JPS59146943A - Manufacture of manganese carbonate with high packing density - Google Patents

Manufacture of manganese carbonate with high packing density

Info

Publication number
JPS59146943A
JPS59146943A JP58021557A JP2155783A JPS59146943A JP S59146943 A JPS59146943 A JP S59146943A JP 58021557 A JP58021557 A JP 58021557A JP 2155783 A JP2155783 A JP 2155783A JP S59146943 A JPS59146943 A JP S59146943A
Authority
JP
Japan
Prior art keywords
carbonate
packing density
slurry
manganese
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58021557A
Other languages
Japanese (ja)
Other versions
JPH0229611B2 (en
Inventor
Kazuhide Nishida
一秀 西田
Toshie Takizawa
滝沢 利枝
Wataru Sekiguchi
関口 亘
Eiichiro Mieno
三重野 栄一郎
Keiji Tomii
富井 奎司
Kenji Hagimori
健治 萩森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Zinc Co Ltd
Toho Aen KK
Original Assignee
Toho Zinc Co Ltd
Toho Aen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Zinc Co Ltd, Toho Aen KK filed Critical Toho Zinc Co Ltd
Priority to JP58021557A priority Critical patent/JPS59146943A/en
Publication of JPS59146943A publication Critical patent/JPS59146943A/en
Publication of JPH0229611B2 publication Critical patent/JPH0229611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain Mn carbonate with high packing density by crystallizing Mn carbonate from an aqueous soln. of a water-soluble Mn salt and an aqueous soln. of ammonium or alkali carbonate in the presence of Mn carbonate seed crystals while specifying the concn. of a reactive liq. CONSTITUTION:An aqueous soln. of a water-soluble Mn salt and an aqueous soln. of ammonium carbonate are added to different positions in a reactor in which a reactive slurry kept at about 10-90 deg.C and about 6.7-8.0pH is being stirred without directly mixing the solns. with each other, and a reaction is caused. Said reactive agents and a liq. contg. seed crystals are fed so that the residence time of them is adjusted to about 1-24hr, and the slurry is drawn from the reactor so as to keep the surface of the slurry in the reactor at a uniform height. The drawn slurry is separated into solid and liq., and part of the solid is returned to the reactor as seed crystals so as to keep the concn. of the slurry in the reactor at 300-1,200g/l uniform concn. as a whole.

Description

【発明の詳細な説明】 本発明は可溶性マンガン塩水溶液とアンモニアあるいは
アルカリの炭酸塩水溶液とから炭酸マンガン沈澱を製造
する方法に係わυ、ことに、該反応系から充填密度の大
きな炭酸マンガン産物を沈澱させる改良法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing manganese carbonate precipitate from a soluble manganese salt aqueous solution and an ammonia or alkali carbonate aqueous solution. This invention relates to an improved method for precipitating.

電池用二酸化マンガンとしては、通常電解二酸化マンガ
ンが用いられているが、電解によらないで化学的に合成
する、いわゆる化学二酸化マンガン、例えば炭酸マンガ
ンを焼成して得られる二酸化マンガンも一部使用されて
いる。
Electrolytic manganese dioxide is usually used as manganese dioxide for batteries, but so-called chemical manganese dioxide, which is chemically synthesized without electrolysis, such as manganese dioxide obtained by firing manganese carbonate, is also used in some cases. ing.

電池用二酸化マンガンとしては、できるだけ高い充填密
度のものが要望されているが、そのような充填密度の高
い化学二酸化マンガンを得るには原料として、それに相
応した充填密度の高い炭酸マンガンを用いる必要があシ
、このような条件に適合した炭酸マンガンを工業的に得
る方法はいまだ見出されていない。
Manganese dioxide for batteries is required to have as high a packing density as possible, but in order to obtain chemical manganese dioxide with such a high packing density, it is necessary to use manganese carbonate with a correspondingly high packing density as a raw material. However, no method has yet been found to industrially obtain manganese carbonate that meets these conditions.

