JPS59146108A - Method of producing self-adhesive wire - Google Patents

Method of producing self-adhesive wire

Info

Publication number
JPS59146108A
JPS59146108A JP1943683A JP1943683A JPS59146108A JP S59146108 A JPS59146108 A JP S59146108A JP 1943683 A JP1943683 A JP 1943683A JP 1943683 A JP1943683 A JP 1943683A JP S59146108 A JPS59146108 A JP S59146108A
Authority
JP
Japan
Prior art keywords
resin composition
manufacturing
curable resin
ultraviolet curable
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1943683A
Other languages
Japanese (ja)
Other versions
JPH0410688B2 (en
Inventor
地大 英毅
博行 中島
愛一郎 橋爪
井上 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1943683A priority Critical patent/JPS59146108A/en
Publication of JPS59146108A publication Critical patent/JPS59146108A/en
Publication of JPH0410688B2 publication Critical patent/JPH0410688B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は新規な自己融着電線の製造法に関する。[Detailed description of the invention] The present invention relates to a novel method for manufacturing a self-welding wire.

さらに詳しくは熱硬化形の水分成形電着塗料を電着し、
該電着析出層を有機溶剤で処理し、焼付は硬化したのち
紫外線照射と加熱の双方により硬化反応の進むレジン組
成物を塗布し、紫外線を照射してなる自己融着電線の製
造法に関する。
More specifically, we electrodeposited a thermosetting moisture molding electrodeposition paint,
The present invention relates to a method for producing a self-fusing electric wire, in which the electrodeposited layer is treated with an organic solvent, and after baking is cured, a resin composition that undergoes a curing reaction by both ultraviolet irradiation and heating is applied, and ultraviolet rays are irradiated.

電気機器用フィル、通信器用コイルなどの製作にあたっ
て自己融着電線を巻線後、加熱処理をすることによって
線間を融着一体化させる方法は従来の巻線後、フェス処
理をし、加熱硬化させる方法にくらべて含浸ワニスが不
要であること、工程が簡略化されることなど多くの利点
があり、とくに小形の電気機器用コイルなどに使用され
ている。
In the production of electrical equipment fills, communications coils, etc., the conventional method of welding and integrating the wires by winding self-fusing wires and then heat-treating them is to perform face treatment and heat curing after winding. This method has many advantages over the conventional method, such as not requiring impregnating varnish and simplifying the process, and is particularly used for coils for small electric devices.

従来この種の自己融着電線は通常のエナメル電線を製造
したのち、その表面にビニルブチラール樹脂、フエノギ
シ樹脂、ナイロンなどを塗布し、焼付けて製造されてい
るのが現状である。しかしながらこの種の自己融着電線
は製造工程が複雑なこと、使用時の線間の接着力が小さ
いこと、溶剤を多量に使用することなど種々の欠点があ
る。
Conventionally, this type of self-fusing electric wire has been manufactured by manufacturing an ordinary enameled electric wire, then coating the surface with vinyl butyral resin, fenugreek resin, nylon, etc., and baking the wire. However, this type of self-fusing electric wire has various drawbacks, such as a complicated manufacturing process, a low adhesion between the wires during use, and the use of a large amount of solvent.

本発明者らは前記のごとき欠点を改良すべく鋭意研究を
重ねた結果、水分成形電着塗料を用いて電着塗装法によ
り電着析出層を形成させ、該析出層を有機溶剤蒸気で処
理し、焼付けたのち紫外線硬化形レジン組成物を塗布し
、紫外線を照射することにより、前記諸欠点を解決させ
うろことを見出した。すなわち本発明では形成させた電
着析出層を有機溶剤蒸気で処理し、焼付けたのち紫外線
硬化形レジン組成物を塗布し、紫外線を照射することに
より、自己融着電線間の接着力が良好であり、製造時に
有機溶剤をほとんど使用せず、かつ電着−紫外線照射と
いう簡単な工程で人混に使用できる自己融着電線を製造
でき、生産性を著しく向上させうるという効果かえられ
た。
As a result of extensive research in order to improve the above-mentioned drawbacks, the inventors of the present invention formed an electrodeposited layer by an electrodeposition coating method using a water-molding electrodeposition paint, and treated the deposited layer with organic solvent vapor. However, it has been found that the above-mentioned drawbacks can be overcome by applying an ultraviolet curable resin composition after baking and irradiating it with ultraviolet rays. That is, in the present invention, the formed electrodeposited layer is treated with organic solvent vapor, baked, and then coated with an ultraviolet curable resin composition and irradiated with ultraviolet rays, thereby achieving good adhesion between the self-fusing wires. Therefore, a self-fusing electric wire that can be used in large numbers of people can be manufactured using a simple process of electrodeposition and ultraviolet irradiation, using almost no organic solvent during manufacturing, and the productivity can be significantly improved.

