JPS5914690B2 - fuel supply control device - Google Patents

fuel supply control device

Info

Publication number
JPS5914690B2
JPS5914690B2 JP15978178A JP15978178A JPS5914690B2 JP S5914690 B2 JPS5914690 B2 JP S5914690B2 JP 15978178 A JP15978178 A JP 15978178A JP 15978178 A JP15978178 A JP 15978178A JP S5914690 B2 JPS5914690 B2 JP S5914690B2
Authority
JP
Japan
Prior art keywords
flow rate
amount
fuel
water
fuel supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15978178A
Other languages
Japanese (ja)
Other versions
JPS5585816A (en
Inventor
行夫 長岡
俊元 梶谷
芳雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15978178A priority Critical patent/JPS5914690B2/en
Priority to GB7927458A priority patent/GB2027851B/en
Priority to DE19792932307 priority patent/DE2932307C2/en
Priority to FR7920548A priority patent/FR2433159A1/en
Publication of JPS5585816A publication Critical patent/JPS5585816A/en
Publication of JPS5914690B2 publication Critical patent/JPS5914690B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/087Regulating fuel supply conjointly with another medium, e.g. boiler water using mechanical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明は被加熱流体の流量に応じてバーナ燃焼量を制御
することによって温度上昇をほぼ一定化しようとする燃
料供給制御装置に関し、特に給水量変化に関係なく一定
温度の湯が得られるようにする瞬間ガス湯沸器に関する
ものであり、給水側の圧力と燃料側の圧力レベルの差を
吸収して両川力を比較することによって制御性能を高め
、また燃焼量によって熱効率が変化することを考慮して
被加熱流体の流量と燃料の供給量の比例関係を燃料の供
給量の大小によって変化させ、温度上昇の一定化の性能
を高めたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel supply control device that attempts to keep the temperature rise almost constant by controlling the amount of burner combustion according to the flow rate of the fluid to be heated, and in particular, the present invention relates to a fuel supply control device that attempts to keep the temperature rise almost constant by controlling the amount of burner combustion depending on the flow rate of the fluid to be heated. This relates to an instantaneous gas water heater that allows you to obtain hot water.It improves control performance by absorbing the difference between the pressure level on the water supply side and the pressure level on the fuel side and comparing the two river forces, and also increases the control performance depending on the amount of combustion. Taking into account the change in thermal efficiency, the proportional relationship between the flow rate of the fluid to be heated and the amount of fuel supplied is changed depending on the amount of fuel supplied, thereby improving the performance of keeping the temperature rise constant.

瞬間ガス湯沸器において給水量に比例してガス量を供給
することは実公昭49−38623号、実公昭53−1
4989号ですでに公知であるが、給水量に対して燃焼
量を比例させて供給すると燃焼量によって熱交換効率が
変化するので、出力熱量は給水量に比例しな(なり、そ
の結果、水の加熱温度上昇は一定でなくなる欠点がある
Supplying the amount of gas in proportion to the amount of water supplied in an instantaneous gas water heater is disclosed in Utility Model Publication No. 49-38623 and Utility Model Publication No. 53-1.
As already known in No. 4989, when the amount of combustion is proportional to the amount of water supplied, the heat exchange efficiency changes depending on the amount of combustion, so the output heat amount is not proportional to the amount of water supplied (as a result, the amount of water The disadvantage is that the heating temperature rise is not constant.

本発明は従来のかかる欠点を解消するものであり、以下
にその実施例を図面とともに説明する。
The present invention eliminates these conventional drawbacks, and embodiments thereof will be described below with reference to the drawings.

本発明の一実施例においては、特に被加熱体が水で燃料
がガスの瞬間ガス湯沸器の場合について説明するが、本
発明は特にこれに限定するものでは無い。
In one embodiment of the present invention, a case will be described in particular of an instantaneous gas water heater in which the object to be heated is water and the fuel is gas, but the present invention is not particularly limited to this.

第1図において、水は水配管1から入り、絞り部2とこ
れにつながる拡大部3を有する圧力差発生体4を通過し
た後、熱交換器7で加熱され、蛇口8から出湯する。
In FIG. 1, water enters from a water pipe 1, passes through a pressure difference generator 4 having a constriction part 2 and an enlarged part 3 connected thereto, is heated by a heat exchanger 7, and is discharged from a faucet 8.

