JPS59147271A - Correlation type speed measuring apparatus - Google Patents

Correlation type speed measuring apparatus

Info

Publication number
JPS59147271A
JPS59147271A JP2243283A JP2243283A JPS59147271A JP S59147271 A JPS59147271 A JP S59147271A JP 2243283 A JP2243283 A JP 2243283A JP 2243283 A JP2243283 A JP 2243283A JP S59147271 A JPS59147271 A JP S59147271A
Authority
JP
Japan
Prior art keywords
liquid
measured
heat
signal
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2243283A
Other languages
Japanese (ja)
Inventor
Shigeru Kato
茂 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2243283A priority Critical patent/JPS59147271A/en
Publication of JPS59147271A publication Critical patent/JPS59147271A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance

Abstract

PURPOSE:To obtain a simple and compact equipment by providing a heating element outside a pipeline and thermosensitive elements for detecting a fluid temperature at two points downstream to determine the fluid velocity continuously using the maximum value of a cross-correlation function of a detection signal. CONSTITUTION:A heating element 52 is provided outside a pipeline close to the inner surface thereof and a pulselike current is applied thereto from a power surface 59 to heat an internal fluid. The fluid temperature is detected with thermosensitive elements 54A and 54B provided on the downstream of a passage and the maximum value of the cross-correlation function of these detection signals is determined with an arithmetic unit 60 to determine the fluid speed continuously.

Description

【発明の詳細な説明】 (発明の属する技術分野) この発明は、分析計もしくはこれに類する。装置または
各種プラント装置に使用されている流体、特に細い管路
中を流れる比較的微量の流体の速度を連続的に測定する
装置に関する。速度と流路を形成する管路の断面積とを
乗することにより流量の算出もできるので、この発明は
流量測定装置の技術分野にも属する。
DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to an analyzer or a similar device. The present invention relates to a device that continuously measures the velocity of a relatively small amount of fluid used in equipment or various plant equipment, particularly a relatively small amount of fluid flowing in a narrow pipe. Since the flow rate can be calculated by multiplying the speed by the cross-sectional area of the pipe constituting the flow path, the present invention also belongs to the technical field of flow measurement devices.

(従来技術とその問題点) この種の装置の例として、比較的微少な流量(数ml/
分稈度)の液体速度を正確に測定することが要求される
液体クロマトグラフ装置における流速もしくは流量測定
装置について、従来技術とその問題点を具体的に説明す
る。
(Prior art and its problems) As an example of this type of device, a relatively small flow rate (several ml/
The conventional technology and its problems will be specifically explained regarding a flow rate or flow rate measuring device in a liquid chromatograph device that is required to accurately measure the liquid velocity of the culm.

第1図に液体クロマトグラフ装置の基本的な構成を示す
。図から分かるように、液体クロマトグラフ装置は、基
本的には、送液ポンプ11被測定液注入バルブ2、分離
カラム3、検出器4及びキャリア液溜め5から構成され
る。通常、送液ポンプ1にはプランジャ型の定量ポンプ
が用いられ、その流tはプランジャのストローク長と往
復運動の頻度とにより調整・設定される。
FIG. 1 shows the basic configuration of a liquid chromatograph apparatus. As can be seen from the figure, the liquid chromatograph apparatus basically includes a liquid sending pump 11, a measurement liquid injection valve 2, a separation column 3, a detector 4, and a carrier liquid reservoir 5. Usually, a plunger-type metering pump is used as the liquid pump 1, and the flow t is adjusted and set by the stroke length of the plunger and the frequency of reciprocating motion.

このような構成において、送液ポンプ1によりキャリア
液溜め5から吸引され、一定流量で吐出される水、アル
コールなどのキャリア液中に、各種成分の混合物である
被測定液の一定量(普通は50−100μl)を被測定
液注入バルブ2を介して打ち込むと、これは、分離カラ
ム3を通る間に各成分に分離され、各成分は成分物質に
固有の時間遅れで検出器4に到達し、検出される。すな
わち、液体クロマトグラフ装置では、被測定液をキャリ
ア流に打ち込んでから分離・検出されるまでの時間遅れ
が成分ごとに異なることを利用して物質の同定が行われ
るので、被測定液の流速(または流量、以下特に断らな
い)を正確に把握することが重要である。
In such a configuration, a fixed amount of the liquid to be measured (normally 50-100 μl) is injected through the liquid to be measured injection valve 2, which is separated into each component while passing through the separation column 3, and each component reaches the detector 4 with a time delay specific to the component substance. , detected. In other words, in liquid chromatography devices, substances are identified by taking advantage of the fact that the time delay between when the liquid to be measured is injected into the carrier flow and when it is separated and detected differs depending on the component, so the flow rate of the liquid to be measured is It is important to accurately understand the flow rate (or flow rate, hereinafter not specified) accurately.

