場所の制限を受ける等
して筒状燃焼室33の内径を小径にする必要があるとき
には、燃焼炎の始端部となる混合管30から該混合管3
0と対向する内周壁面32a′に至る距離を、該内周壁
面328′に局所加熱が発生しないだけの所定距離にす
る必要がある。しかし、前記熱交換装置29では、混合
管の燃焼炎延長中心線Gと燃焼室33の長手中心線IH
とを直交させであるので、混合管30から該混合管30
と対向する内周壁面32a′に至る距離が最短距離とな
るため筒状燃焼室33の小径化に対して制限を受け、斯
る要請を満足出来ない場合もあった。
By the way, when it is necessary to reduce the inner diameter of the cylindrical combustion chamber 33 due to restrictions on the installation location of the heat exchanger @29, the mixing tube 3
It is necessary to set the distance to the inner circumferential wall surface 32a' opposite to the inner circumferential wall surface 328' to a predetermined distance that does not cause local heating to occur on the inner circumferential wall surface 328'. However, in the heat exchange device 29, the combustion flame extension center line G of the mixing tube and the longitudinal center line IH of the combustion chamber 33 are
are perpendicular to each other, so that from the mixing pipe 30 to the mixing pipe 30
Since the distance to the inner circumferential wall surface 32a' facing the inner circumferential wall surface 32a' is the shortest distance, there are restrictions on reducing the diameter of the cylindrical combustion chamber 33, and there are cases where such requirements cannot be met.

本発明は、高燃焼効率、低騒音且つ清浄排ガスを維持さ
せつつ、局所加熱を発生させることなく筒状燃焼室の内
径を小径化することが出来る熱交換装置の提供を目的と
する。
An object of the present invention is to provide a heat exchange device that can reduce the inner diameter of a cylindrical combustion chamber without causing local heating while maintaining high combustion efficiency, low noise, and clean exhaust gas.

以下、本発明を図面に示す実施例に基づいて説明する。Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

第2図及び第3図は本発明の第1の実施例の熱交換装置
1を示すものである。該熱交換装置1は筒状の錐体2の
内部に燃焼筒4が配置され、錐体2の内周壁2aと燃焼
筒4との門に環状の燃焼排ガス路23が形成されている
。該燃焼筒4は、下端開口部4aが形成されていると共
に、錐体2の上端部りに取付けた天板6の下垂筒部6a
の下端フランジ部6bに接続固定されている。前記錐体
2は、断面円形状、断面多角形状等の適宜断面形状から
なる環状の内周壁2aと外周壁2bとの間に水室2Cを
形成した二重管構造からなる。前記錐体2の外周は保温
材5で覆われている。なお、前記錐体2は前記二重管構
造に限定するものではなく、図示省略したが、長尺小径
パイプを螺旋状に巻付ける等して形成した構造とするこ
とも勿論可能である。前記燃焼筒4の内部に形成された
燃焼室3の上端部近傍には、前記天板6の下垂筒部6a
内へ挿入した送風管10の先端部が、該燃焼室3の上端
開口部4bを介して燃焼室3内を向うように位置づけら
れられている。該送風管10は、そのフランジ10aが
天板6に接続固定されている。該送風管10の内部には
、噴霧ノズル8が設置されている。前記燃焼室3内で且
つ前記送風管10の前面位置には、保炎板17を内蔵し
た混合管20が設置されている。該混合管20は、前記
送風管10の先端部との間に所定間隙W(例えば、15
m1ll)を形成すると共に、該混合管20を経て噴出
される燃焼炎の延長中心線Bが前記燃焼室3の長手方向
を指向するようになされている。
2 and 3 show a heat exchange device 1 according to a first embodiment of the present invention. In the heat exchange device 1, a combustion tube 4 is disposed inside a cylindrical cone 2, and an annular combustion exhaust gas passage 23 is formed at the gate between the inner peripheral wall 2a of the cone 2 and the combustion tube 4. The combustion cylinder 4 has a lower end opening 4a formed therein, and a downwardly hanging cylinder part 6a of the top plate 6 attached to the upper end of the cone 2.
It is connected and fixed to the lower end flange portion 6b of. The cone 2 has a double pipe structure in which a water chamber 2C is formed between an annular inner circumferential wall 2a and an annular outer circumferential wall 2b having an appropriate cross-sectional shape such as a circular cross-section or a polygonal cross-section. The outer periphery of the cone 2 is covered with a heat insulating material 5. Note that the cone 2 is not limited to the double pipe structure, and although not shown, it is of course possible to have a structure formed by winding a long small diameter pipe in a spiral shape. Near the upper end of the combustion chamber 3 formed inside the combustion tube 4, there is a hanging tube portion 6a of the top plate 6.
The tip of the blast pipe 10 inserted therein is positioned so as to face the inside of the combustion chamber 3 through the upper end opening 4b of the combustion chamber 3. The flange 10a of the air pipe 10 is connected and fixed to the top plate 6. A spray nozzle 8 is installed inside the blast pipe 10 . A mixing pipe 20 having a built-in flame stabilizing plate 17 is installed in the combustion chamber 3 and in front of the blast pipe 10 . The mixing pipe 20 has a predetermined gap W (for example, 15
mlll), and the extension center line B of the combustion flame ejected through the mixing tube 20 is oriented in the longitudinal direction of the combustion chamber 3.