例えば、米国特許第3011867号の方法では炭酸マ
ンガンを含むマンカン−アンモニオ錯塩のアンモニア性
貴液の熱分解による炭酸マンカンの連続沈澱方法に関し
、65°〜68℃で熱分解を行なわせることにより、組
成が均一で、かさ密度の高い炭酸マンカンを得ることが
できるとしているが、その実施例で示されている炭酸マ
ンガンのカサ密度は1.40程度のもので、これから得
られた二酸化マンガンの密度はカサ密度で1.22、充
填密度で1.6〜1.7のものであって、現在普通に使
用されている電解二酸化マンガンの充填密度2.3に比
して著しく低い。
For example, the method of U.S. Pat. No. 3,011,867 relates to a continuous precipitation method of mankan carbonate by thermal decomposition of an ammoniacal liquid of mankanan-ammonio complex containing manganese carbonate. It is said that it is possible to obtain manganese carbonate with uniformity and high bulk density, but the bulk density of manganese carbonate shown in the example is about 1.40, and the density of manganese dioxide obtained from this is The bulk density is 1.22 and the packing density is 1.6 to 1.7, which is significantly lower than the filling density of the currently commonly used electrolytic manganese dioxide, which has a packing density of 2.3.

硫酸マンカンおよび炭酸アルカリの同時等量添加により
カサ密度の高い炭酸マンガンを得る方法も仰られている
。例えば特開昭57−200229号公報にも記載され
ている。しかし、その公報で発明とする4σ〜90°C
での方法では充填密度2.3の比較的重い炭酸マンガン
沈澱を得ているが、電解二酸化マンガン級の二酸化マン
ガンを製し得るにはまだ充填密度が不十分である。
A method for obtaining manganese carbonate with high bulk density by simultaneously adding equal amounts of manganese sulfate and alkali carbonate is also mentioned. For example, it is also described in Japanese Unexamined Patent Publication No. 57-200229. However, 4σ to 90°C, which is the invention in that publication,
Although a relatively heavy manganese carbonate precipitate with a packing density of 2.3 was obtained in the method described above, the packing density was still insufficient to produce manganese dioxide of electrolytic manganese dioxide grade.

各種重金属塩類水溶液から結晶性、r過性の良い水酸化
物、硫酸塩および炭酸塩の沈澱物を生成させるに際して
、両反応剤溶液を、沈澱が生成するpHおよび温度を一
定に保ちながら同時に一定比率で添加して作る方法は、
例えば、米国特許第3356452号および特公昭56
−13481号公報等ですでに仰られているし、2種類
の反応剤液を混合して沈澱生成を行なう系を連続的に行
なp場合一般的に行なわれる操作である。
When producing precipitates of hydroxides, sulfates, and carbonates with good crystallinity and r-permeability from aqueous solutions of various heavy metal salts, both reactant solutions are simultaneously kept at a constant pH and temperature at which the precipitates are formed. The method of adding in proportions is as follows:
For example, U.S. Patent No. 3,356,452 and Japanese Patent Publication No. 56
This has already been mentioned in Japanese Patent No. 13481, etc., and is a commonly used operation when a system in which two types of reactant liquids are mixed to form a precipitate is continuously carried out.

本発明者等は、可溶性マンガン塩水溶液とアンモニアあ
るいはアルカリの炭酸塩水溶液から電池用二酸化マンガ
ンに好適な原料となる充填密度の高い炭酸マンガンを得
るために温度、pH値、反応液濃度攪拌力、種晶の存在
および反応剤の添加速度の好適な組合せの諸条件を調査
検討し、多量の炭酸マンガン種晶の利用が極めて好まし
いことを基本とし、併せて攪拌力、pH値、反応液濃度
等の好適な組合せ実施条件全見出し本発明に致った。
In order to obtain manganese carbonate with a high packing density, which is a suitable raw material for manganese dioxide for batteries, from a soluble manganese salt aqueous solution and an ammonia or alkali carbonate aqueous solution, the present inventors have determined the temperature, pH value, reaction solution concentration, stirring power, We investigated and considered various conditions for a suitable combination of the presence of seed crystals and the addition rate of the reactant, and based on the fact that it is extremely preferable to use a large amount of manganese carbonate seed crystals, we also investigated the conditions such as stirring power, pH value, reaction solution concentration, etc. The present invention has been achieved based on all suitable combinations of implementation conditions.