本発明に使用される水分成形電着塗料としては、たとえ
ばアクリル系、ポリエステル系、ポリエステルイミド系
、エポキシアクリル糸などの水分成形電着塗料が好適に
使用される。
As the moisture-molding electrodeposition paint used in the present invention, moisture-molding electrodeposition paints such as acrylic, polyester, polyesterimide, and epoxy acrylic threads are preferably used.

本発明に使用される電着析出層を処理する有機溶剤とし
ては前記水分成形電着塗料の粒子を溶解または膨潤する
ものならば特別の制限はなく、好適なものとしてはジメ
チルホルムアミド、ジメチルアセシアミド、N−メチル
ピロリドンなどがあげられる。
The organic solvent for treating the electrodeposited layer used in the present invention is not particularly limited as long as it dissolves or swells the particles of the moisture-molded electrodeposition paint, and preferred examples include dimethylformamide and dimethyl acetate. Examples include amide, N-methylpyrrolidone, and the like.

本発明に使用される融着層となる紫外線硬化形レジン組
成物は紫外線硬化用触媒および加熱硬化用触媒の双方を
含む組成物である。
The ultraviolet curable resin composition used as the adhesive layer used in the present invention is a composition containing both an ultraviolet curing catalyst and a heat curing catalyst.

レジンとしては紫外線硬化と加熱硬化の双方の硬化が進
むレジンであり、紫外線照射後、巻線に耐える機械強度
を有するものであり、かつ巻線後、加熱により融着する
ものでなければならず、エポキシ系樹脂などが好ましい
The resin must be one that hardens both by UV rays and heat, has mechanical strength that can withstand winding after being irradiated with UV rays, and must be fused by heating after winding. , epoxy resin, etc. are preferred.

前記双方の触媒はそれぞれの硬化反応の障害とならない
ものを選択する必要があり、紫外線硬化用触媒としては
ルイス酸ジアゾニウム塩、BF、、PIF6または81
)F6のオニウム塩、またはアルミニウム錯体とシラノ
ール触媒との混合物など、加熱硬化用触媒としては三7
ツ化ホウ素アミンコンプレックスなどが好ましい。紫外
線硬化用触OX1m熱硬化用触媒の重量比が0.6〜1
.2の範囲が好適に使用される。
It is necessary to select catalysts for both of the above that do not interfere with the respective curing reactions, and examples of catalysts for ultraviolet curing include Lewis acid diazonium salts, BF, PIF6 or 81.
)37 as a heat curing catalyst such as an onium salt of F6 or a mixture of an aluminum complex and a silanol catalyst.
Preferred are boron fluoride amine complexes and the like. Weight ratio of ultraviolet curing catalyst OX1m heat curing catalyst is 0.6 to 1
.. A range of 2 is preferably used.

紫外線硬化形レジン組成物は塗布されたのち1まず紫外
線照射によりBステージ化した状態となり、自己融着が
可能となる。ついで未硬化部分を加熱により硬化させる
。融着層の膜厚は用途により異なるが巻線後の接着力な
どから6〜10μmが好ましい。
After the ultraviolet curable resin composition is applied, it is first brought into a B-stage state by irradiation with ultraviolet rays, and self-fusion becomes possible. Then, the uncured portion is cured by heating. The thickness of the fusion layer varies depending on the application, but it is preferably 6 to 10 μm from the viewpoint of adhesive strength after winding.

水分成形電着塗料および紫外線硬化形レジン組成物を用
いた自己融着電線の製造装置の一概略説明図を第1図に
示し、該図にもとづいて製造工程を説明する。
A schematic explanatory diagram of an apparatus for manufacturing a self-fusing electric wire using a moisture molding electrodeposition paint and an ultraviolet curable resin composition is shown in FIG. 1, and the manufacturing process will be explained based on the diagram.