圧力差発生体4の絞り部2直前の水圧は高圧タップ5か
ら、又、絞り部2の水圧は低圧タップ6から検出されて
、後述の力発生体13と開閉弁駆動部29へ圧力が導か
れる。
The water pressure just before the throttle part 2 of the pressure difference generator 4 is detected from the high pressure tap 5, and the water pressure at the throttle part 2 is detected from the low pressure tap 6, and the pressure is guided to the force generator 13 and the on-off valve drive part 29, which will be described later. It will be destroyed.

次に、ガスはガス配管9から入り、開閉弁10を通過し
た後、燃料圧制御器11で水量と一定の関係を持った供
給ガス圧に制御されてからバーナ12へ至り燃焼する。
Next, the gas enters from the gas pipe 9, passes through the on-off valve 10, is controlled by the fuel pressure controller 11 to a supply gas pressure that has a certain relationship with the amount of water, and then reaches the burner 12 where it is combusted.

13は力発生体であって、主ダイヤフラム14と、これ
よりやや小径で同心に配列された2枚のバランスダイヤ
フラム16,15とが軸19によって一体に固定されて
いる。
Reference numeral 13 denotes a force generator, in which a main diaphragm 14 and two balance diaphragms 16 and 15 having a slightly smaller diameter and arranged concentrically are fixed together by a shaft 19.

3枚のダイヤフラムが構成するダイヤフラムに狭まれた
一方の室は高圧室17となって前記高圧タップ5と接続
され、他方の室は低圧室18となって低圧タップ6と接
続されている。
One chamber narrowed by the three diaphragms becomes a high pressure chamber 17 and is connected to the high pressure tap 5, and the other chamber becomes a low pressure chamber 18 and is connected to the low pressure tap 6.

バランスダイヤフラム15,16の外側はともに大気圧
に開放されている。
The outsides of the balance diaphragms 15 and 16 are both open to atmospheric pressure.

軸19の上端19aには水制御スプリング20が低圧室
18から高圧室17の方向へ働いている。
At the upper end 19a of the shaft 19, a water control spring 20 acts in the direction from the low pressure chamber 18 to the high pressure chamber 17.

又、軸19の上端19a近くでレバー21と係合してお
り、レバー支点22との位置関係から軸19の変位はレ
バー自由端側では拡大されることになる。
Further, the shaft 19 is engaged with the lever 21 near the upper end 19a, and the displacement of the shaft 19 is magnified at the lever free end side due to the positional relationship with the lever fulcrum 22.

次に燃料圧制御器11はガス通路中の制御孔24の開度
を調節する作動子23があって、この作動子23は燃料
ダイヤフラム25に固着されている。
Next, the fuel pressure controller 11 has an actuator 23 that adjusts the opening degree of a control hole 24 in the gas passage, and this actuator 23 is fixed to a fuel diaphragm 25.

燃料ダイヤフラム25には燃料制御スプリング26が作
動子23を常に開く方向に働いており、燃料制御スプリ
ング26の他端は、作動子23の開閉方向に摺動可能な
スライド体28の内径ネジにはまっている支持ネジ27
によって支えられている。
A fuel control spring 26 is always acting on the fuel diaphragm 25 in a direction to open the actuator 23, and the other end of the fuel control spring 26 is fitted into an internal thread of a slide body 28 that is slidable in the opening/closing direction of the actuator 23. Support screw 27
is supported by

燃料ダイヤフラム25の有効受圧面積は制御孔24の面
積とほぼ等しく設計されているので、ガス供給元圧は燃
料ダイヤフラム25に作用して作動子23を閉じる方向
の力と、作動子23に作用して作動子23を開く方向の
力を生じさせるが、両者の力は等しく且つ方向が逆なの
で結果として作動子23を移動させる力は生じない。
Since the effective pressure receiving area of the fuel diaphragm 25 is designed to be approximately equal to the area of the control hole 24, the gas supply source pressure acts on the fuel diaphragm 25 to cause a force in the direction of closing the actuator 23 and a force acting on the actuator 23. This generates a force in the direction of opening the actuator 23, but since the two forces are equal and opposite in direction, as a result no force is generated to move the actuator 23.