図示実施例においては、該燃焼炎延長中心線Bと燃焼室
3の縦中心線Aとが向応になるように混合管20が設置
されているが、何らこれに限定するものではなく図示省
略したが、前記燃焼炎延長中心線Bを縦中心線Aに対し
て適宜傾斜角(例えば、30度)だけ傾斜させることも
、また前記該燃焼炎延長中心線Bを縦中心線Aに対して
適宜偏心寸法(例えば、燃焼室3の半径の1/3乃至1
/2)だけ燃焼室3の外側寄りへ偏心させることも勿論
可能である。この間隙Wにより、混合管20と送風筒1
0との間には、循環ガスの流入口(以下、循環流入口と
いう)16が前記燃焼筒4の天板部4C近傍に形成され
ている。前記混合管20を有する多重管構造の保炎部1
5は、第3図に示す如く、その中心寄りにステンレス鋼
製パンチングメタル等からなる保炎板17が設置されて
おり、その外周に下流方向へ拡開プるテーパーコーン状
の保炎筒19が設置されている。そして、この保炎筒1
8の外周にはステンレス鋼製パンチングメタル等からな
る副像炎筒19が設置され、更に、これの外周には混合
管20が設置されている。該保炎板17.保炎筒18.
副保炎筒19及び混合管20は、支持脚21.21・・
・により連結されていると共に、混合管20が送風管1
0に脚22゜22・・・で懸架されている。なお、前記
保炎筒18及び副像炎筒19は必要に応じて設置される
ものであり、必ず必要とするものではない。前記保炎部
15の後方には、前記燃焼炎延長中心線Bと略々同志で
噴霧ノズル8が設置されており、油圧ポンプ7(後述す
る第5図参照)で加圧された燃料油を霧状の微粒子にし
て噴出するように構成されている。該噴霧ノズル8の外
周には、送風様9(第2図参照)で起風された新鮮空気
を前記混合管20へ噴出するだめの送風管10が設置さ
れている。該送風管10の先端開口部には、高速空気噴
出板11が必要に応じて設置される。この噴出板11は
、霧状燃料と新鮮空気を噴出する中央噴出孔12と、そ
の中心から所定距離をもって適宜周ピッチに穿設された
複数個の空気噴出孔13とを有している。この空気噴出
孔13は、それぞれが周方向に所定角度傾斜しており、
噴出空気に旋回流を起こして燃料粒子を更に微細化する
と共に、霧状燃料と新鮮空気の混合を均一に分布せしめ
るようにしている。14は、噴霧ノズル8の先端近傍で
高圧電気によるスパークを発生させ、噴出された燃料油
の微粒子に点火を行なう電極棒である。第2図中25は
燃焼筒、24は排気煙突、27は給湯口である。
In the illustrated embodiment, the mixing pipe 20 is installed so that the combustion flame extension center line B and the longitudinal center line A of the combustion chamber 3 are aligned with each other, but the illustration is not limited to this in any way. However, the combustion flame extension center line B may be inclined with respect to the longitudinal center line A by an appropriate inclination angle (for example, 30 degrees), and the combustion flame extension center line B may be inclined with respect to the longitudinal center line A. Appropriate eccentricity (for example, 1/3 to 1 of the radius of the combustion chamber 3)
Of course, it is also possible to make the combustion chamber 3 eccentric by /2) toward the outside of the combustion chamber 3. This gap W allows the mixing pipe 20 and the blower pipe 1 to
0, a circulating gas inlet (hereinafter referred to as a circulating inlet) 16 is formed near the top plate portion 4C of the combustion tube 4. Flame stabilizing section 1 having a multi-tube structure having the mixing tube 20
5, as shown in FIG. 3, a flame stabilizing plate 17 made of stainless steel punching metal or the like is installed near the center, and a tapered cone-shaped flame stabilizing tube 19 that expands in the downstream direction is provided on the outer periphery of the flame stabilizing plate 17. is installed. And this flame-holding cylinder 1
A sub-image flame tube 19 made of punched metal made of stainless steel or the like is installed on the outer periphery of 8, and a mixing tube 20 is further installed on the outer periphery of this. The flame holding plate 17. Flame-holding cylinder 18.
The sub-flame stabilizing tube 19 and the mixing tube 20 are supported by support legs 21, 21...
・The mixing pipe 20 is connected to the blower pipe 1.
It is suspended on 0 with legs 22°22... Note that the flame stabilizing tube 18 and the sub-image flame tube 19 are installed as necessary, and are not necessarily required. A spray nozzle 8 is installed at the rear of the flame holding section 15 so as to be substantially aligned with the combustion flame extension center line B, and sprays fuel oil pressurized by a hydraulic pump 7 (see FIG. 5, which will be described later). It is configured to eject as fine particles in the form of mist. At the outer periphery of the spray nozzle 8, a blowing pipe 10 is installed which blows fresh air blown in a blowing mode 9 (see FIG. 2) to the mixing pipe 20. A high-speed air jetting plate 11 is installed at the tip opening of the blast pipe 10, if necessary. The ejection plate 11 has a central ejection hole 12 for ejecting atomized fuel and fresh air, and a plurality of air ejection holes 13 formed at appropriate circumferential pitches at a predetermined distance from the center. Each of the air jet holes 13 is inclined at a predetermined angle in the circumferential direction.
A swirling flow is generated in the ejected air to further refine the fuel particles and to evenly distribute the mixture of atomized fuel and fresh air. Reference numeral 14 denotes an electrode rod that generates a spark using high-voltage electricity near the tip of the spray nozzle 8 and ignites the fine particles of fuel oil that are ejected. In FIG. 2, 25 is a combustion tube, 24 is an exhaust chimney, and 27 is a hot water supply port.