第1図において(1)は裸銅線であり、巻取り装置によ
り矢印方向に移動する。裸銅線(りは水分成形電着塗料
を入れた電着槽(2)で電着され、ついで溶剤処理槽(
3)中のジメチルボルムアミド蒸気で処理され、焼付炉
(4a)、(4b)で焼付けたのち樹脂槽(5)で紫外
線硬化形レジン組成物が塗布され、ダイス(6)を通過
したのち紫外線照射炉(ア)で紫外線を照射し、自己融
着電線かえられる。なお線引速度、電着の諸条件、電着
皮膜と融着層の膜厚の比、焼付条件、紫外線の照射条件
などは電線の使用目的、要求特性などにより自由に変化
させうる。
In FIG. 1, (1) is a bare copper wire, which is moved in the direction of the arrow by a winding device. Bare copper wires are electrodeposited in an electrodeposition bath (2) containing moisture-forming electrodeposition paint, and then in a solvent treatment bath (2).
3) After being treated with the dimethylborumamide vapor in the inside and baked in baking ovens (4a) and (4b), an ultraviolet curable resin composition is applied in a resin bath (5), and after passing through a die (6), ultraviolet rays are applied. The self-fusing wire can be replaced by irradiating it with ultraviolet light in the irradiation furnace (A). Note that the drawing speed, electrodeposition conditions, ratio of the thickness of the electrodeposited film to the fusion layer, baking conditions, ultraviolet irradiation conditions, etc. can be freely changed depending on the purpose of use of the wire, required characteristics, etc.

つぎに本発明の方法を実施例および比較例をあげて説明
する。
Next, the method of the present invention will be explained with reference to Examples and Comparative Examples.

製造例1 100!反応釜にラウリル硫酸エステルソーダ0.10
に9、イオン交換水75kgを仕込み、攪拌しながらチ
ッ素ガスを約60分間通じた。そののちアクリロニトリ
ル10に9、スチレン5kg、アクリル酸エチル3に9
、グリシジルメタクリレート1に9、メタクリル酸1k
gの混合液を加え、さらに重合開始剤として過硫酸アン
モニウム0.08に9および亜硫酸水素ナトリウム0 
、05kgを水5にりに溶解させた液を加え、70〜7
50Cで4時間反応させて不揮発分19.4%の水分敵
影電着塗料(以下、A−1という)をえた。
Production example 1 100! Add 0.10 lauryl sulfate ester soda to the reaction pot.
Step 9: 75 kg of ion-exchanged water was charged, and nitrogen gas was passed through it for about 60 minutes while stirring. After that, acrylonitrile 10 to 9, styrene 5kg, ethyl acrylate 3 to 9
, glycidyl methacrylate 1 to 9, methacrylic acid 1k
g of a mixed solution was added, and as a polymerization initiator, 9 to 0.08 ammonium persulfate and 0 to sodium bisulfite were added.
, add a solution of 0.5kg dissolved in 5.5kg of water, and add 70~7.
The reaction was carried out at 50C for 4 hours to obtain a water-resistant electrocoating paint (hereinafter referred to as A-1) with a non-volatile content of 19.4%.

製造例2 100!反応釜にラウリル硫酸エステルソーダ0.12
に9、イオン交換水75に9を仕込み、攪拌しながらチ
ッ素ガスを約60分間通じた。そののちアクリロニトリ
ル9kg、α−メチルスチレン7kg、アクリル酸エチ
ル2kg、グリシジルメタクリレート1に9、メタクリ
ル酸1に9の混合液を加え、さらに重合開始剤として過
硫酸アンモニウム0.10kg、亜硫酸水素ナトリウム
0.0+k(yを水5に9に溶解させた液を加え、75
〜80°Oで4時間反応させて不揮発分19,0%の水
分敵影電着塗料(以下、A−2という)をえた。
Production example 2 100! Add 0.12 lauryl sulfate ester soda to the reaction pot.
9 and 75 ion-exchanged water were added, and nitrogen gas was passed through the solution for about 60 minutes while stirring. After that, 9 kg of acrylonitrile, 7 kg of α-methylstyrene, 2 kg of ethyl acrylate, a mixture of 1 part glycidyl methacrylate and 1 part methacrylic acid were added, and as a polymerization initiator, ammonium persulfate 0.10 kg and sodium bisulfite 0.0+k (Add a solution of y dissolved in 5 parts and 9 parts water, and add 75
The reaction was carried out at ~80°O for 4 hours to obtain a water-resistant electrocoated paint (hereinafter referred to as A-2) with a non-volatile content of 19.0%.