一方、作動子23に対しては、制御孔24を通過したバ
ーナへの供給圧が働いており、これの力と制御スプリン
グ26の力のバランス点で作動子23の位置が決定され
る。
On the other hand, the pressure supplied to the burner that has passed through the control hole 24 is acting on the actuator 23, and the position of the actuator 23 is determined by the balance point between this force and the force of the control spring 26.

もし、スライド体28が動かなければ、燃料制御スプリ
ング26の力は変らないので、通常のガス圧調節器と同
様に、ガス供給元圧が変化してもバーナ12への供給ガ
ス圧はほぼ一定に保つ機能を有する。
If the slide body 28 does not move, the force of the fuel control spring 26 will not change, so even if the gas supply source pressure changes, the gas pressure supplied to the burner 12 will remain almost constant, just like a normal gas pressure regulator. It has the function of keeping the

スライド体28は本発明では前述のレバー21の自由端
で支持されているから、レバー21の変位は燃料制御ス
プリング26の荷重変化をもたらすからガス圧も変化す
ることになる。
Since the slide body 28 is supported by the free end of the aforementioned lever 21 in the present invention, the displacement of the lever 21 results in a change in the load on the fuel control spring 26, which in turn causes a change in gas pressure.

29は圧力差発生体4の高圧タップ5と低圧タップ6が
接続されていて、その圧力差はよって力を発生してガス
回路の開閉弁10を開閉させる駆動部である。
Reference numeral 29 is a drive unit to which the high pressure tap 5 and low pressure tap 6 of the pressure difference generator 4 are connected, and the pressure difference generates force to open and close the on-off valve 10 of the gas circuit.

この部分は、通常の瞬間湯沸器と同様の機構で良いので
詳細な説明は省略する。
This part may have the same mechanism as a normal instantaneous water heater, so a detailed explanation will be omitted.

従来の瞬間ガス湯沸器では、水量に応じた圧力差を受け
るダイヤフラムがあって、その力でガス回路中の弁を開
ける装置を用いているが、これは断水時に燃焼させない
安全装置であって、第2図のように設定水量を少し上回
ればガス弁は開いてガス流量は飽和値に達つするもので
ある。
Conventional instantaneous gas water heaters have a diaphragm that receives a pressure difference depending on the amount of water, and uses this force to open the valve in the gas circuit, but this is a safety device that prevents combustion in the event of a water outage. As shown in FIG. 2, when the water amount slightly exceeds the set value, the gas valve opens and the gas flow rate reaches the saturation value.

従って水量の変化はそのまま出湯温度の変化になってい
る。
Therefore, a change in the amount of water directly corresponds to a change in the hot water temperature.

又、燃焼量から算出出来る沸騰する水量以下では火がつ
かないようにガス弁を開く水量を割合に多く設定してお
(必要があった。
Also, it was necessary to set the amount of water at which the gas valve was opened to be relatively large so that a fire would not start if the amount of water was less than the boiling amount that could be calculated from the amount of water burned.

本発明は、水量と水の吸熱量とを比例させようとするも
のである。
The present invention aims to make the amount of water and the amount of heat absorbed by the water proportional.

第1図の圧力差発生体4では水量変化ΔΩ9によって高
圧タップ5と低圧タップ60間の圧力差の変化ΔPwの
関係は次の通りになる。
In the pressure difference generator 4 of FIG. 1, the relationship between the change ΔPw in the pressure difference between the high pressure tap 5 and the low pressure tap 60 due to the water amount change ΔΩ9 is as follows.

ΔPw−kwΔQw ”・・・・・・・・・ (1)こ
こで娠は絞り部など圧力差発生体4の形状寸法で定めら
れる定数である。
ΔPw−kwΔQw” (1) Here, “pregnancy” is a constant determined by the shape and dimensions of the pressure difference generating body 4 such as the constriction portion.

この水圧は、力発生体13の高圧室17と低圧室18へ
導かれるので、主ダイヤフラム14の有効面積をS、バ
ランスダイヤフラム15,16の有効面積をSとすれば
、力発生体13での力の変化は次の通りになる。
This water pressure is guided to the high pressure chamber 17 and low pressure chamber 18 of the force generating body 13, so if the effective area of the main diaphragm 14 is S, and the effective area of the balance diaphragms 15 and 16 is S, then the water pressure in the force generating body 13 is The change in force is as follows.