次に、以上のように構成された熱交換装置1の動作を、
被熱交換流体を水とし、燃料油を灯油とし、更に供給灯
油量と供給新鮮空気量を一定としたときに基づいて説明
する。
Next, the operation of the heat exchange device 1 configured as described above will be explained as follows.
The explanation will be based on the case where water is used as the heat exchange fluid, kerosene is used as the fuel oil, and the amount of kerosene and fresh air supplied are constant.

噴霧ノズル8より噴出された霧状の灯油粒子は、電極棒
16のスパークによって点火され、最初のうちは、噴出
板11の先端近傍で黄炎燃焼を始める。
The atomized kerosene particles ejected from the spray nozzle 8 are ignited by the spark of the electrode rod 16, and at first begin yellow flame combustion near the tip of the ejection plate 11.

この状態では、空気が過剰である。その後、この燃焼炎
は次第に噴霧方向へ移動し、副像炎筒19に伝播され、
更に保炎板17に移動し、この保炎板17に至る途中で
整流されて、該保炎板17で安定し、保炎筒18に案内
されて定常燃焼が維持される。このように副像炎筒19
は、燃焼炎が保炎板17へ移動するに際し、その伝播を
スムーズにさせる働きをする。なお、噴出板11.保炎
筒18及び副像炎筒19を設置していないときは、保炎
板17近傍でのスパーク点火によって、保持発根17で
安定燃焼が開始維持される。
In this condition there is an excess of air. After that, this combustion flame gradually moves toward the spray direction and is propagated to the secondary flame cylinder 19,
Further, it moves to the flame stabilizing plate 17, is rectified on the way to the flame stabilizing plate 17, becomes stable on the flame stabilizing plate 17, and is guided to the flame stabilizing tube 18 to maintain steady combustion. In this way, the sub-image flame cylinder 19
serves to smooth the propagation of the combustion flame when it moves to the flame holding plate 17. Note that the ejection plate 11. When the flame stabilizing tube 18 and the subimage flame tube 19 are not installed, stable combustion is started and maintained at the holding roots 17 by spark ignition near the flame stabilizing plate 17.