本発明の方法は、基本的には可溶性マンカン塩水溶液例
えば硫酸マンカン、硝酸マン力/、塩化マンカンの水溶
液とアンモニアあるいはアルカリの炭酸塩水溶液、例え
ば炭酸アンモニウム水溶液アンモニアに炭酸カスを吸収
させた液、炭酸ソーダあるいは炭酸カリウム、と全反応
させて炭酸マンカンを沈澱せしめるに際し、あらかじめ
炭酸マンガンの種晶を存在せしめることを特徴とする方
法である。
The method of the present invention basically consists of an aqueous solution of a soluble mankan salt such as mankan sulfate, mankan nitric acid/mankan chloride, and an aqueous solution of ammonia or an alkali carbonate, such as an aqueous ammonium carbonate solution, a solution in which carbonic acid scum is absorbed by ammonia; This method is characterized in that seed crystals of manganese carbonate are made to exist in advance when precipitating manganese carbonate through a complete reaction with soda carbonate or potassium carbonate.

好適な実施態様として、マンガン濃度0.5〜3.0モ
ル/lの硫酸マンガン水溶液と炭酸アンモニウム0.5
〜8,0モル/lのアンモニア性炭酸アンモン水溶液″
lr:10°〜90°CかつpH6,7〜8.0の間の
所定値に保持された反応スラリーを、攪拌状態にある反
応容器内の異なる個所にお互の液が直接混り合わないよ
うに添加して反応させ、一方前記両反応剤と繰返えされ
る種晶液の合量液の滞留時間が1〜24時間、好ましく
は2〜9時間となるように両反応剤と種晶液を供給し、
反応容器の液面がバランスするようにスジ塊−液を反応
容器から抜き出して固液分離し、その固形分の一部を種
晶として反応容器内に繰返えし、全体として反応容器内
のスラリー濃度を300〜12009/l好ましくは5
00〜8009/Itの所定の値で一定に保持する。ま
た前記含量液の滞留時間は、反応容器の減容量と供給さ
れる合量液の供給速度から算出される値である。
In a preferred embodiment, a manganese sulfate aqueous solution with a manganese concentration of 0.5 to 3.0 mol/l and ammonium carbonate 0.5
~8.0 mol/l ammoniacal ammonium carbonate aqueous solution''
lr: The reaction slurry is kept at a predetermined value between 10° and 90°C and pH between 6 and 7 and 8.0, and the liquids do not mix directly with each other in different parts of the reaction vessel under stirring. Both reactants and seed crystals are added in such a manner that the total residence time of the above-mentioned reactants and the repeated seed crystal solution is 1 to 24 hours, preferably 2 to 9 hours. supply the liquid,
The streaky mass-liquid is extracted from the reaction vessel and separated into solid and liquid so that the liquid level in the reaction vessel is balanced, and a part of the solid content is repeated into the reaction vessel as a seed crystal, and the total amount of liquid in the reaction vessel is The slurry concentration is preferably 300 to 12009/l, preferably 5
It is held constant at a predetermined value between 00 and 8009/It. Further, the residence time of the content liquid is a value calculated from the volume reduction of the reaction vessel and the supply rate of the total volume liquid supplied.

従来得られた炭酸マンガンの見かけ密度および充填密度
の最高値は、硫酸マンカン水溶液と炭酸アルカリ水溶液
との同時添加を特徴とする特開昭57−200229号
の公報に示された1、94.!il’眉および2.30
.!il/iであると思われるが、本発明の方法で得ら
れた炭酸マンガンは見かけ密度および充填密度がそれぞ
れ2.31.9//7および2.58 g/CI!であ
って上記等の従来法で得られる炭酸マンカンに比して著
しく重質である。この充填密度の差は炭酸マンカン沈澱
物の結晶の緻密さ、球状の粒子形状、粒子1ヶ、1ケの
表面の平滑さおよび粗粒子と細粒子の混合の割合による
と推定される。これらの粒子の特性は異状と思われるほ
ど多くの種晶の存在下においてのみ達成される。すなわ
ち、攪拌状態下で高濃度のスラリ一温度持することは沈
殿物粒子相互の衡突が起りその角が取れ丸みを帯びると
同時に研摩され表面が平滑化し、充填密度が高くなる。
The highest values of apparent density and packing density of manganese carbonate conventionally obtained are 1,94. ! il' eyebrow and 2.30
.. ! il/i, but the manganese carbonate obtained by the method of the present invention has an apparent density and a packing density of 2.31.9//7 and 2.58 g/CI, respectively! It is significantly heavier than carbonated mankan obtained by conventional methods such as those described above. This difference in packing density is estimated to be due to the fineness of the crystals of the mankan carbonate precipitate, the spherical particle shape, the smoothness of the surface of each particle, and the mixing ratio of coarse particles and fine particles. These particle properties are achieved only in the presence of an unusually large number of seed crystals. That is, when a highly concentrated slurry is kept at one temperature under stirring, the precipitate particles collide with each other, the corners of which are removed and rounded, and at the same time, the surface is polished and the packing density is increased.