しかし、後述のように、現在は適当な流速測定装置がな
いため、実測に先立ってなんらかの形で行われる流速校
正時に、送液ポンプ1によって調整・設定された流速が
実測定のときも変わらないと仮定して、被測定液の成分
分析が行われているのが実情である。しがし、実際には
前取って調整・設定された流速と実測時のそれとが異な
っていて不正確な分析となっていることが十分に考えら
れるため、実測時の流量を常時監視できる正確な流速測
定装置が必要とされている。実測時の流速が校正時のそ
れと異なっている可能性があると考えられる理由は次の
とおりである。
However, as will be explained later, there is currently no suitable flow rate measuring device, so the flow rate adjusted and set by the liquid feed pump 1 during some form of flow rate calibration prior to actual measurement does not change during actual measurement. In reality, component analysis of the liquid to be measured is performed based on this assumption. However, in reality, it is quite possible that the flow rate adjusted and set in advance is different from that at the time of actual measurement, resulting in an inaccurate analysis. A flow rate measuring device is needed. The reason why it is thought that the flow velocity at the time of actual measurement may be different from that at the time of calibration is as follows.

一般に、送液ポンプ1に用いられているプランジャ型の
定量ポンプは、正常に動作していれば、流速1〜2%以
下の誤差で送液が可能である。しかし、管路内は100
〜200Kg/cm2程度の高圧になるため、送液ポン
プ1のプランジャ部、配管接続部などにシールの不完全
な個所のあるときゃキャリア液の脱ガスが不十分なとき
などに発生する気泡もしくは被測定液注入のときに混入
するガス力、分離カラA3 (10μm程度の微粒子が
つまっている)から離脱しなくなるなどの原因により、
送液ポンプ1の定量性が損なわれる場合が多いのである
。第1図では、流速測定装置6を括弧付きで示したが、
これは流速測定装置の望ましい取付個所を示したのであ
って、現実には設けられていないものである。
In general, if the plunger-type metering pump used in the liquid transfer pump 1 is operating normally, it is possible to transfer liquid with a flow rate error of 1 to 2% or less. However, inside the pipe 100
Since the pressure is as high as ~200 kg/cm2, if there are incomplete seals in the plunger part of the liquid pump 1, piping connections, etc., air bubbles or coatings may occur when the carrier liquid is insufficiently degassed. Due to reasons such as the force of the gas mixed in when injecting the measurement liquid, and the inability to separate from the separation column A3 (which is filled with fine particles of about 10 μm),
In many cases, the quantitative performance of the liquid transfer pump 1 is impaired. In FIG. 1, the flow rate measuring device 6 is shown in parentheses, but
This shows a desirable installation location for the flow rate measuring device, which is not actually installed.

第2図は、分離した成分物質を特定試薬と化合させ生成
した物質を検出することにより元の成分を同定しようと
する反応形の液体クロマトグラフ装置の例で、第1図と
同一符号は同一部材を示している。これは、分離カラム
3で分離された成分物質に対し、別置の反応液ポンプ7
により、特定成分と化学反応を起こす試薬を反応液溜め
8から吸引し三方バルブ9から圧入してやり、反応コイ
ル10を通過する間に両者を反応させて検出し易い物質
に変え、検出器4によって検出するものである。反応促
進の必要があれば、反応器11において加温が行われる
。液体クロマトグラフ装置内で化学反応を行わせるもの
としては、アミノ酸、アミンなどの分析に用いられてい
る例がある。このような場合、従来は管路途中に直接つ
なぐことのできる小形の流速測定装置6に適当なものが
ないので、試薬を過剰に入れがちとなり、不経済であっ
たばかりでなく、被測定液が希釈されるために検出感度
に悪影響があった。
Figure 2 is an example of a reactive liquid chromatography device that attempts to identify the original components by combining separated component substances with specific reagents and detecting the resulting substance.The same symbols as in Figure 1 are the same. The parts are shown. This is a separate reaction liquid pump 7 for the component substances separated in the separation column 3.
, a reagent that causes a chemical reaction with a specific component is sucked from the reaction liquid reservoir 8 and pressure-injected through the three-way valve 9 .While passing through the reaction coil 10 , the two react and turn into an easily detectable substance, which is detected by the detector 4 . It is something to do. If necessary to accelerate the reaction, heating is performed in the reactor 11. Examples of devices that perform chemical reactions within a liquid chromatograph include those used to analyze amino acids, amines, and the like. In such cases, conventionally, there was no suitable small flow rate measuring device 6 that could be connected directly to the middle of the pipe, so it was easy to overfill the reagent, which was not only uneconomical but also caused the liquid to be measured to Detection sensitivity was adversely affected due to dilution.

前述のように、この分野で最も望ましいとされる流速測
定装置がないため、ここでは、欠点がありながらも現在
用いられている流速測定装置の例をあげ、解決すべき問
題点について説明する。
As mentioned above, there is no flow rate measuring device that is considered the most desirable in this field, so here we will give an example of a currently used flow rate measuring device despite its drawbacks and explain the problems that need to be solved.

第3図は、サイホンカウンタの原理図である。FIG. 3 is a diagram showing the principle of a siphon counter.