(S−s)32w ・・・・・・・・・・・・ (→
ここでS−sをΔSと表わすならΔSΔ〜という力変化
を生じることになる。
(S-s)32w ・・・・・・・・・・・・ (→
Here, if S-s is expressed as ΔS, a force change of ΔSΔ~ will occur.

この力変化によってレバー21がその位置を代えること
になる。
This force change causes the lever 21 to change its position.

第1図で軸19がレバーと当接する位置からレバー支点
22までの距離をXとし、レバー支点22から自由端で
スライド体28に当接する位置までの距離をYとする。
In FIG. 1, let X be the distance from the position where the shaft 19 abuts the lever to the lever fulcrum 22, and let Y be the distance from the lever fulcrum 22 to the position where the free end abuts the slide body 28.

そして、水量変化ΔQWによるレバー移動量を自由端で
Δy、軸19でΔXとする。
The amount of lever movement due to the water amount change ΔQW is assumed to be Δy at the free end and ΔX at the shaft 19.

更に水制御スプリング20のバネ常数をK、燃料制御ス
プリング26のバネ常数をkと表わして、レバー21に
働く回転モーメントの釣合い条件を求めると、 ΔSΔPwX=ΔxKX+Δy ky −−−−−・
(3)ここでレバー21については剛体であるからとい
う関係にあり、αをレバー比と呼ぶ。
Furthermore, when the spring constant of the water control spring 20 is expressed as K and the spring constant of the fuel control spring 26 is expressed as k, the balance condition of the rotational moment acting on the lever 21 is determined as follows: ΔSΔPwX=ΔxKX+Δy ky −−−−−・
(3) Here, since the lever 21 is a rigid body, α is called the lever ratio.

すると第3式は ΔSΔPw=ΔxK+αΔykとなり、更にを得る。Then, the third equation is ΔSΔPw=ΔxK+αΔyk, and further obtained.

さて、Δyというレバー自由端の移動は燃料制御スプリ
ング26の力変化となり、これは更にバーナ12へ致る
ガス供給圧の変化ΔPqとなる。
Now, the movement of the free end of the lever Δy results in a change in the force of the fuel control spring 26, which in turn results in a change in the gas supply pressure to the burner 12, ΔPq.

その関係は次の通りΔP(lA=Δyk ・・・・・
・・・・(6)但しAは燃料ダイヤフラム25の有効面
積で既述のように制御孔240面積とほぼ等しい。
The relationship is as follows ΔP(lA=Δyk...
(6) However, A is the effective area of the fuel diaphragm 25, which is approximately equal to the area of the control hole 240 as described above.

となる。becomes.

一般にガス圧とガス量とはその間の定数をKqとするな
ら次の関係にあることが知られている。
It is generally known that gas pressure and gas amount have the following relationship, where Kq is a constant between them.

但しガス量の変化をΔQqと表わす。この(8)式に(
1)式と(′i)式を代入するとしたがって Qw=00ときQ/(1=0とおくと となって水量変化ΔQwとガス量変化ΔQqが比例関係
になる。
However, the change in gas amount is expressed as ΔQq. In this equation (8), (
Substituting equations 1) and ('i), therefore, when Qw=00, Q/(1=0), and the water amount change ΔQw and the gas amount change ΔQq become proportional.

第3図の右側は(1)式を示しているものであり、左側
は(2)式を示している。
The right side of FIG. 3 shows equation (1), and the left side shows equation (2).

又、第4図の右側は(2)式で示す(S−s)32wと
いう力変化で生じるレバー21の移動量ΔX、Δyを示
している。
Further, the right side of FIG. 4 shows the moving amounts ΔX and Δy of the lever 21 caused by the force change (S-s)32w shown in equation (2).

そして左側はΔyによるΔPqの変化を示したものであ
る。
The left side shows the change in ΔPq due to Δy.

給水量に対してガス量が比例的に供給され、熱交換効率
が一定であれば、水の吸熱量は給水量と比例し、水の加
熱温度上昇は一定になる。
If the amount of gas is supplied proportionally to the amount of water supplied and the heat exchange efficiency is constant, the amount of heat absorbed by water is proportional to the amount of water supplied, and the rise in heating temperature of water is constant.

しかしながら熱交換効率はガスと空気の混合比(空燃比
)や燃焼量によって異なることは良く知られている。
However, it is well known that heat exchange efficiency varies depending on the gas-air mixture ratio (air-fuel ratio) and the amount of combustion.