製造例3 100ノの容器にDIR431(ダウケミカル社製、ノ
ボラック型エポキシ樹脂) 60kgとY−179ヂバ
ガイギ−社製、脂環式エポキシ樹脂) 40に9とを仕
込み、室温中で攪拌しながら紫外線硬化用触媒としてオ
ニウム塩である4、4−ジメチルジフェニルヨウドニウ
ムへキサフルオロフォスフエイト0.75に91H熱硬
化用触媒として三フッ化ホウ素モノエタノールアミンコ
ンプレックス0.75に9および増感剤としてアントラ
キノン0.25に9を添加し、充分に溶解させ、紫外線
硬化形レジン組成物(以下、B−1という)をえた。
Production Example 3 60 kg of DIR431 (manufactured by Dow Chemical Company, novolak type epoxy resin) and Y-179 (manufactured by Ziba Geigy Co., Ltd., alicyclic epoxy resin) 40 and 9 were placed in a 100-kg container, and exposed to ultraviolet light while stirring at room temperature. As a curing catalyst, onium salt 4,4-dimethyldiphenyliodonium hexafluorophosphate 0.75 to 91H As a thermal curing catalyst, boron trifluoride monoethanolamine complex 0.75 to 9 and as a sensitizer 9 was added to 0.25 of anthraquinone and sufficiently dissolved to obtain an ultraviolet curable resin composition (hereinafter referred to as B-1).

製造例4 100ツノ容器にエピコー) 815 (シェル化学社
製、ビスフェノール型エホ゛キシ樹月旨)70kg、工
ビコー)10(11(シェル化学社製、ビスフェノール
型エポキシ樹脂) 10kgおよびD)CR45120
に9を仕込み、室温で攪拌しながら紫外線硬化用触媒と
してトリフェニルスルホニウムフッ化アンチモンo、s
kg、 加熱硬化用触媒として三フッ化ホウ素のモノエ
チルアミンコンプレックス0.5に9および増感剤とし
てアントラキノン0.25に9を添加し、充分に溶解さ
せ、紫外線硬化形レジン組成物(以下、B−2という)
をえた。
Production Example 4 Epicor) 815 (Shell Chemical Co., Ltd., bisphenol type epoxy resin) 70 kg, Kobiko) 10 (11 (Shell Chemical Co., Ltd., bisphenol type epoxy resin) 10 kg and D) CR45120
9 and added triphenylsulfonium antimony fluoride o, s as an ultraviolet curing catalyst while stirring at room temperature.
kg, 9 to 0.5 of a monoethylamine complex of boron trifluoride as a heat curing catalyst and 9 to 0.25 of anthraquinone as a sensitizer were added and sufficiently dissolved to form an ultraviolet curable resin composition (hereinafter referred to as B). -2)
I got it.

実施例1〜4 第1図に示すごとき装置を用いて、第1表に記載した水
分散形g着塗料を用いて直径Q、13mmの裸銅線を線
速15m/分で走行させ、電着槽(2)中で直流電圧約
iovを印加し、電着し、150〜200oOの処理槽
(3)でジメチルホルムアミド蒸気処理を行ない、20
0〜300°0の焼付炉(4a)を15秒で通過させ、
続いて300〜400°Oの焼付炉(4b)を15秒で
通過させた。そののち樹脂槽(5)で第1表に示す紫外
線硬化形レジン組成物をダイスを用いて塗布し、紫外線
照射炉(6)で10KW出力の水銀ランプを用いて20
ml’r)の線引速度で紫外線を照外線を照射し第1表
に示す自己融着電線をえた。
Examples 1 to 4 Using the apparatus shown in Fig. 1, a bare copper wire with a diameter Q of 13 mm was run at a linear speed of 15 m/min using the water-dispersed g coating described in Table 1, and an electric current was measured. Approximately IOV of DC voltage was applied in the deposition tank (2) for electrodeposition, and dimethylformamide vapor treatment was performed in the treatment tank (3) at 150 to 200 oO.
Pass through a baking furnace (4a) at 0 to 300°0 in 15 seconds,
Subsequently, it was passed through a baking furnace (4b) at 300 to 400°O for 15 seconds. Thereafter, the ultraviolet curable resin composition shown in Table 1 was applied using a die in the resin tank (5), and the ultraviolet curable resin composition shown in Table 1 was applied using a mercury lamp with an output of 10 KW in the ultraviolet irradiation furnace (6).
The self-fused wires shown in Table 1 were obtained by irradiating ultraviolet rays at a drawing speed of ml'r).