こnは、流路末端31から滴下する液滴32を容積既知
のサイホン33で受け、液面34が一定のレベルに達す
ると、サイホンの原理により容器内の液体が外部へ流出
し、同時に図示しない手段によって信号が出力されるよ
うになっている。この装置の長所は、流出液体の体積を
直接積分しているので、液体の種類によらず測定可能で
あり、累積誤差も生じにくいことである。しかし、短所
として、間欠的にしか信号を出力できないこと、前記分
離カラム3よりも前につなぐことは管路に高圧力をかけ
る必要からできないので、前記検出器4の前につなぐと
、液滴が連続流に戻るとき、に分離した成分が再混合し
分離カラムを通した意味がなくなるため、結局流路末端
にしかつなぐことができないこと、精度をあげようとす
ると液体の蒸発を抑えなければならず、きよう体まで含
めた検出部が大きくなることなどがあげられる。
In this case, a droplet 32 dripping from the end 31 of the flow path is received by a siphon 33 with a known volume, and when the liquid level 34 reaches a certain level, the liquid in the container flows out to the outside due to the principle of the siphon. The signal is output by means that do not. The advantage of this device is that since it directly integrates the volume of the outflowing liquid, it can be measured regardless of the type of liquid, and cumulative errors are less likely to occur. However, the disadvantages are that it can only output signals intermittently, and it is not possible to connect it before the separation column 3 because it requires high pressure to be applied to the pipe line. When the flow returns to a continuous flow, the separated components are remixed and there is no point in passing it through the separation column, so in the end it can only be connected to the end of the flow path.If you want to improve accuracy, you have to suppress the evaporation of the liquid. In addition, the detection unit including the body becomes larger.

第4図は、ドロップカウンタの原理図である。FIG. 4 is a diagram showing the principle of a drop counter.

これは、流路末端41から滴下する液滴42を、発光素
子43と受光素子44とを組合せたような光学的手段で
計薮するものである。このドロップカウンタでは、はぼ
連続的に流量信号を出力できるが、欠点として、使用液
体の粘性などの物理的特性や温度などの影響により液滴
の大きさが変化するので、各種の液体を対象とする分析
計ではその補正がむずかしいこと、また使用光源の波長
に対して吸収のある液体を使用すると誤差の原因となる
ので、用いる液体の種類が制限されること、更に、前述
と同じ理由で、流路末端にしか設置できないことなどが
あげられる。
This measures the droplet 42 dripping from the end 41 of the flow path using an optical means such as a combination of a light emitting element 43 and a light receiving element 44. This drop counter can output a flow rate signal almost continuously, but the drawback is that the droplet size changes depending on the physical characteristics of the liquid used, such as viscosity, and the influence of temperature, so it can be used for various types of liquids. It is difficult to correct this in an analyzer that uses a light source, and using a liquid that absorbs the wavelength of the light source causes errors, which limits the type of liquid that can be used. , and that it can only be installed at the end of the flow path.

上述の他、図示しない気泡流量計では、流路に気泡を入
れてやり、気泡が一定区間を流れる時間を測って流速を
算出する。これは、分離カラムの前につなぐと、気泡が
分離カラムに滞留してその機能を阻害し、検出器の前に
つなぐと、光学的原理を用いている現行の大部分の検出
器の正常動作を妨げるので、一般には流路末端にしか設
置できない。流路途中の流量を測るには、測定に影響を
与えないようにするための分岐路を設けることになり、
流量の直接測定にならないだけでなく、装置を複雑にし
てしまうという欠点がある。
In addition to the above, in a bubble flow meter (not shown), bubbles are introduced into a flow path, and the flow velocity is calculated by measuring the time it takes for the bubbles to flow through a certain section. This is because if connected in front of the separation column, air bubbles will accumulate in the separation column and inhibit its function, and if connected in front of the detector, most current detectors that use optical principles will not function properly. Generally, it can only be installed at the end of the flow path. To measure the flow rate in the middle of the flow path, a branch path must be installed to avoid affecting the measurement.
This method not only does not directly measure the flow rate, but also has the drawback of complicating the device.

また、相関式流速測定装置として、たとえば出願人中の
一方が出願し、特開昭57−4512、特開昭57−4
514  及び特開昭57−125319で公開された
ものが知られているが、これらはいずれも粉体の混入さ
れた液体すなわち固・液2相が前提であり、管路壁との
衝突もしくは粉体同志の衝突により荷電した粉体の電荷
を、検出信号とするものあるいは粉体濃度のゆらぎに基
づく静電容量の変化を検出信号としているものである。
In addition, as a correlation type flow rate measuring device, for example, one of the applicants has applied
514 and published in Japanese Unexamined Patent Publication No. 57-125319 are known, but both of these assume a liquid mixed with powder, that is, two phases of solid and liquid, and collision with the pipe wall or powder The detection signal is the electric charge of the powder that is charged due to the collision between bodies, or the change in capacitance based on fluctuations in the powder concentration is used as the detection signal.

しかし、ゆらぎ信号を得るために流量中に粉体を入れて
やることは、液体クロマトグラフ装置などでは許される
ものではなく、従来考案されている相関式流速測定装置
の適用しがたい場合も多いのである。
However, injecting powder into the flow rate in order to obtain fluctuation signals is not allowed in liquid chromatography devices, and it is often difficult to apply conventionally devised correlation type flow rate measurement devices. It is.

また、超音波のドツプラ効果を利用して流速を測定する
図示しない装置でも、ゆらぎを与えるための微粒子を混
入してやる必要があり、液体クロマトグラフ装置などに
は用い難いものである。
Furthermore, even in a device (not shown) that measures flow velocity using the Doppler effect of ultrasound, it is necessary to mix fine particles to give fluctuations, making it difficult to use in liquid chromatography devices and the like.