第5図は燃焼量による熱交換効率をあられしたグラフで
あり、aは空燃比制御の行なわれていない通常の大気圧
型ブンゼンバーナの場合、bは空燃比が一定に制御され
た場合の関係である。
Figure 5 is a graph showing the heat exchange efficiency depending on the amount of combustion, where a is the relationship for a normal atmospheric-pressure Bunsen burner without air-fuel ratio control, and b is the relationship when the air-fuel ratio is controlled to be constant. It is.

水量に対して燃料を比例的に供給しても、第5図aの熱
効率特性を有する燃焼器では水量の増加割合以上に水へ
の熱の供給が行なわれ、bでは水量の増加割合以下の熱
の供給が行なわれる。
Even if fuel is supplied proportionally to the amount of water, in a combustor with the thermal efficiency characteristics shown in Figure 5a, heat is supplied to the water at a rate greater than the rate of increase in the amount of water; Heat is supplied.

このため水量の増減に対して水の吸熱量は比例関係でな
くなり、給湯温度を一定にすることができない。
For this reason, the amount of heat absorbed by the water is no longer proportional to the increase or decrease in the amount of water, making it impossible to keep the hot water supply temperature constant.

給水量に関係なく温度上昇を一定に保つためには熱交換
効率を考慮して給水量に対する燃料の供給量を比例関係
より補正することで達成される。
In order to keep the temperature rise constant regardless of the amount of water supplied, this can be achieved by correcting the amount of fuel supplied relative to the amount of water supplied from a proportional relationship, taking into account heat exchange efficiency.

すなわち第5図aの熱交換効率特性であれば第6図aの
ように給水量が小さいときにガス量を比例関係よりもや
や大きく供給し熱交換効率の低下を補正すればよく、第
5図すの熱交換効率特性であれば第6図すのように給水
量が小さいときにガス量を比例関係よりもやや小さく供
給して熱交換効率の上昇を補正すればよい。
In other words, with the heat exchange efficiency characteristic shown in Figure 5a, when the water supply amount is small as shown in Figure 6a, it is sufficient to supply a slightly larger amount of gas than the proportional relationship to compensate for the decrease in heat exchange efficiency. If the heat exchange efficiency characteristic shown in FIG. 6 is used, it is sufficient to correct the increase in heat exchange efficiency by supplying a gas amount slightly smaller than the proportional relationship when the water supply amount is small as shown in FIG. 6.

第6図aの特性を得るだめの具体的手段としては水制御
スプリング20を短かくし、力発生体゛13の変位を給
水量が0のときでも第7図に示すように長さX。
A specific means to obtain the characteristics shown in FIG. 6a is to shorten the water control spring 20 so that the displacement of the force generator 13 is adjusted to a length X as shown in FIG. 7 even when the amount of water supplied is zero.

に保っておく。給水量0のときの力発生体13の変位X
Keep it. Displacement X of force generator 13 when water supply amount is 0
.

はレバーで拡大されてレバー自由端ではy。is enlarged by the lever and becomes y at the free end of the lever.

となり、ガス供給圧はP qo となる。Therefore, the gas supply pressure becomes P qo .

もちろんこのとき開閉弁10が開いていないからガスカ
黙焼することはない。
Of course, at this time, the on-off valve 10 is not open, so the gas will not burn out silently.

給水量に対するガス量は(10)式より となってガス量は給水量が小さいときには比例関係より
大きく、給水量が大きいときには比例関係に近く供給さ
れるので、熱交換効率による出湯温度の違いが補正され
る。
The amount of gas relative to the amount of water supplied is determined by equation (10). When the amount of water supplied is small, the gas amount is supplied in a proportional relationship, and when the amount of water supplied is large, the relationship is close to proportionality. Therefore, the difference in hot water temperature due to heat exchange efficiency is Corrected.

第5図すに示す熱交換効率特性の場合は水制御スプリン
グ20を長く設定しておけば前述と逆の効果があり、第
6図すの特性が得られる。
In the case of the heat exchange efficiency characteristics shown in FIG. 5, if the water control spring 20 is set long, the opposite effect to that described above will be obtained, and the characteristics shown in FIG. 6 will be obtained.

他の実施例として燃料スプリング26をあらかじめ調節
することによって本発明の目的を達成することができる
In other embodiments, the objectives of the invention may be achieved by pre-adjusting the fuel spring 26.