えられた自己融着11線を直径6鵬のマンドレルに長さ
50mm密巻きし、160°0×15分間、180’0
X15分間、200oa×15分間の各条件で加熱硬化
させ、試料(密巻きしたフィル)を作製した。
The resulting self-fused 11 wires were tightly wound to a length of 50 mm on a mandrel with a diameter of 6 mm, and heated at 160°0 x 15 minutes at 180'0
A sample (closely wound film) was prepared by heating and curing under the following conditions: x 15 minutes and 200 oa x 15 minutes.

前記各条件において作製した試料の一端に室温で荷重を
かけて試料の解体する重量、すなわち室温における接着
力を測定し、その結果を第1表に記載した。また160
°C×15分間の条件で作製した前記試料について10
0gの接着力を保持する温度、ヒー)ショック、劣化巻
付、破壊電圧を測定し、第1表に示した。
A load was applied to one end of the sample prepared under each of the above conditions at room temperature, and the weight of the sample to be disassembled, that is, the adhesive strength at room temperature, was measured, and the results are shown in Table 1. 160 again
10 for the sample prepared under the conditions of °C x 15 minutes.
The temperature at which an adhesive force of 0 g was maintained, heat shock, deterioration of winding, and breakdown voltage were measured and are shown in Table 1.

比較例 ポリエステル系水分成形電着塗料を用いて直径口、 9
mmの裸銅線に電着層を形成させ、実施例1と同条件で
焼付炉を通過させた。そののち従来法にしたがって浸漬
塗布法によりビニルホルマール樹脂を塗布し、第1表に
示す自己融着電線をえた。
Comparative example Diameter opening using polyester moisture molding electrodeposition paint, 9
An electrodeposited layer was formed on a bare copper wire having a thickness of 1 mm, and the wire was passed through a baking furnace under the same conditions as in Example 1. Thereafter, a vinyl formal resin was applied by dip coating according to a conventional method to obtain the self-bonding wires shown in Table 1.

えられた自己融着電線を実施例1と同様にしてマンドレ
ルに密巻きし、16000×15分間加熱硬化させ、試
料を作製した。
The obtained self-fused electric wire was tightly wound around a mandrel in the same manner as in Example 1, and heated and cured for 16,000×15 minutes to prepare a sample.

作製した試料を用いて実施例1と同様に室温における接
着力、100りの接着力を保持する温度、ヒートショッ
ク、劣化巻付、破壊電圧を測定し、第1表に示した。
Using the prepared sample, the adhesive strength at room temperature, the temperature at which the adhesive strength of 100% was maintained, heat shock, deterioration winding, and breakdown voltage were measured in the same manner as in Example 1, and the results are shown in Table 1.

第1表の結果から本発明による自己融着電線は従来の浸
漬塗布法によりえられた電線と比較して、室温における
接着性および100りの接着力を保持する温度において
すぐれていることがわかる。
From the results in Table 1, it can be seen that the self-fusing electric wire according to the present invention has superior adhesion at room temperature and the temperature at which it maintains an adhesive strength of 100 mm, compared to electric wire obtained by the conventional dip coating method. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は自己融着電線の製造装置の一概略説明図である
。 代理人 葛 野 信 −(ほか1名)
FIG. 1 is a schematic explanatory diagram of a self-welding wire manufacturing apparatus. Agent Shin Kuzuno - (1 other person)

Claims (8)