更に、流路を構成する管路の周囲に対向配置した発信器
と受信器との間を透過□する超音波の往復の伝播時間の
差から流速を求める方法も知られているが、これは湿度
依存性のあるほか、小口径の流路に対しては原理的に測
定誤差が大きくなって適用しに<<、また管路などの機
械的振動によって検出結果が変動するという欠点がある
Furthermore, there is also a known method of determining the flow velocity from the difference in the round-trip propagation time of the ultrasonic waves that pass between a transmitter and a receiver that are placed oppositely around the pipe constituting the flow path. In addition to being dependent on humidity, there are disadvantages in that the measurement error is theoretically large for small-diameter flow channels, making it difficult to apply, and the detection results fluctuate due to mechanical vibrations in the conduit.

(発明の目的) この発明は、従来装置の上述の欠点を除去し、被測定液
を流路から取り出すことも、分析の妨害となる圧力損失
や乱流の原因となる特別の構造物を流路内に設けること
もせずに、流路のどこにでも直接つなぐことができ、流
体の種類により測定結果が左右されない、連続信号発信
のできる、補正が容易で、より小形・軽量な流速測定装
置を提供することを目的とする。
(Objective of the Invention) The present invention eliminates the above-mentioned drawbacks of conventional devices and makes it possible to remove the liquid to be measured from the flow path and to remove special structures that cause pressure loss and turbulence that interfere with analysis. A smaller, lighter flow velocity measurement device that can be directly connected anywhere in the flow path without having to be installed inside the flow path, the measurement results are not affected by the type of fluid, can transmit continuous signals, is easy to correct, and is The purpose is to provide.

(発明の要点) この発明では、所定の距離を隔てた2個所でそれぞれ検
出した被測定体からの2信号の相関の極大点を用いて前
記被測定体の速度を算出する相関式速度測定装置におい
て、これらの信号を人為的に与えたパルス状の熱的ゆら
ぎの結果として得ることに着目し、具体的には、前記2
信号のひとつを前記被測定体の流路を形成する管体に設
けられた加熱手段のパルス状電流波形もしくは前記加熱
手段により昇温した前記加熱手段の下流の被測定体の温
度の検出信号とし、他のひとつを前記検出手段よりも下
流の前記被測定体の温度の検出手段からの信号とするこ
ととし、これら加熱手段、検出手段弁管体内には設けず
、管体外表面に、たとえばそれぞれ加熱用及び測温用抵
抗線を巻き付けることによって構成することにしたので
、被測定体が元来果たすべき機能を妨げずに、この発明
の目的を達成した。
(Summary of the Invention) In the present invention, a correlation type speed measuring device calculates the speed of a measured object using the maximum point of correlation between two signals from the measured object detected at two locations separated by a predetermined distance. In this paper, we focused on obtaining these signals as a result of artificially applied pulse-like thermal fluctuations, and specifically,
One of the signals is a pulsed current waveform of a heating means provided in a tube forming a flow path of the object to be measured, or a detection signal of the temperature of the object to be measured downstream of the heating means, which is heated by the heating means. , and the other one is a signal from a temperature detection means of the object to be measured downstream of the detection means, and these heating means and detection means are not provided inside the valve pipe body, but are placed on the outer surface of the pipe body, for example, respectively. Since it was constructed by winding resistance wires for heating and temperature measurement, the object of the present invention was achieved without interfering with the functions that the object to be measured should originally perform.

(発明の実施例) 第5図にこの発明の一実施例を示す。ステンレス、銅な
どの金属材料を用いた円管状の管体51が、両端に設け
られたジヨイント 55によって、バッキング56を介
して、被測定体を流す管路57と液もれの起こらないよ
うに締結されている。
(Embodiment of the invention) FIG. 5 shows an embodiment of the invention. A circular tube body 51 made of a metal material such as stainless steel or copper is connected to a conduit 57 through which the object to be measured flows through a backing 56 by joints 55 provided at both ends to prevent liquid leakage. It has been concluded.

管体51には、流路に沿って図上左手上流から順に、加
熱素子比51A1第−感熱素子座51B及びこれと一定
距離tだけ隔てられた第二感熱素子塵510が形成され
、それぞれ加熱素子52、第一感熱素子54A及び第二
感熱素子54Bが着座している。加熱素子52は、たと
えばニクロム線を加熱素子塵51Aに耐熱絶縁物を介し
て巻き付けることにより、また2個の感熱素子54A、
54Bは、たとえばニッケル、銅などの絶縁線をそれぞ
れ第−感熱素子塵51B及び第二感熱素子塵510に巻
き付けることにより構成できる。第−断熱相53A及び
第二断熱材53Bは、たとえば発泡プラスチック製で管
路からの無用の放熱を避けるためのものである。
A heating element ratio 51A1, a first heat-sensitive element seat 51B, and a second heat-sensitive element dust 510 separated from this by a certain distance t are formed in the tube body 51 in order from the upstream left side in the drawing, and are heated. The element 52, the first heat sensitive element 54A, and the second heat sensitive element 54B are seated. The heating element 52 can be constructed by, for example, winding a nichrome wire around the heating element dust 51A via a heat-resistant insulator, or two heat-sensitive elements 54A,
54B can be constructed by winding insulated wires of nickel, copper, etc. around the first heat-sensitive element dust 51B and the second heat-sensitive element dust 510, respectively. The first heat insulating phase 53A and the second heat insulating material 53B are made of, for example, foamed plastic to avoid unnecessary heat radiation from the pipes.