すなわち燃料スプリング26をあらかじめ強く設定すれ
ば第7図変位−制御圧特性で変位0のとき制御圧Pq□
を得ることができる。
In other words, if the fuel spring 26 is set strongly in advance, the control pressure Pq□ will be reduced when the displacement is 0 according to the displacement-control pressure characteristics shown in Fig. 7.
can be obtained.

さらに他の実施例として第8図に示すように軸19とレ
バー21の当接位置が軸19の変位すなわち給水量変化
によって変わるようにして本発明の目的を達成すること
ができる。
In yet another embodiment, as shown in FIG. 8, the object of the present invention can be achieved by changing the contact position between the shaft 19 and the lever 21 depending on the displacement of the shaft 19, that is, the change in the amount of water supplied.

すなわち給水量が小さいときには軸19は下方にあって
実線の如くレバー21と当接し、レバー支点22からの
距離はXl であり、給水量が増加すると軸19は上方
に移動し想像線の如くレバー21と当接し、その距離は
X2となりXl<X2であるから第9図に示すように力
発生体13の軸19の変位に対しく4)式のαがしだい
に減少するので、第10図に示すよりなΔyの変化とな
り、制御圧は低水量では比例関係よりも高く、高水量に
なるに従かい比例関係に近づ(。
That is, when the amount of water supplied is small, the shaft 19 is located downward and comes into contact with the lever 21 as shown by the solid line, and the distance from the lever fulcrum 22 is Xl. When the amount of water supplied increases, the shaft 19 moves upward and the lever 21 is moved as shown by the imaginary line. 21, and the distance is X2, and since Xl<X2, α in equation 4) with respect to the displacement of the shaft 19 of the force generator 13 gradually decreases as shown in FIG. 10. The change in Δy is as shown in (), and the control pressure is higher than the proportional relationship at low water volumes, and approaches the proportional relationship as the water volume increases (.

他の実施例は主ダイアフラム14の有効受圧面積がダイ
アプラム位置によって変化することを利用するものであ
る。
Another embodiment utilizes the fact that the effective pressure receiving area of the main diaphragm 14 changes depending on the diaphragm position.

ダイアフラムは第11図に示すようにその位置によって
有効受圧面積が異なり、第11図に示すような形状の場
合には第12図のような有効受圧面積の変化になる。
As shown in FIG. 11, the effective pressure-receiving area of the diaphragm varies depending on its position, and in the case of the shape shown in FIG. 11, the effective pressure-receiving area changes as shown in FIG. 12.

したがって、(10)式は となって給水量とガス量の比例関係を調節することがで
き、熱効率の変化を補正することができる。
Therefore, the equation (10) becomes: The proportional relationship between the amount of water supply and the amount of gas can be adjusted, and changes in thermal efficiency can be corrected.