溶液中からの沈澱生成は核になる物質を中心にして起り
易いが、核になるべき場所が多いほどすなわち、種晶が
多いほどその生成速度が遅くなり、沈殿物結晶の緻密性
が向上するし反応槽内での粒子の滞留時間が長くなれば
なるほど溶出再結晶化が進み、単結晶化し易い。粒子相
互の圧縮力が働き重質化する等の理由が挙げられる。い
ずれの要因が効果したか明確ではないが、種晶粒子の存
在は充填密度の犬な炭酸マンカンを製するに当り絶大な
効果を有し、従来得られなかった高充填密度の炭酸マン
ガンを得ることを可能ならしめるものである。
Precipitate formation from a solution tends to occur around the substance that becomes the nucleus, but the more places there are to form nuclei, that is, the more seed crystals there are, the slower the formation rate becomes, and the denser the precipitate crystals become. However, the longer the particles stay in the reaction tank, the more elution recrystallization progresses, and the easier it is to form a single crystal. Reasons include the fact that the particles become heavier due to mutual compressive force. Although it is not clear which factor was effective, the presence of seed crystal particles has a tremendous effect in producing manganese carbonate with a high packing density, and it is possible to obtain manganese carbonate with a high packing density that was not previously possible. It is what makes things possible.

また攪拌力も生成される沈澱物の充填密度に大きな影響
を及ぼし、かつ、沈澱物の粒度分布に大きく影響するこ
とが知見された。攪拌力が弱すぎるとスラリーが十分に
混合されず、スラリー濃度を所定範囲に維持しても充填
密度は2.3p/iに達するのがようやくである。攪拌
力を十分に与え、スラリー濃度を所定の濃度範囲に保つ
ことにより充填密度の犬な沈澱物が得られた。
It has also been found that the stirring force has a large effect on the packing density of the produced precipitate, and also on the particle size distribution of the precipitate. If the stirring force is too weak, the slurry will not be mixed sufficiently, and even if the slurry concentration is maintained within a predetermined range, the packing density will barely reach 2.3 p/i. By applying sufficient stirring power and maintaining the slurry concentration within a predetermined concentration range, a precipitate with a uniform packing density was obtained.

本発明の方法は、バッチ式であっても、また連続方式で
あっても可能であるが、また更に生成沈澱物の粒度分布
の調整を意図した攪拌力の異なる複数の反応容器による
直列連続操作も可能である。
The method of the present invention can be carried out either batchwise or continuously, but it can also be carried out in series and continuously using a plurality of reaction vessels with different stirring powers in order to adjust the particle size distribution of the produced precipitate. is also possible.

本発明の方法をバッチで行なう場合は攪拌強度をスラリ
ー濃度の増加に伴なって段階的に、あるいは連続的に変
化させることが充填密度の高い炭酸マンガンを製するの
に有利である。また、沈澱生成の期間において攪拌強度
を変化させることによp粒径分布の異なる沈澱物が得ら
れることも知見された。
When the method of the present invention is carried out batchwise, it is advantageous to vary the stirring intensity stepwise or continuously as the slurry concentration increases, in order to produce manganese carbonate with a high packing density. It has also been found that by changing the stirring intensity during the precipitate formation period, precipitates with different p particle size distributions can be obtained.

更に、攪拌強度の変化の程度を変えて製した2種類ある
いはそれ以上の沈澱物を互いに混ぜ合せることにより、
各々の沈澱物が有していた固有の充填密度よりも犬な充
填密度を有する新たな沈澱物が得られることが知見され
た。
Furthermore, by mixing two or more types of precipitates made with varying degrees of stirring intensity,
It was found that a new precipitate was obtained having a packing density that was higher than the original packing density that each precipitate had.

本発明方法の実施態様として、充填密度を向上させるべ
く、複数の反応装置から得られる沈澱物の混合による粒
度分布調整も可能である。
As an embodiment of the method of the present invention, it is also possible to adjust the particle size distribution by mixing precipitates obtained from a plurality of reactors in order to improve the packing density.