このような構成において、配線58を通じ電源59から
矩形波などのパルス状電流で加熱素子52を発熱させる
と、加熱素子塵51Aの下部を通過する液体は、その伝
導熱を受けて昇温し、加熱素子52及び加熱素子塵51
Aの熱的特性、液体の流速、両座熱素子54A及び54
B間の距離、両感熱素子座51A及び51Bの熱的特性
などで決まる時間遅れの後、2個の感熱素子54A、5
4Bによりその温度変化が相次いで検出され、それぞれ
第一信号線61A及び第二信号線61Bを通して演算装
置60へ送られる。いま、管路が十分細く、流れを栓流
(ピストン流とも言われる)とみなすことができ、かつ
管体51からの放熱を無視できるときは、第6図(’Z
)、(b)に示すように、第一感熱素子54Aの検出す
る温度φA (t)と、第二感熱素子54Bの検出する
湿度φe (t)は、互いに時間τ。の遅れのほぼ同一
の波形となるので、(1)式で関係づけられる。
In such a configuration, when the heating element 52 is made to generate heat by a pulsed current such as a rectangular wave from the power supply 59 through the wiring 58, the temperature of the liquid passing under the heating element dust 51A increases due to the conduction heat. Heating element 52 and heating element dust 51
Thermal properties of A, liquid flow rate, double-seated thermal elements 54A and 54
After a time delay determined by the distance between B and the thermal characteristics of both heat-sensitive element seats 51A and 51B, the two heat-sensitive elements 54A and 5
4B successively detects the temperature change and sends it to the arithmetic unit 60 through the first signal line 61A and second signal line 61B, respectively. Now, when the pipe line is sufficiently thin and the flow can be regarded as a plug flow (also called a piston flow), and the heat radiation from the pipe body 51 can be ignored, the flow shown in Fig. 6 ('Z
), (b), the temperature φA (t) detected by the first heat sensitive element 54A and the humidity φe (t) detected by the second heat sensitive element 54B are separated by a time τ. Since the waveforms have almost the same delay, they can be related by equation (1).

φB(t) =φA (を−τ。)(1)一方、遅れ時
間τ。と流速■とにはv=l/τ。
φB(t) = φA (−τ.) (1) On the other hand, the delay time τ. and the flow velocity ■ is v=l/τ.

の関係が成立する。次に、φA(1)、φe (t)の
相互相関関数は、Tを温度信号の存在する時間幅とする
と、定義により である。(2)式に(1)式を代入するとφA (を−
τ0+τ) dt    (3)となるが、(3)式の
右辺はφA (t)の自己相関関数の形であり、これは
τ二τ。で極大となる関数で、第7図のような形となる
。したがって、相互相関関数φAS(τ)が極大となる
 τ0を見つけると、流速はv=Z/τ。で求めること
ができる。
The relationship holds true. Next, the cross-correlation function of φA(1) and φe (t) is by definition, where T is the time width in which the temperature signal exists. Substituting equation (1) into equation (2), φA (−
τ0+τ) dt (3), but the right-hand side of equation (3) is in the form of an autocorrelation function of φA (t), which is τ2τ. The function has a maximum at , and has the form shown in Figure 7. Therefore, if we find τ0 where the cross-correlation function φAS(τ) is maximum, the flow velocity is v=Z/τ. It can be found by

液体クロマトグラフ装置に用いられるステンレス製など
の管路には、内径0.5mm以下、厚さ。、5mm程度
のものが多いので、前述の栓流の条件を満たすものと言
えるし、管体の断熱も可能である。
Stainless steel pipes used in liquid chromatography equipment have an inner diameter of 0.5 mm or less and a thickness of 0.5 mm. , 5 mm, which can be said to satisfy the above-mentioned conditions for plug flow, and it is also possible to insulate the pipe body.

しかし、この理想的な条件を外れる場合でも、■と τ
。は比較的単純な関数関係にあり容易に校正できること
が多い。また、この発明では、積分演算を介して信号処
理をしているので、流体が本来もっている熱的ゆらぎ、
周囲温度の変化、熱放散による波形のゆがみなどの外乱
があっても、精度よくかつ安定に流速を計算することが
できる。なお、この実施例で、熱特性や湿度特性のそろ
った感熱素子54A、54B  を用いると誤差要因が
相殺されるので、精度上更に有利となる。
However, even if this ideal condition is not met, ■ and τ
. has a relatively simple functional relationship and can often be easily calibrated. In addition, in this invention, since signal processing is performed through integral calculation, thermal fluctuations inherent in the fluid,
Even when there are disturbances such as changes in ambient temperature or waveform distortion due to heat dissipation, the flow velocity can be calculated accurately and stably. In this embodiment, if the heat-sensitive elements 54A and 54B having the same thermal characteristics and humidity characteristics are used, the error factors are canceled out, which is more advantageous in terms of accuracy.

発明者の常温における実験によれば、検出温度の最大を
600C前後となるようにするだけで十分に実用性のあ
る流速の算出ができる。また、加熱素子に加えるパルス
状電流は、一般にどのような波形であってもよく、与え
られた条件で相関関数を短時間に計算しやすいものを選
択すればよい。
According to the inventor's experiments at room temperature, it is possible to calculate the flow rate with sufficient practicality simply by setting the maximum detected temperature to around 600C. In addition, the pulsed current applied to the heating element may generally have any waveform, and it is sufficient to select one that makes it easy to calculate the correlation function in a short time under given conditions.