以上のように本発明によれば、給水量に対し燃料量をほ
ぼ比例的に制御し、かつ燃焼量変化に伴なう熱交換効率
を補正することにより給水量変化に対し出口湯温を精度
よく一定に制御できる。
As described above, according to the present invention, the amount of fuel is controlled almost proportionally to the amount of water supplied, and by correcting the heat exchange efficiency accompanying changes in the amount of combustion, the outlet hot water temperature can be adjusted accurately in response to changes in the amount of water supplied. Can be controlled well and consistently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における瞬間ガス湯沸器の全
体構成を示す図、第2図は従来の瞬間ガス湯沸器の給水
量とガス量の関係を示すグラフ、第3図は本発明の実施
例における給水量と圧力差発生体の差圧との関係および
圧力差発生体の差圧と力発生体の力との関係を示すグラ
フ、第4図は本発明の実施例における力発生体の力とレ
バーの変位との関係およびレバーの変位と燃料制御圧と
の関係を示すグラフ、第5図は燃焼量と熱交換効率との
関係を示したグラフ、第6図は本発明の実施例における
給水量とガス量との関係を示したグラフ、第7図は本発
明の実施例における力発生体の力とレバーの変位との関
係およびレバーの変位と燃料制御圧との関係を示したグ
ラフ、第8図は本発明の実施例のレバーを示した図、第
9図は第8図の実施例における力発生体の変位とレバー
比との関係を示すグラフ、第10は第8図の実施例にお
ける力発生体の力とレバーの変位との関係およびレバー
変位と燃料制御圧との関係を示すグラフ、第11図はダ
イヤプラムの形状変化を示した図、第12図は第11図
のダイヤフラムの有効受圧面積の変化を示すグラフであ
る。 1・・・・・・水配管、4・・・・・・圧力差発生体、
7・・・・・・熱交換器、8・・・・・・蛇口、9・・
・・・・ガス配管、11・・・・・・燃料圧制御器、1
3・・・・・・力発生体、14・・・・・・主ダイヤフ
ラム、15,16°°°・・・バランスダイヤフラム、
19・・・・・・軸、20・・・・・・水制御スプリン
グ、21・・・・・・レバー、22・・・・・・レバー
支点、23・・・・・・作動子、25・・・・・・燃料
ダイヤフラム、26・・・・・・燃料制御スプリング、
28・・・・・・スライド体。
Fig. 1 is a diagram showing the overall configuration of an instantaneous gas water heater according to an embodiment of the present invention, Fig. 2 is a graph showing the relationship between water supply amount and gas amount of a conventional instantaneous gas water heater, and Fig. 3 is a graph showing the relationship between the water supply amount and gas amount of a conventional instantaneous gas water heater. FIG. 4 is a graph showing the relationship between the water supply amount and the differential pressure of the pressure difference generating body and the relationship between the differential pressure of the pressure difference generating body and the force of the force generating body in the embodiment of the present invention. A graph showing the relationship between the force of the force generator and the displacement of the lever, and a relationship between the displacement of the lever and the fuel control pressure. Figure 5 is a graph showing the relationship between combustion amount and heat exchange efficiency. Figure 6 is a graph showing the relationship between the combustion amount and heat exchange efficiency. FIG. 7 is a graph showing the relationship between the amount of water supply and the amount of gas in the embodiment of the invention, and FIG. Graph showing the relationship, FIG. 8 is a diagram showing the lever of the embodiment of the present invention, FIG. 9 is a graph showing the relationship between the displacement of the force generator and the lever ratio in the embodiment of FIG. are graphs showing the relationship between the force of the force generator and the displacement of the lever and the relationship between the lever displacement and the fuel control pressure in the embodiment of FIG. 8; FIG. 11 is a graph showing the change in the shape of the diaphragm; The figure is a graph showing changes in the effective pressure receiving area of the diaphragm in FIG. 11. 1... Water piping, 4... Pressure difference generator,
7... Heat exchanger, 8... Faucet, 9...
...Gas piping, 11...Fuel pressure controller, 1
3...force generator, 14...main diaphragm, 15,16°°°...balance diaphragm,
19... shaft, 20... water control spring, 21... lever, 22... lever fulcrum, 23... actuator, 25 ...Fuel diaphragm, 26...Fuel control spring,
28...Sliding body.

Claims (1)