第2図に示す如く、混合管20から燃焼室3の長手方向
である下方へ噴出された燃焼ガス(図示省略)は、その
一部が自己の浮力により燃焼室3内を上昇して循環流入
口16に至る。そして、その燃焼ガスは、間隙Wを送風
管10から混合管20−へ高速状態で通過する旋回空気
流によって発生する負圧により、循環流入口16の周囲
から略々均一な状態で混合管20内へ強制吸引され、灯
油粒子と新鮮空気の混合霧へ瞬時に混和する。他方、燃
焼筒4の下端開口部4aから出た燃焼ガスは、燃焼排気
ガス路23へ流れ込み、該燃焼排ガス路23を通過する
間に置体2の内周壁2aの全周と接触しつつ氷室2C内
の水と熱交換を十分に行った後、排気煙突24を介して
外部へ排出される。前記混合管20内に吸引された循環
燃焼ガスは、旋回空気流によって非常に微細化された灯
油粒子と新鮮空気との混合霧を暖め、灯油粒子を瞬時に
ガス化若しくはこれに近い状態にする。このため、燃焼
状態は、ガス化燃焼若しくはこれに近い状態となり、保
炎板17からの青炎燃焼が得られる。即ち、灯油粒子と
新鮮空気と循環燃焼ガスの三者が混合管20内で混和さ
れた後に整流され、過剰空気で燃焼していたものが理論
空気比に近い、しかも整流された理想の燃焼となる。し
たがって、燃焼音は低く熱交換率に優れた燃焼が得られ
る。以後はこの青炎燃焼が維持される。
As shown in FIG. 2, part of the combustion gas (not shown) ejected from the mixing pipe 20 downward in the longitudinal direction of the combustion chamber 3 rises within the combustion chamber 3 due to its own buoyancy and flows into a circulating flow. It reaches entrance 16. The combustion gas flows from the periphery of the circulation inlet 16 into the mixing pipe 20 in a substantially uniform state due to the negative pressure generated by the swirling air flow passing through the gap W from the blast pipe 10 to the mixing pipe 20- at high speed. It is forcibly drawn into the air and instantly mixed into a mixed mist of kerosene particles and fresh air. On the other hand, the combustion gas coming out of the lower end opening 4a of the combustion tube 4 flows into the combustion exhaust gas passage 23, and while passing through the combustion exhaust gas passage 23, it comes into contact with the entire circumference of the inner circumferential wall 2a of the mounting body 2 and forms an ice chamber. After sufficiently exchanging heat with the water in 2C, it is discharged to the outside via the exhaust chimney 24. The circulating combustion gas sucked into the mixing tube 20 warms the mixed mist of very fine kerosene particles and fresh air due to the swirling air flow, and instantly turns the kerosene particles into a gaseous state or a state close to this. . Therefore, the combustion state becomes gasification combustion or a state close to this, and blue flame combustion from the flame stabilizing plate 17 is obtained. In other words, kerosene particles, fresh air, and circulating combustion gas are mixed in the mixing tube 20 and then rectified, and what used to be combustion with excess air becomes an ideal combustion that is close to the stoichiometric air ratio and is rectified. Become. Therefore, combustion with low combustion noise and excellent heat exchange efficiency can be obtained. From then on, this blue flame combustion is maintained.

而して、上述の胃炎燃焼を得るためには、新鮮空気と灯
油粒子の混合霧に燃焼ガスを適当量だけ混合させること
が必要であり、循環流入口16に発生する負圧(吸引作
用)の大きさが問題になる。そこで、本実施例では、上
記負圧に最も影響を与える噴出空気の流速を変えて実験
を行った結果、理想の空気比に必要な燃焼ガス量を吸引
するに足る流速を設定するに到った。噴出空気の流速に
影響を及ぼす因子は、送風機9の出力及び送風管10の
内径(この場合、直径を80mm)を一定とすると、中
央噴出孔12と空気噴出孔13の孔径及び両噴出孔12
と13の面積比である。なお、空気噴出孔13の数及び
中央噴出孔12と空気噴出孔13の距離は、噴出空気の
流速にはほとんど影響を与えず、無視できるものである
。ただし、両噴出孔12と13間の距離は、それが最適
値を越えると、灯油粒子と空気の良好な混合が得られな
くなる。送風管10の直径を80mmとした本実施例(
燃焼出力が35,0OOK cal /Hr)の場合は
、中央噴出孔12と空気噴出孔13の距離は32mmが
適当であった。
In order to obtain the gastritis combustion described above, it is necessary to mix an appropriate amount of combustion gas into the mixed mist of fresh air and kerosene particles, and to reduce the negative pressure (suction effect) generated at the circulation inlet 16. The size of is a problem. Therefore, in this example, as a result of conducting experiments by changing the flow velocity of the ejected air, which has the greatest effect on the negative pressure, we were able to set a flow velocity sufficient to suck in the amount of combustion gas required for the ideal air ratio. Ta. Factors that affect the flow velocity of the ejected air are the hole diameters of the central ejection hole 12 and the air ejection hole 13 and the diameters of the air ejection holes 13 and both ejection holes 12, assuming that the output of the blower 9 and the inner diameter of the air pipe 10 (in this case, the diameter is 80 mm) are constant.
The area ratio is 13. Note that the number of air ejection holes 13 and the distance between the central ejection hole 12 and the air ejection hole 13 have little effect on the flow velocity of the ejected air and can be ignored. However, if the distance between the two nozzle holes 12 and 13 exceeds an optimum value, good mixing of kerosene particles and air will not be obtained. This example in which the diameter of the blower pipe 10 is 80 mm (
When the combustion output was 35,0OOK cal/Hr), the distance between the central nozzle 12 and the air nozzle 13 was appropriately 32 mm.

表−1及び表−2は、噴出孔12.13の孔径と噴出孔
12.13から自然大気中へ噴出したときの空気流速及
び供給空気量との関係を示す実験結果である。
Tables 1 and 2 are experimental results showing the relationship between the hole diameter of the nozzle 12.13 and the air flow rate and amount of supplied air when ejected from the nozzle 12.13 into the natural atmosphere.