第8図は、他の実施例を示すもので、第5図と同一符号
は同一部材を表わす。この実施例では、感熱素子54が
1個たけで、第5図よりも小形、簡略化された構成とな
っている。この場合は、加熱素子52に加えたパルス状
電流を電流プロ・−プロ2により検出した信号と感熱素
子54が検出した温度信号との相互相関関数を計算し、
前述と同じように流速を算出するものである。しかし、
流体温度を2個所の感熱素子54A、54B  で検出
して、それぞれφA(t)、φS (t)  とした第
5図の実施例とは異なり、この実施例では、加熱素子5
2に加えた電流波形そのものの検出信号をφA (t)
、感熱素子54による温度の検出信号をφs (t)と
しているため、両波形の間には第5図の実施例の場合よ
りも大きな時間遅れと波形差が起こる。
FIG. 8 shows another embodiment, in which the same reference numerals as in FIG. 5 represent the same members. In this embodiment, there is only one heat-sensitive element 54, and the structure is smaller and simpler than that in FIG. 5. In this case, the cross-correlation function between the signal detected by the current pro-pro 2 of the pulsed current applied to the heating element 52 and the temperature signal detected by the heat-sensitive element 54 is calculated,
The flow velocity is calculated in the same way as described above. but,
Unlike the embodiment shown in FIG. 5, in which the fluid temperature is detected by two heat-sensitive elements 54A and 54B, and φA(t) and φS (t) are respectively detected, in this embodiment, the heating element 5 is
The detection signal of the current waveform itself added to 2 is φA (t)
, the temperature detection signal from the thermosensitive element 54 is φs (t), so a larger time delay and waveform difference occur between the two waveforms than in the embodiment shown in FIG.

第9図に、相互相関関数を算出する回路構成の例を示す
。第5図の実施例における2つの感熱素子54A、54
B  からの信号(第8図の実施例では、雷、流プロー
ブ62と感熱素子54からの信号)はプリアンプ91と
マルチプレクサ92を介してA/D変換器93により交
互にA / D変換されて、0PU94を通じてメモリ
 95に格納される。一定時間のサンプリング後、0P
U94は2つのデジタル信号列φA (tj)及びφB
 (tj)について、τだけの時間差を見込んで Sτ=ΣφA (tj)  ・ φB(tj+τ)(4
)の積和をつくり、メモリ 95に保存する。これを異
なるτについて実行しながら、Sτの大きさを比較し、
その極大値を与える τ。を求める。流速はv=77τ
。で算出され、結果は表示器96に表示される。
FIG. 9 shows an example of a circuit configuration for calculating a cross-correlation function. Two heat sensitive elements 54A, 54 in the embodiment of FIG.
The signals from B (in the embodiment of FIG. 8, the signals from the lightning probe 62 and the heat sensitive element 54) are alternately A/D converted by an A/D converter 93 via a preamplifier 91 and a multiplexer 92. , 0PU94 and stored in the memory 95. After sampling for a certain period of time, 0P
U94 has two digital signal strings φA (tj) and φB
(tj), considering the time difference of τ, Sτ=ΣφA (tj) ・φB(tj+τ)(4
) and store it in memory 95. While performing this for different τ, compare the size of Sτ,
τ that gives its maximum value. seek. The flow velocity is v=77τ
. The result is displayed on the display 96.

第]−o図は、相互相関関数を算出する回路構成の他の
例を示すもので、第9図と同一符号は同一部材を示す。
FIG.]-o shows another example of the circuit configuration for calculating the cross-correlation function, and the same reference numerals as in FIG. 9 indicate the same members.

これでは、信号はプリアンプ91を介しA / D変換
器93によってデジタル化された後バッファメモリ 9
7に入るが、メモリ内容の更新は0PU94を介さずD
MA (Direct MemoryAc c e s
 s )コントローラ98により主メモリ 99との間
で直接行い、0PU94は相関関数の計算だけに使用す
ることにより、流速測定値の更新をすみやかに実行でき
るようになっている。更に、高速を要求される場合には
CPUを用いず回路全体を専用のハードウェアで構成す
れはよい。
In this, the signal is digitized by an A/D converter 93 via a preamplifier 91 and then sent to a buffer memory 9
7, but the memory contents are updated without going through 0PU94.
MA (Direct Memory Access
s) The controller 98 directly communicates with the main memory 99, and the 0PU 94 is used only for calculating the correlation function, so that the flow velocity measurement value can be updated promptly. Furthermore, if high speed is required, it is better to configure the entire circuit with dedicated hardware without using a CPU.