これら、本発明の効果は以下の実施例によってさらに具
体的に仰られるであろう。
These effects of the present invention will be explained more specifically by the following examples.

実施例1 攪拌機を備え、直径4ocrrL高さ4oC11Lの寸
法を有する有蓋反応容器を用い、601/Aの炭酸マン
ガンスラリー液457を攪拌しながら石英投込ヒータ2
本で加熱し、後記する所定の温度に維持した。
Example 1 Using a covered reaction vessel equipped with a stirrer and having dimensions of 4 oCrrL in diameter and 4oC11L in height, quartz injection heater 2 was used while stirring 601/A manganese carbonate slurry liquid 457.
It was heated with a book and maintained at a predetermined temperature as described below.

反応容器中へ、マンガン濃度1209//lの硫酸マン
ガン溶液ヲ807rLl/分、そして炭酸アンモン溶液
を170mJ/fiの速度で連続的に供給した。反応容
器中では両反応剤液が直接混らないように添加した。
A manganese sulfate solution with a manganese concentration of 1209/l was continuously fed into the reaction vessel at a rate of 807 rLl/min and an ammonium carbonate solution at a rate of 170 mJ/fi. Both reactant solutions were added so as not to mix directly in the reaction vessel.

スラリーのpH値は炭酸アンモン溶液の供給速度を操作
して7.0〜7.1の範囲に入るように制御した。
The pH value of the slurry was controlled within the range of 7.0 to 7.1 by manipulating the feed rate of the ammonium carbonate solution.

反応容器内に、工業用pH計を差し込みI)H値の連続
測定が可能なようにした。一方スラリーを容器の底部に
設けた排出パイプにょシ約340mA’10の速度で抜
き出し、そのスラリー液からデカンテーションで分離し
た固形分の一部を1300 j;//10分(1500
みり・スラリーとして約8707d、勺0分)で蓋を通
したパイプにより半連続的に攪拌スラリー中へ戻した。
An industrial pH meter was inserted into the reaction vessel to enable continuous measurement of I)H values. On the other hand, the slurry was extracted at a speed of about 340 mA'10 through a discharge pipe installed at the bottom of the container, and a portion of the solids separated from the slurry liquid by decantation was heated at 1300 j;
The milled slurry was semi-continuously returned to the stirred slurry at approximately 8,707 d, 0 min) through a pipe passed through a lid.

供給物の滞留時間は2.2時間である。炭酸アンモン溶
液組成は分析結果から(NH,) 2.、、 COBで
あった。
The residence time of the feed is 2.2 hours. The composition of ammonium carbonate solution is determined from the analysis results (NH,) 2. ,, It was COB.

この実験をスラリ一温度20.40.50.60.70
および80℃に変えて行なった。
This experiment was carried out at a slurry temperature of 20.40.50.60.70.
The temperature was changed to 80°C.

得られた結果を第1表に示した。The results obtained are shown in Table 1.

第 1 表 20℃では若干充填密度が低くなるが、40℃以上では
充填密度が2.40JΔ以上となった。上澄液中のMn
濃度も十分低かった。
Table 1: At 20°C, the packing density was slightly lower, but at 40°C or higher, the packing density was 2.40 JΔ or more. Mn in supernatant
The concentration was also sufficiently low.

実施例2 実施例1と同じ方法で、硫酸マンカン溶液の代りに硝酸
マンガン溶液を用いて実験を行なった。
Example 2 An experiment was conducted in the same manner as in Example 1, using a manganese nitrate solution instead of the manganese sulfate solution.

得られた結果を第2表に示した。The results obtained are shown in Table 2.

第2表 実施例3 攪拌機を備えた直径40crrL、高さ40crrLの
反応容器を用い、最初に水道水を401張り込み、攪拌
機全まわしながら石英投込ヒータ2本で液温か60℃に
なるように昇温し、その後槽内温度が60 ’Cになる
ように制御する。定量ポンプを用いマンガン濃度120
 El/13の硫酸マンカン水溶液を511/Hzの速
度で、そして炭酸アンモン水溶液を1011/Hrの速
度で連続的に、かつ両反応剤液が直接混合しないように
添加する。槽内の液が満杯近くなれば、スラリー液’&
 IOA抜き出し、別の容器に移してスラリーを沈降さ
せる。上澄液は捨て、沈降スラリーは反応槽へ戻す。
Table 2 Example 3 Using a reaction vessel with a diameter of 40crrL and a height of 40crrL equipped with a stirrer, first 401ml of tap water was charged, and while the stirrer was running fully, the temperature of the liquid was raised to 60°C using two quartz heaters. Then, the temperature inside the tank is controlled to be 60'C. Manganese concentration 120 using metering pump
An El/13 mankan sulfate aqueous solution is added continuously at a rate of 511/Hz, and an ammonium carbonate aqueous solution is added continuously at a rate of 1011/Hr so that the two reactant solutions do not mix directly. When the liquid in the tank is almost full, the slurry liquid'&
Remove the IOA and transfer to another container to settle the slurry. The supernatant liquid is discarded and the sedimented slurry is returned to the reaction tank.