表−1 表−1から朗らかなように、空気噴出孔13の孔径を小
さくすれば、噴出空気の流速は速くなり、循環流入口1
6で発生する負圧は大きくなる。ところが、供給空気量
は空気噴出孔13の径が小さくなると減少する傾向にあ
る。このため、供給空気量が十分にとれ、且つ流速の速
い孔の直径としては8111mが必要である。
Table 1 As can be clearly seen from Table 1, if the diameter of the air jet hole 13 is made smaller, the flow velocity of the jet air becomes faster, and the circulation inlet 1
6, the negative pressure generated becomes larger. However, the amount of supplied air tends to decrease as the diameter of the air jet hole 13 becomes smaller. Therefore, a hole diameter of 8111 m is required to ensure a sufficient amount of supplied air and a high flow rate.

表−2 但し、上記孔12の開口率とは、中央噴出孔12の開口
面積を中央噴出孔12及び空気噴出孔13の開口面積の
総和で除した値に100を乗じた値である。
Table 2 However, the aperture ratio of the holes 12 is the value obtained by dividing the opening area of the central nozzle 12 by the sum of the opening areas of the central nozzle 12 and the air nozzle 13, multiplied by 100.

また、表−2から明らかなように、中央噴出孔12もそ
の孔径を小さくすれば流速は速くなるが、供給空気量は
少なくなる。しかも、中央噴出孔12と空気噴出孔13
の全体の開口面積に対する中央噴出孔12の開口面積の
割合は、空気量に比例した値を取る。そこで供給空気量
と、噴出空気流速のバランスを考慮すれず、中央噴出孔
12の直径は、18乃至20mmが最適である。
Further, as is clear from Table 2, if the hole diameter of the central jet hole 12 is made smaller, the flow velocity becomes faster, but the amount of supplied air decreases. Moreover, the central nozzle 12 and the air nozzle 13
The ratio of the opening area of the central jet hole 12 to the entire opening area of the central jet hole 12 takes a value proportional to the amount of air. Therefore, the diameter of the central jet hole 12 is optimally 18 to 20 mm, regardless of the balance between the amount of air supplied and the flow rate of the jet air.

中央噴出孔12の直径を18mm、空気噴出孔13の直
径を8mff1 、空気噴出孔13の直径を8+nm 
、送風管10の直径を80mmとして、実際の空気流速
を測定したところ21m /secであった。参考まで
に、従来市販されている燃焼装置の空気流速は、通常1
2.5m/ SeC程度であった。
The diameter of the central nozzle 12 is 18 mm, the diameter of the air nozzle 13 is 8 mff1, and the diameter of the air nozzle 13 is 8+nm.
Assuming that the diameter of the blast pipe 10 was 80 mm, the actual air flow velocity was measured to be 21 m 2 /sec. For reference, the air flow rate of commercially available combustion devices is usually 1
It was about 2.5m/SeC.

要するに、保炎部15は、混合管20内において、灯油
粒子を循環燃焼ガスで暖めることにより、ガス化若しく
はこれに近い状態にすると共に、空気と灯油粒子の混合
霧に燃焼ガスを加えて理論空気比に近い空気比で胃炎燃
焼させているので、一定量の燃料に対する発生熱量が多
く、優れた熱効率が得られる。更には、整流された青炎
燃焼であるため、燃焼音も低いという利点もある。
In short, the flame stabilizing section 15 warms the kerosene particles in the mixing tube 20 with circulating combustion gas to turn them into a gasified state or a state close to this, and also adds combustion gas to the mixed mist of air and kerosene particles. Since gastritis combustion is performed at an air ratio close to the air ratio, a large amount of heat is generated for a given amount of fuel, resulting in excellent thermal efficiency. Furthermore, since it is a rectified blue flame combustion, it also has the advantage of low combustion noise.