(発明の効果) この発明では、管路内面にできるだけ接近して管路外側
に加熱素子を設け、これに外部電源がらのパルス状の電
流を通すことにより内部流体を加熱し、加熱電流の検出
信号もしくは流路のこれより下流側に設けた感熱素子に
よる流体温度の検出信号と、これらよりも更に下流に設
けた感熱素子による流体温度の検出信号との相互相関関
数の極大値を用いて連続的に流体速度を決定することの
できる方法をとり、加熱部、検出部はそれぞれ配線、信
号線を介して外部の加熱電源、演算装置と接続すること
にしたので、加熱部、検出部自体を極めて小形に構成で
きて、測定対象の管路のどこにでも普通の接続手段によ
りつなぐことができ、必要により校正も容易にできる流
速測定装置が完成された。この装置は、管路内へ設ける
べき特別の構造物を必要としないので、内部流体の本来
の機能を妨げるような圧力損失や乱流発生もなく、更に
流体を通す部分は耐圧力をもたせやすい形、たとえば円
形とすることができるので、液体クロマトグラフ装置の
ような流路に高圧力がかかる場合でも適用が可能である
。そのうえ、流路を分岐したり、流体を取り出してでな
いと測定できないという条件もなく、測定原理上外乱に
対しても強く、また流体の特性に影響されたり、液体色
の有無により影響されることもない。
(Effects of the Invention) In this invention, a heating element is provided on the outside of the pipe as close as possible to the inner surface of the pipe, the internal fluid is heated by passing a pulsed current from an external power source through this, and the heating current is detected. Continuous detection using the maximum value of the cross-correlation function between the signal or the fluid temperature detection signal from the heat-sensitive element provided downstream of this and the fluid temperature detection signal from the heat-sensitive element provided further downstream. We adopted a method that allows the fluid velocity to be determined visually, and connected the heating section and detection section to an external heating power source and calculation device via wiring and signal lines, respectively. A flow rate measuring device has been completed that can be constructed in an extremely small size, can be connected to any part of the pipe to be measured using ordinary connection means, and can be easily calibrated if necessary. Since this device does not require any special structure to be installed inside the pipe, there is no pressure loss or turbulence that would interfere with the original function of the internal fluid, and the part through which the fluid flows can easily withstand pressure. Since it can be shaped, for example, circular, it can be applied even when high pressure is applied to the flow path, such as in a liquid chromatography device. Furthermore, there is no requirement that measurements be made without branching the flow path or taking out the fluid, and the measurement principle is strong against disturbances, and it is not affected by the characteristics of the fluid or by the presence or absence of liquid color. Nor.

一般に、周囲温度の変化に基づく流体の温度変   化
を測定しても、原理的にはこの発明と同じようにして流
速の測定は可能なG」すである。しかし、流体が自然に
もっている熱的ゆらきは小さく、その変化も極めて緩慢
であるため、通常人手できる感熱素子では正確な検知が
むずかしく、実用的な測定法とはなりえない。この発明
で開示したように、特別の加熱手段を設け、実用上検出
できるような温度変化を人為的に流体に与えることによ
って初めて実用的な流速測定ができることになるのであ
る。
In general, even when measuring changes in temperature of a fluid due to changes in ambient temperature, it is possible in principle to measure flow velocity in the same manner as in the present invention. However, the natural thermal fluctuations of fluids are small and change extremely slowly, making accurate detection difficult with a heat-sensitive element that can normally be done manually, making this a practical measurement method. As disclosed in this invention, it is only by providing a special heating means and artificially applying a practically detectable temperature change to the fluid that a practical flow rate measurement can be performed.

なお、この発明は、実施例で説明した液体クロマトグラ
フ装置のほか、比較的微量な液体の速度を正確に測定す
る必要のある各種の分析装置もしくはこれに類する装置
または各種プラントの流速もしくは流量制御装置に一般
的に適用できることは上述の説明から明らかである。
In addition to the liquid chromatograph apparatus described in the examples, the present invention is also applicable to various analytical apparatuses or similar apparatuses that need to accurately measure the velocity of a relatively small amount of liquid, or to flow rate or flow rate control in various plants. Its general applicability to devices is clear from the above description.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は液体クロマトグラフ装置の基本的構成図、第2
図は反応形の液体クロマトグラフ装置の構成図、第3図
はサイホンカウンタの原理図、第4図はドロップカウン
タの原理図、第5図はこの発明の一実施例の説明図、第
6図は2つの感熱素子の検出信号を例示する線図、第一
7図は2検出信明の演算装置の回路構成図である。 51:管体、 52:加熱手段としての加熱素子、 54:加熱出力の検出手段としての加熱素子、54A 
:温度の検出手段としての第一感熱素子、54B :温
度の検出手段としての第二感熱素子、62:加熱入力の
検出手段としての電流プローブ。 イモ理人イθ里十 山 am 71図     ニ 72図          6
Figure 1 is a basic configuration diagram of a liquid chromatograph device, Figure 2
The figure is a block diagram of a reactive liquid chromatography device, Figure 3 is a diagram of the principle of a siphon counter, Figure 4 is a diagram of the principle of a drop counter, Figure 5 is an explanatory diagram of an embodiment of the present invention, and Figure 6 is a diagram of the principle of a drop counter. is a diagram illustrating detection signals of two heat-sensitive elements, and FIG. 17 is a circuit configuration diagram of a two-detection Shinmei arithmetic unit. 51: Pipe body, 52: Heating element as heating means, 54: Heating element as means for detecting heating output, 54A
: A first heat sensitive element as a temperature detection means, 54B: A second heat sensitive element as a temperature detection means, 62: A current probe as a heating input detection means. Imo Rijin Iθ Riju Yama am Figure 71 Figure d 72 6

Claims (1)