この操作を繰返しながら反応槽内のスラリー濃度が12
00gAになるまで行なった。反応槽内のpH値は炭酸
アンモン水溶液の供給速度を増減し7.0〜7.2の範
囲になるように制御した。
While repeating this operation, the slurry concentration in the reaction tank becomes 12.
The test was carried out until it reached 00gA. The pH value in the reaction tank was controlled to be in the range of 7.0 to 7.2 by increasing or decreasing the supply rate of the ammonium carbonate aqueous solution.

実験lでは攪拌機の回転数を3207pm一定に維持し
たO 実験2ではスラリー濃度が3509/lになるまでは3
20rpm、その後550 jj/lになるまで340
7pm。
In Experiment 1, the rotation speed of the stirrer was kept constant at 3207 pm; in Experiment 2, it was kept at 3 until the slurry concentration reached 3509/l.
20 rpm, then 340 until it reaches 550 jj/l
7pm.

スラリー濃度5509/l以上終了までは380rpm
とスラリー濃度が増加するに従かい攪拌強度を段階的に
強めて行った。
380 rpm until slurry concentration is 5509/l or higher
The stirring intensity was gradually increased as the slurry concentration increased.

実験3ではスラリー濃度が400 fl/Itになるま
では320rpm、 4009711以上では360T
pmになるように攪拌強度を変更した。
In Experiment 3, the speed was 320 rpm until the slurry concentration reached 400 fl/It, and 360 T when the slurry concentration was 4009711 or higher.
The stirring intensity was changed so that pm.

得られた結果をスラリー濃度と充填密度の関係として第
1図に示す。
The obtained results are shown in FIG. 1 as a relationship between slurry concentration and packing density.

第1図より、実験lは攪拌強度が弱い場合の結果であり
、スラリー濃度1zooE/13において充填密度は2
.30であった。実験2および3ではスラリー濃度の上
昇に伴なって攪拌強度を段階的に変化させた。スラリー
濃度1200gAにおいて充填密度2.55〜2,58
の重質な炭酸マンガンが得られた。攪拌強度はスラリー
が十分に混合される強さが必要である0 第2図として実験2で得られた平面の滑らかな球状の充
填密度2.54,9/佃の炭酸マンカンの電子顕微鏡写
真を示した。(1)は倍率100倍で、(2)は倍率4
00倍である表面積の小さい密度の高い形の球状粒が得
られ、またそれがそれらの粒度分布状況と相俟りて充填
密度の向上に役立っているのがゎかるO 実施例4 実施例3の実験1〜3で得られた炭酸マンカンをスラリ
ー濃度7001!/11の時点で採取し篩別テストを行
なった。
From Figure 1, Experiment 1 shows the results when the stirring intensity is weak, and the packing density is 2 at a slurry concentration of 1 zooE/13.
.. It was 30. In Experiments 2 and 3, the stirring intensity was changed stepwise as the slurry concentration increased. Packing density 2.55-2,58 at slurry concentration 1200gA
of heavy manganese carbonate was obtained. The stirring strength needs to be strong enough to mix the slurry sufficiently. Figure 2 shows an electron micrograph of the carbonated manquats obtained in Experiment 2 with a flat, smooth spherical packing density of 2.54,9/Tsukuda. Indicated. (1) has a magnification of 100x, and (2) has a magnification of 4
It is possible to obtain densely shaped spherical particles with a small surface area that is 00 times larger than that of Example 3. The slurry concentration of carbonated mankan obtained in experiments 1 to 3 is 7001! Samples were taken at the time of 11/11, and a sieving test was performed.

結果を第3表に示す。The results are shown in Table 3.