第4図は、本発明の第2の実施例を示すものであって、
前記第1の実施例(第2図参照)と異る所は、天板6の
下端7ランジ部6bと燃焼筒4の天板となる仕切壁4C
との間に循環流入口16を形成するだめの間隙Wを設け
て両者が連結棒28.28・・・で連結固定されている
点である。混合管20から燃焼室3の長手方向である下
方へ噴出された燃焼ガス(図示省略)は、燃焼筒4の下
端開口部4aから燃焼排ガス路23へ流れ込み、該燃焼
排ガス路23を通過する間に紐体2の内周壁2aの全周
と接触しつつ氷室2C内の水と熱交換を十分に行った後
、燃焼筒4の外側上端部に達し、その一部が循環流入口
16に至る。そして、燃焼ガスの一部は、送風管10か
ら混合管20へ高速状態で通過する旋回空気流によって
発生する負圧により、循環流入口16の周囲から略々均
一な状態で混合管20内へ強制吸引され、灯油粒子を瞬
時にガス化若しくはこれに近い状態にする。このため、
燃焼状態は、ガス化燃焼若しくはこれに近い状態となり
、保炎板17からの青炎燃焼が得られる。前記混合管2
0へ循環した燃焼ガスを除いたその余のガスは、排気煙
突24を介して外部へ排出される。
FIG. 4 shows a second embodiment of the present invention,
The difference from the first embodiment (see FIG. 2) is that the lower end 7 of the top plate 6 has a flange portion 6b and the partition wall 4C serving as the top plate of the combustion tube 4.
A gap W is provided between the two to form the circulation inlet 16, and the two are connected and fixed by connecting rods 28, 28, . . . . Combustion gas (not shown) ejected downward in the longitudinal direction of the combustion chamber 3 from the mixing pipe 20 flows into the combustion exhaust gas path 23 from the lower end opening 4a of the combustion tube 4, and while passing through the combustion exhaust gas path 23. After sufficiently exchanging heat with the water in the ice chamber 2C while contacting the entire circumference of the inner peripheral wall 2a of the string 2, it reaches the outer upper end of the combustion tube 4, and a part of it reaches the circulation inlet 16. . A part of the combustion gas flows from around the circulation inlet 16 into the mixing pipe 20 in a substantially uniform state due to the negative pressure generated by the swirling air flow passing from the blast pipe 10 to the mixing pipe 20 at high speed. The kerosene particles are forcibly sucked in, instantly turning them into gas or a state close to this. For this reason,
The combustion state is gasification combustion or a state close to this, and blue flame combustion from the flame stabilizing plate 17 is obtained. The mixing tube 2
The remaining gas other than the combustion gas that has been circulated to zero is exhausted to the outside via the exhaust chimney 24.

第5図は、本発明の第3の実施例を示すものであって、
前記第1の実施例(第2図参照)と異る所は、筒状の燃
焼室3が錐体2の内周壁2aから形成されていると共に
、燃焼室3の底板29の中央寄りに形成された開口部2
9aへ挿入した送風管10の先端部が該燃焼室3内の上
方を向うように位置づけられ、更に燃焼室3の上方寄り
に燃焼筒25が燃焼排ガス路23を形成するように内蔵
されている点である。なお、図中26は給水管である。
FIG. 5 shows a third embodiment of the present invention,
The difference from the first embodiment (see FIG. 2) is that the cylindrical combustion chamber 3 is formed from the inner circumferential wall 2a of the cone 2, and is formed closer to the center of the bottom plate 29 of the combustion chamber 3. Opening 2
The tip of the blower pipe 10 inserted into the combustion chamber 9a is positioned so as to face upward in the combustion chamber 3, and a combustion tube 25 is built in above the combustion chamber 3 to form a combustion exhaust gas path 23. It is a point. In addition, 26 in the figure is a water supply pipe.

混合管20から燃焼室3の長手方向である上方へ噴出さ
れた燃焼ガス(図示省略)の一部は、燃焼筒25の底面
に衝突して方向転換した後、紐体2の内周壁2aの全周
に沿って熱交換しつつ下方へ流れ循環流入口16に至る
。そして、燃焼ガスは、前記同様に混合管20内へ強制
吸引され、灯油粒子を瞬時にガス化若しくはこれに近い
状態にする。このため、燃焼状態は、ガス化燃焼若しく
はこれに近い状態となり、保炎板17からの青炎燃焼が
得られる。前記混合管20へ循環した燃焼ガスを除いた
その余のガスは、燃焼排ガス路23内を通過する間に紐
体2の内周壁2aの全周と接触しつつ水室2C内の水と
熱交換した後、排気煙突24を介して外部へ排出される
A part of the combustion gas (not shown) ejected from the mixing pipe 20 upward in the longitudinal direction of the combustion chamber 3 collides with the bottom surface of the combustion tube 25 and changes direction, and then reaches the inner circumferential wall 2a of the string 2. It flows downward while exchanging heat along the entire circumference and reaches the circulation inlet 16. Then, the combustion gas is forcibly drawn into the mixing tube 20 in the same manner as described above, and the kerosene particles are instantaneously turned into gas or a state close to this. Therefore, the combustion state becomes gasification combustion or a state close to this, and blue flame combustion from the flame stabilizing plate 17 is obtained. The remaining gas, excluding the combustion gas that has circulated to the mixing pipe 20, contacts the entire circumference of the inner circumferential wall 2a of the string 2 while passing through the combustion exhaust gas passage 23, and heats up the water in the water chamber 2C. After being replaced, it is exhausted to the outside via the exhaust chimney 24.