【特許請求の範囲】 1 被加熱流体が通る熱交換器と、熱交換器を加熱する
バーナと、バーナの燃焼量を制御するようバーナへの燃
料供給路に設けた燃料圧制御器と、被加熱流体の流量に
応じた信号を発する流量検出器と、流量検出器からの信
号に応動して燃料圧制御器を制御する制御部とを備え、
流量検出器から燃料圧制御器に至る系は、被加熱流量の
流量と燃料供給量とをほぼ比例関係にするとともに、被
加熱流体の流量に応じて上記比例関係を補正する構成に
なっていることを特徴とする燃料供給制御装置。 2 流量検知器は、被加熱流体の流量に応じた圧力差を
牛しる圧力差発生体と、この圧力差に応じた力を生じる
力発生体とを主体として構成した特許請求の範囲第1項
記載の燃料供給制御装置。 3 燃料圧制御器の燃料制御スプリングの設定により比
例関係が流量によって補正されるようにした特許請求の
範囲第1項または第2項記載の燃料供給制御装置。 4 力発生体の水制御スプリングの設定により比例関係
が流量によって補正されるようにした特許請求の範囲第
2項記載の燃料供給制御装置。 5 力発生体と燃料圧制御器とをレバー機構を介して連
結し、レバー機構のレバー比が力発生体の変位によって
変わるよう設け、それにより比例関係が流量によって補
正されるようにした特許請求の範囲第2項記載の燃料供
給制御装置。 6 力発生体をダイヤフラムを主体として構成し、この
ダイヤフラムの変位によって有効受圧面積が変化するこ
とにより比例関係が流量に応じて補正される特許請求の
範囲第2項記載の燃料供給制御装置。
[Claims] 1. A heat exchanger through which a fluid to be heated passes, a burner that heats the heat exchanger, a fuel pressure controller provided in a fuel supply path to the burner to control the combustion amount of the burner, and a A flow rate detector that emits a signal according to the flow rate of the heating fluid, and a control unit that controls the fuel pressure controller in response to the signal from the flow rate detector,
The system from the flow rate detector to the fuel pressure controller is configured to maintain a nearly proportional relationship between the flow rate of the flow rate to be heated and the amount of fuel supplied, and to correct the proportional relationship according to the flow rate of the fluid to be heated. A fuel supply control device characterized by: 2. The flow rate detector is mainly composed of a pressure difference generator that detects a pressure difference depending on the flow rate of the fluid to be heated, and a force generator that generates a force corresponding to this pressure difference. The fuel supply control device described in . 3. The fuel supply control device according to claim 1 or 2, wherein the proportional relationship is corrected by the flow rate by setting the fuel control spring of the fuel pressure controller. 4. The fuel supply control device according to claim 2, wherein the proportional relationship is corrected by the flow rate by setting the water control spring of the force generator. 5. A patent claim in which a force generator and a fuel pressure controller are connected via a lever mechanism, and the lever ratio of the lever mechanism is changed depending on the displacement of the force generator, so that the proportional relationship is corrected by the flow rate. 2. The fuel supply control device according to item 2. 6. The fuel supply control device according to claim 2, wherein the force generating body is mainly composed of a diaphragm, and the effective pressure receiving area is changed by the displacement of the diaphragm, so that the proportional relationship is corrected according to the flow rate.
JP15978178A 1978-08-11 1978-12-22 fuel supply control device Expired JPS5914690B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15978178A JPS5914690B2 (en) 1978-12-22 1978-12-22 fuel supply control device
GB7927458A GB2027851B (en) 1978-08-11 1979-08-07 Controlling burner fuel supply in fluid heating apparatus
DE19792932307 DE2932307C2 (en) 1978-08-11 1979-08-09 Device for controlling the heating of a fluid
FR7920548A FR2433159A1 (en) 1978-08-11 1979-08-10 APPARATUS FOR CONTROLLING THE TEMPERATURE OF THE HEATING OF A FLUID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15978178A JPS5914690B2 (en) 1978-12-22 1978-12-22 fuel supply control device

Publications (2)

Publication Number Publication Date
JPS5585816A JPS5585816A (en) 1980-06-28
JPS5914690B2 true JPS5914690B2 (en) 1984-04-05

Family

ID=15701117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15978178A Expired JPS5914690B2 (en) 1978-08-11 1978-12-22 fuel supply control device

Country Status (1)

Country Link
JP (1) JPS5914690B2 (en)

Also Published As

Publication number Publication date
JPS5585816A (en) 1980-06-28

Similar Documents

Publication Publication Date Title
CN106642711B (en) Dual sensing combustion system
US4340355A (en) Furnace control using induced draft blower, exhaust gas flow rate sensing and density compensation
WO2002101281B1 (en) Vaporizer with capacity control valve
JPH0355424A (en) Gas burner controller
US5092519A (en) Control system for water heaters
US4547144A (en) Fuel gas control
US2505455A (en) Gas burner control
US4695052A (en) Hot water heating system using a heat consumption meter
JPS5914690B2 (en) fuel supply control device
RU2309331C1 (en) Two-step atmospheric gas burner
JPS5885016A (en) Combustion control device
JPS6144111Y2 (en)
RU2196939C2 (en) Atmospheric gas burner
GB2027851A (en) Controlling burner fuel supply in fluid heating apparatus
JPS5949487B2 (en) fuel supply control device
CN219624009U (en) Saturated steam generating device
RU2331022C1 (en) Gas valve
JPS6250730B2 (en)
JPS6225616Y2 (en)
WO1989004442A1 (en) Instantaneous hot water system
KR950009264B1 (en) Gas boiler
JPS5931648B2 (en) fuel supply control device
GB1585695A (en) Gas-fired continuous-flow water heater
JP3769660B2 (en) Water heater
GB1578398A (en) Heater arrangement