第3表 第3表より攪拌の強度を変えることにより製する沈澱物
の粒度分布を変えることができることが知見された。
From Table 3, it was found that the particle size distribution of the precipitate produced could be changed by changing the stirring intensity.

また実験2の試料と実験3の試料を1対1で混合した結
果を第3表の最下欄に示すが、各々の試料が有していた
個有の充填密度よりも犬な充填密度が得られており、粒
度分布の異なる粒子群を混合すれば、それぞれの粉体の
有している個有の充填密度よりも犬な充填密度の新たな
粉体が得られることが知見された。
In addition, the results of mixing the samples of Experiment 2 and Experiment 3 in a one-to-one ratio are shown in the bottom column of Table 3, and the packing density is more different than the unique packing density of each sample. It has been found that by mixing a group of particles with different particle size distributions, a new powder having a packing density higher than that of each powder individually can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例3の実験1〜3で得られた結果をスラ
リー濃度と充填密度の関係として図示した図である。 第2図は、本発明の実施例3の実験2で得られた炭酸マ
ンカンの電子顕微鏡写真を示す図である。 (1)は倍率100倍で、(2)は倍率400倍である
。 特許出願人 東邦亜鉛株式会社 g”/II;j ”[ 2Ll f4      4 Ll t+      
 電Vt1ll       Ill       1
tlLlll      l :tl+1゛・り濃度t
yC+ 257− 子、′、5 畢、1ゞパ、′タ ゝ; ざ、j・+i  ′)
FIG. 1 is a diagram illustrating the results obtained in Experiments 1 to 3 of Example 3 as a relationship between slurry concentration and packing density. FIG. 2 is a diagram showing an electron micrograph of carbonated mankan obtained in Experiment 2 of Example 3 of the present invention. (1) has a magnification of 100 times, and (2) has a magnification of 400 times. Patent applicant: Toho Zinc Co., Ltd.
Electric Vt1ll Ill 1
tlLllll l: tl+1゛・ri concentration t
yC+ 257- child, ′, 5 畢, 1ゞpa, ′ta ゝ; za, j・+i ′)

Claims (3)

【特許請求の範囲】[Claims] (1)可溶性マンガン塩水溶液とアンモニアあるいはア
ルカリの炭酸塩水溶液から炭酸マンカン沈澱物を晶出せ
しめるに際して、反応槽内の炭酸マンガン種晶の存在下
において、反応槽内のスラリー濃度を300〜1200
9/Aの一定濃度に保持することを特徴とする充填密度
の大きい炭酸マンガンの製造方法。
(1) When crystallizing a manganese carbonate precipitate from a soluble manganese salt aqueous solution and an ammonia or alkali carbonate aqueous solution, in the presence of manganese carbonate seed crystals in the reaction tank, the slurry concentration in the reaction tank is adjusted to 300 to 1200.
A method for producing manganese carbonate with a high packing density, characterized in that the concentration is maintained at a constant concentration of 9/A.
(2)可溶性マ/ガ/塩水溶液とアンモニアあるいはア
ルカリの炭酸塩水溶液から炭酸マンカン沈澱物を晶出せ
しめるに際して、反応槽内の炭酸マンカン種晶の存在下
において、反応槽内のスラリー濃度を300〜1200
g/lの一定濃度に保持し、かつ反応槽の攪拌力を変化
させて沈澱物の粒度を調整することを特徴とする充填密
度の大きい炭酸マンカンの製造方法。
(2) When crystallizing a mankan carbonate precipitate from a soluble manganese/moth/salt aqueous solution and an ammonia or alkali carbonate aqueous solution, in the presence of mankan carbonate seed crystals in the reaction tank, the slurry concentration in the reaction tank is reduced to 300%. ~1200
A method for producing carbonated mankan with a high packing density, characterized by maintaining the concentration at a constant concentration of g/l and adjusting the particle size of the precipitate by varying the stirring power of a reaction tank.
(3)可溶性マンカン塩水溶液とアンモニアあるいはア
ルカリの炭酸塩水溶液から炭酸マンガン沈澱物を晶出せ
しめるに際して、攪拌力の異なる複数の反応槽を用い、
それぞれの反応槽において炭酸マンガン種晶の存在下に
おいて、反応槽内のスラリー濃度を300〜1200g
/A’の一定に保持しながら攪拌を行ない、得られた複
数の沈澱物を混合して粒度を調整することを特徴とする
充填密度の大きい炭酸マンガンの製造方法。
(3) When crystallizing a manganese carbonate precipitate from a soluble mankan salt aqueous solution and an ammonia or alkali carbonate aqueous solution, using multiple reaction vessels with different stirring powers,
In each reaction tank, in the presence of manganese carbonate seed crystals, the slurry concentration in the reaction tank was adjusted to 300 to 1200 g.
A method for producing manganese carbonate with a high packing density, which comprises stirring while maintaining a constant value of /A', and adjusting the particle size by mixing a plurality of precipitates obtained.
JP58021557A 1983-02-14 1983-02-14 Manufacture of manganese carbonate with high packing density Granted JPS59146943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58021557A JPS59146943A (en) 1983-02-14 1983-02-14 Manufacture of manganese carbonate with high packing density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58021557A JPS59146943A (en) 1983-02-14 1983-02-14 Manufacture of manganese carbonate with high packing density