第6図は、本発明の第4の実施例を示すものであって、
前記第3の実施例(第5図参照)と異る所は、筒状の燃
焼室3の環状天井面3aが紐体2の内周壁2a’から形
成されている共に、該燃焼室3から上方へ延びる燃焼排
ガス路23が紐体2の内周壁2a’で形成されている点
である。混合管20から燃焼¥3の長手方向である上方
へ噴出された燃焼ガス(図示省略)の一部は、燃焼室3
の環状天井面3aに衝突して方向転換した後、紐体2の
内周壁2aの全周に沿って熱交換しつつ下方へ流れ循環
流入口16に至る。そして、燃焼ガスは、前記同様に混
合管20内へ強制吸引され、灯油粒子を瞬時にガス化若
しくはこれに近い状態し保炎板17からの青炎燃焼が得
られる。
FIG. 6 shows a fourth embodiment of the present invention,
The difference from the third embodiment (see FIG. 5) is that the annular ceiling surface 3a of the cylindrical combustion chamber 3 is formed from the inner circumferential wall 2a' of the string 2, and The combustion exhaust gas path 23 extending upward is formed by the inner circumferential wall 2a' of the string body 2. A part of the combustion gas (not shown) ejected from the mixing pipe 20 upward in the longitudinal direction of the combustion chamber 3
After colliding with the annular ceiling surface 3a and changing direction, it flows downward while exchanging heat along the entire circumference of the inner circumferential wall 2a of the string 2 and reaches the circulation inlet 16. Then, the combustion gas is forcibly drawn into the mixing tube 20 in the same manner as described above, and the kerosene particles are instantaneously gasified or in a state close to this, and blue flame combustion from the flame stabilizing plate 17 is obtained.

なお、前記第4図、第5図及び第6図に示す熱交換装置
1は、図示の如く縦置き状態に設置されているが、何ら
縦置きに限定するものではなく図示省略したが、燃焼室
3の長手中心線へが水平になる横置き状態に設置するこ
とも勿論可能である。
Although the heat exchange device 1 shown in FIGS. 4, 5, and 6 is installed vertically as shown, it is not limited to being vertically installed, and although not shown, the combustion Of course, it is also possible to install it horizontally so that the longitudinal centerline of the chamber 3 is horizontal.

以上説明したように本発明に係る熱交換装置は、次の如
き優れた効果を有する。
As explained above, the heat exchange device according to the present invention has the following excellent effects.

■ 混合管から噴出される燃焼炎の延長中心線が筒状の
燃焼室の長手方向を指向するようになされているので、
紐体の内周壁を局所的に加熱することが無くなるため、
従来の混合管の燃焼炎延長中心線と燃焼室の長手中心線
が直交する熱交換装置に比べて紐体の内径を小径にする
ことが出来、小径化の要請に応えることが可能となる。
■ Since the extension center line of the combustion flame ejected from the mixing tube is oriented in the longitudinal direction of the cylindrical combustion chamber,
Since there is no need to locally heat the inner circumferential wall of the string,
Compared to a conventional heat exchange device in which the combustion flame extension center line of the mixing tube and the longitudinal center line of the combustion chamber are perpendicular to each other, the inner diameter of the string can be made smaller, making it possible to meet the demand for smaller diameters.

■ 燃焼ガスを混合管に循環させて燃料粒子を暖めるこ
とにより、ガス化若しくはこれに近い状態にすると共に
、新鮮空気と燃料粒子との混合物に燃焼ガスを加えて理
論空気比に近い空気比で燃焼させることにより、青炎燃
焼させることができ、一定量の燃料に対する発生熱量が
多く、装置の熱効率に優れている。
■ By circulating the combustion gas through the mixing tube and warming the fuel particles, they are brought to a state close to gasification, and at the same time, by adding combustion gas to the mixture of fresh air and fuel particles, the air ratio is close to the stoichiometric air ratio. By burning it, blue flame combustion can be achieved, a large amount of heat is generated for a given amount of fuel, and the device has excellent thermal efficiency.

■ 燃焼炎が定常の胃炎であることと、混合管による整
流効果により、燃焼音が低いという利点がある。
■ It has the advantage of low combustion noise due to the constant gastritis combustion flame and the rectifying effect of the mixing tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱交換装置の横断面図、第2図乃至第6
図は総て本発明に係る熱交換装置の実施例を示すもので
あって、第2図は第1の実施例を示す熱交換装置の縦断
面図、第3図は混合管及び送風管等を示す部分切欠き斜
視図、第4図は第2の実施例を示ず熱交換装置の縦断面
図、第5図は第3の実施例を示ず熱交換装置の縦断面図
、第6図は第4の実施例を示ず熱交換装置の縦断面図で
ある。 2・・・錐体  3・・・燃焼室  4c・・・仕切壁
8・・・噴霧ノズル  10・・・送風管16・・・循
環流入口(燃焼ガス流入口)17・・・保炎板 20・・・混合管  23・・・燃焼排ガス路B・・・
燃焼炎延長中心線 特許出願人  伊奈製陶株式会社 代 理 人  弁理士 内田敏彦 第1図
Figure 1 is a cross-sectional view of a conventional heat exchanger, and Figures 2 to 6 are
The figures all show embodiments of the heat exchange device according to the present invention, and FIG. 2 is a longitudinal sectional view of the heat exchange device showing the first embodiment, and FIG. 3 is a mixing pipe, a blower pipe, etc. FIG. 4 is a vertical cross-sectional view of the heat exchange device without showing the second embodiment, FIG. 5 is a vertical cross-sectional view of the heat exchange device without showing the third embodiment, and FIG. The figure is a longitudinal cross-sectional view of the heat exchange device, not showing the fourth embodiment. 2... Cone 3... Combustion chamber 4c... Partition wall 8... Spray nozzle 10... Air pipe 16... Circulation inlet (combustion gas inlet) 17... Flame holding plate 20...Mixing pipe 23...Combustion exhaust gas path B...
Combustion flame extension center line patent applicant: Representative of Ina Seito Co., Ltd. Patent attorney: Toshihiko Uchida Figure 1