【特許請求の範囲】 1)所定の距離を隔てた2個所でそれぞれ検出した被測
定体からの2信号の相関の極大点により前記被測定体の
速度を算出する相関式速度測定装置において、前記2信
号のひとつは前記被測定体の流路を形成する管体に設け
られた加熱手段の加熱用パルス状入力もしくは出力の検
出手段からの信号であり、他のひとつは前記検出手段よ
り下流の前記被測定体の温度の検出手段からの信号であ
ることを特徴とする相関式速度測定装置。 2、特許請求の範囲第1項記載の装置において、加熱手
段の加熱用パルス状入力が電流であることを特徴とする
相関式速度測定袋Fi′。 3)特許請求の範囲第1項記載の装置において、加熱手
段の出力が前記加熱手段の下流の前記被測定体の温度で
あることを特、徴とする相関式速度測定装置。
[Scope of Claims] 1) In a correlation speed measuring device that calculates the speed of the object to be measured based on the maximum point of correlation between two signals from the object to be measured detected at two locations separated by a predetermined distance, One of the two signals is a signal from the heating pulse input or output detection means of the heating means provided in the tube forming the flow path of the object to be measured, and the other is a signal from the detection means downstream of the detection means. A correlation type speed measuring device characterized in that the signal is a signal from a temperature detecting means of the object to be measured. 2. Correlation type speed measuring bag Fi' in the apparatus according to claim 1, characterized in that the heating pulse input to the heating means is an electric current. 3) A correlation type velocity measuring device according to claim 1, characterized in that the output of the heating means is the temperature of the object to be measured downstream of the heating means.
JP2243283A 1983-02-14 1983-02-14 Correlation type speed measuring apparatus Pending JPS59147271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243283A JPS59147271A (en) 1983-02-14 1983-02-14 Correlation type speed measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243283A JPS59147271A (en) 1983-02-14 1983-02-14 Correlation type speed measuring apparatus

Publications (1)

Publication Number Publication Date
JPS59147271A true JPS59147271A (en) 1984-08-23

Family

ID=12082529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243283A Pending JPS59147271A (en) 1983-02-14 1983-02-14 Correlation type speed measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59147271A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2600776A1 (en) * 1986-06-24 1987-12-31 Novatome DEVICE FOR MEASURING THE SPEED OF LOW-SPEED LIQUID METAL IN A CONDUIT
FR2623617A1 (en) * 1987-11-24 1989-05-26 Armines DEVICE FOR MEASURING A FLUID FLOW IN A PIPE
JP2009099105A (en) * 2007-09-28 2009-05-07 Fuji Electric Retail Systems Co Ltd Vending machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2600776A1 (en) * 1986-06-24 1987-12-31 Novatome DEVICE FOR MEASURING THE SPEED OF LOW-SPEED LIQUID METAL IN A CONDUIT
FR2623617A1 (en) * 1987-11-24 1989-05-26 Armines DEVICE FOR MEASURING A FLUID FLOW IN A PIPE
EP0318388A1 (en) * 1987-11-24 1989-05-31 Association Pour La Recherche Et Le Developpement Des Methodes Et Processus Industriels (Armines) Apparatus for measuring the fluid-flow in a conduit
JP2009099105A (en) * 2007-09-28 2009-05-07 Fuji Electric Retail Systems Co Ltd Vending machine

Similar Documents

Publication Publication Date Title
EP1585944B1 (en) Apparatus and method using an array of ultrasonic sensors for determining the velocity of a fluid within a pipe
US8214168B2 (en) Noninvasive testing of a material intermediate spaced walls
US4248085A (en) Measurement of relative velocities
US6907361B2 (en) Ultrasonic flow-measuring method
US6877387B1 (en) Method for measuring displacement of a fluid in a conduit
EA003869B1 (en) Simultaneous determination of multiphase flowrates and concentrations
US7946184B2 (en) Electromagnetic flowmeter having temperature measurement value for correcting electrical conductivity value
US5339695A (en) Fluidic gas flowmeter with large flow metering range
Liang et al. Investigating the liquid film characteristics of gas–liquid swirling flow using ultrasound Doppler velocimetry
GB2219396A (en) Measurement of flow velocity and mass flowrate
WO1988008516A1 (en) Ultrasonic fluid flowmeter
US7278325B2 (en) Method and apparatus to measure flow rate
WO2005031279A1 (en) Two phase flow sensor using tomography techniques
US20130219986A1 (en) Method and apparatus for calibrating a flow meter
CN108369213A (en) A method of improving detection oxygen concentration accuracy
JPS59147271A (en) Correlation type speed measuring apparatus
Cascetta et al. Field test of a swirlmeter for gas flow measurement
CN109324208A (en) A kind of vehicle repair major current density based on ultrasonic velocity method, mass flow and phase content integrated analysis instrument
Ofuchi et al. Void fraction measurement in a gas-liquid swirling flow using an ultrasonic sensor
US3543578A (en) Flow metering system
Dixon et al. Clamp-on measurements of fluid flow in small-diameter metal pipes using ultrasonic guided waves
JP4687293B2 (en) Doppler ultrasonic flow velocity distribution meter
França et al. Ultrasonic Measurement of Liquid Flow at Elevated Temperature
Brown Dual path ultrasonic measurement of fluid flow
Loosemore et al. A new ultrasonic flowmeter