Publications (2)

Publication Number Publication Date
JPS59146943A true JPS59146943A (en) 1984-08-23
JPH0229611B2 JPH0229611B2 (en) 1990-07-02

Family

ID=12058305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58021557A Granted JPS59146943A (en) 1983-02-14 1983-02-14 Manufacture of manganese carbonate with high packing density

Country Status (1)

Country Link
JP (1) JPS59146943A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058221A1 (en) * 1999-03-29 2000-10-05 Japan Energy Corporation Particulate manganese compound and method for preparation thereof, and secondary cell using the same
JP2017530086A (en) * 2014-10-08 2017-10-12 ユミコア Carbonate precursor for lithium / nickel / manganese / cobalt oxide cathode material and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058221A1 (en) * 1999-03-29 2000-10-05 Japan Energy Corporation Particulate manganese compound and method for preparation thereof, and secondary cell using the same
JP2017530086A (en) * 2014-10-08 2017-10-12 ユミコア Carbonate precursor for lithium / nickel / manganese / cobalt oxide cathode material and method for producing the same
US11380882B2 (en) 2014-10-08 2022-07-05 Umicore Carbonate precursors for lithium nickel manganese cobalt oxide cathode material and the method of making same

Also Published As

Publication number Publication date
JPH0229611B2 (en) 1990-07-02

Similar Documents

Publication Publication Date Title
CN107720716B (en) The technique for preparing battery-level lithium carbonate and ferric phosphate from crude product lithium phosphate recycling lithium phosphorus
TWI457288B (en) Pulverulent compounds, process for preparing them and their use in secondary lithium batteries
JP5409599B2 (en) PCC manufacturing method
CN104418388B (en) The technique of a kind of ultra-fine powder of cobalt carbonate of continuous production and device thereof
CN107640792A (en) A kind of high compact small particle nickel cobalt manganese hydroxide and preparation method thereof
CN103189315A (en) Production of high purity precipitated calcium carbonate
EP0214494B1 (en) Magnesium hydroxide and process for its production
US5906804A (en) Magnesium hydroxide slurries
US20050221179A1 (en) Active mixed nickel hydroxide cathode material for alkaline storage batteries and process for its production
KR20100024431A (en) Spherical copper fine powder and process for production of the same
CN110112386B (en) Preparation method of high-nickel ternary positive electrode precursor
CN101600654A (en) Produce the method for ammonium paratungstate hydrate and ten hydration ammonium paratungstates
JP2023078253A (en) Method for precipitating carbonate or (oxy)hydroxide
CN108585007B (en) A kind of method that coordinated regulation reinforcing sodium aluminate solution crystal seed decomposes
CN110282651A (en) A method of high-purity rare earth oxide is prepared using compound precipitants
JP2006515950A (en) Active nickel mixed hydroxide-cathode material for alkaline storage battery and method for producing the same
JPS59146943A (en) Manufacture of manganese carbonate with high packing density
CN109182742A (en) Rare-earth precipitation device
JP2805098B2 (en) Method for producing nickel hydroxide
US2738255A (en) Manufacture of potassium fluoborate
EP0772570B1 (en) Magnesium hydroxide slurries
US2981596A (en) Preparation of alkaline earth metal carbonates
US4309215A (en) Method for the cementation of metals
JP3353600B2 (en) Apparatus and method for producing nickel hydroxide powder
JPS6234688B2 (en)