Claims (1)

【特許請求の範囲】 1、連体の内部に筒状の燃焼室が形成され、該燃焼室の
一端部近傍に送風管の先端部が該燃焼室内を向うように
位置づけられ、該送風管の内部に噴霧ノズルが設置され
、前記燃焼室内で且つ前記送風管の前面位置に、保炎板
内蔵の混合管が設置され、該混合管は前記送風管の先端
部との間に燃焼ガス流入口を形成すると共に該混合管を
経て噴出される燃焼炎の延長中心線が前記燃焼室の長手
方向を指向するようになされていることを特徴とする熱
交換装置。 2、 前記燃焼室内に前記燃焼ガス流入口が形成されて
いることを特徴とする特許請求の範囲第1項記載の熱交
換@置。 3、前記燃焼室の一端部を形成する仕切壁の外側に燃焼
排ガス路が形成されている共に、該燃焼排ガス路内に前
記燃焼ガス流入口が形成されていることを特徴とする特
許請求の範囲第1項記載の熱交換装置。
[Scope of Claims] 1. A cylindrical combustion chamber is formed inside the continuous body, and a tip of a blow pipe is positioned near one end of the combustion chamber so as to face inside the combustion chamber, and the inside of the blow pipe is A spray nozzle is installed in the combustion chamber, and a mixing tube with a built-in flame-holding plate is installed in the combustion chamber and at a position in front of the blast tube, and the mixing tube has a combustion gas inlet between it and the tip of the blast tube. A heat exchange device characterized in that an extended center line of a combustion flame formed and ejected through the mixing tube is oriented in the longitudinal direction of the combustion chamber. 2. The heat exchanger according to claim 1, wherein the combustion gas inlet is formed within the combustion chamber. 3. A combustion exhaust gas passage is formed outside a partition wall forming one end of the combustion chamber, and the combustion gas inlet is formed within the combustion exhaust gas passage. The heat exchange device according to scope 1.
JP2349683A 1983-02-14 1983-02-14 Heat exchanger Granted JPS59147913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2349683A JPS59147913A (en) 1983-02-14 1983-02-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2349683A JPS59147913A (en) 1983-02-14 1983-02-14 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS59147913A true JPS59147913A (en) 1984-08-24
JPH028203B2 JPH028203B2 (en) 1990-02-22

Family

ID=12112100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2349683A Granted JPS59147913A (en) 1983-02-14 1983-02-14 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS59147913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274126A (en) * 2004-03-24 2005-10-06 John Zink Co Llc Structure and method of burner for remote staged furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468901A (en) * 1990-07-09 1992-03-04 Matsushita Electric Ind Co Ltd Microwave strip line resonator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105638A (en) * 1975-01-23 1976-09-18 Zink Co John

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105638A (en) * 1975-01-23 1976-09-18 Zink Co John

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274126A (en) * 2004-03-24 2005-10-06 John Zink Co Llc Structure and method of burner for remote staged furnace

Also Published As

Publication number Publication date
JPH028203B2 (en) 1990-02-22

Similar Documents

Publication Publication Date Title
JP2526236B2 (en) Ultra low NOx combustion device
KR870000983B1 (en) Liquid hydrocarbon fuel combustor
US4624631A (en) Method and apparatus for gasifying and combusting liquid fuel
JP2006337016A (en) Furnace combustion system and fuel combustion method
US4286945A (en) Wall fired duct heater
JPS6248779B2 (en)
JPS59147913A (en) Heat exchanger
KR100460195B1 (en) A burner system reducing air-polution material
JPS59147914A (en) Heat exchanger
JPS59147911A (en) Heat exchanger
JPS59147912A (en) Heat exchanger
JPS59158907A (en) Combustion apparatus
JPS58127007A (en) Combustion device for liquid fuel
JP3107713B2 (en) Burner for oil water heater
JP2001056107A (en) Gas burner
JPS6222748Y2 (en)
JPS59153021A (en) Heat exchanger
JPS644085B2 (en)
JPH0247643B2 (en)
RU2210027C2 (en) Method of burning liquid hydrocarbon fuels
JP2023154262A (en) Burner
JPH0211804B2 (en)
JPS6026244Y2 (en) oil fired boiler
JP3361283B2 (en) Structure of premixed gas jet nozzle
JPS59164810A (en) Combustion device