【特許請求の範囲】[Claims] (1)水分成形電着塗料を用いて電着塗装法により電着
析出層を形成させ、該析出層を有機溶剤蒸気で処理し、
焼付けたのち紫外線硬化形レジン組成物を塗布し、紫外
線を照射してなる自己融着電線の製造法。
(1) Forming an electrodeposited layer by an electrodeposition coating method using a moisture-molding electrodeposition paint, and treating the deposited layer with organic solvent vapor;
A method of manufacturing a self-fusing electric wire by baking it, coating it with an ultraviolet curable resin composition, and irradiating it with ultraviolet light.
(2)水分成形電着塗料としてエポキシアクリル系電着
塗料を用いた特許請求の範囲第(1)項記載の製造法。
(2) The manufacturing method according to claim (1), in which an epoxy acrylic electrodeposition paint is used as the moisture-molding electrodeposition paint.
(3)水分成形電着塗料としてポリエステル系電着塗料
を用いた特許請求の範囲第(1)項記載の製造法。
(3) The manufacturing method according to claim (1), in which a polyester electrocoating paint is used as the moisture-molding electrocoating paint.
(4)有機溶剤の蒸気としてジメチルホルムアミドを用
いた特許請求の範囲第(1ン項記載の製造法。
(4) The manufacturing method according to claim 1, in which dimethylformamide is used as the organic solvent vapor.
(5)紫外線硬化形レジン組成物として紫外線硬化用触
媒とともに加熱硬化用触媒をも含む前記レジン組成物を
用いた特許請求の範囲第(1)項記載の製造法。
(5) The manufacturing method according to claim (1), which uses the resin composition containing a heat curing catalyst as well as an ultraviolet curing catalyst as an ultraviolet curable resin composition.
(6)紫外線硬化形レジン組成物としてエポキシ系レジ
ン組成物を用いた特許請求の範囲第(1)項記載の製造
法。
(6) The manufacturing method according to claim (1), using an epoxy resin composition as the ultraviolet curable resin composition.
(7)紫外線硬化形レジン組成物に含有される紫外線硬
化用触媒としてルイス酸のジアゾニウム塩、BIF4、
PF6または5bIF6のオニウム塩、またはアルミニ
ウム錯体とシラノール触媒との混合物を用いた特許請求
の範囲第(り項記載の製造法。
(7) Lewis acid diazonium salt, BIF4, as an ultraviolet curing catalyst contained in the ultraviolet curable resin composition;
The production method according to claim 1, using an onium salt of PF6 or 5bIF6, or a mixture of an aluminum complex and a silanol catalyst.
(8)紫外線硬化形レジン組成物に含有される熱硬化用
触媒として三フッ化ホウ素アミンコンプレックスを用い
た特許請求の範囲第(1)項記載の製造法。
(8) The manufacturing method according to claim (1), wherein a boron trifluoride amine complex is used as a thermosetting catalyst contained in the ultraviolet curable resin composition.
JP1943683A 1983-02-08 1983-02-08 Method of producing self-adhesive wire Granted JPS59146108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1943683A JPS59146108A (en) 1983-02-08 1983-02-08 Method of producing self-adhesive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1943683A JPS59146108A (en) 1983-02-08 1983-02-08 Method of producing self-adhesive wire

Publications (2)

Publication Number Publication Date
JPS59146108A true JPS59146108A (en) 1984-08-21
JPH0410688B2 JPH0410688B2 (en) 1992-02-26

Family

ID=11999232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1943683A Granted JPS59146108A (en) 1983-02-08 1983-02-08 Method of producing self-adhesive wire

Country Status (1)

Country Link
JP (1) JPS59146108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160304A (en) * 2011-01-31 2012-08-23 Mitsubishi Cable Ind Ltd Manufacturing method and apparatus of insulation wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158911A (en) * 1981-03-26 1982-09-30 Mitsubishi Electric Corp Method of producing electrically insulating conductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158911A (en) * 1981-03-26 1982-09-30 Mitsubishi Electric Corp Method of producing electrically insulating conductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160304A (en) * 2011-01-31 2012-08-23 Mitsubishi Cable Ind Ltd Manufacturing method and apparatus of insulation wire

Also Published As

Publication number Publication date
JPH0410688B2 (en) 1992-02-26

Similar Documents

Publication Publication Date Title
US4724345A (en) Electrodepositing mica on coil connections
US4447797A (en) Insulated conductor having adhesive overcoat
US4615763A (en) Roughening surface of a substrate
US4622116A (en) Process for electrodepositing mica on coil or bar connections and resulting products
US3239598A (en) Polyvinyl acetal resin together with an epoxy resin and a resin selected from urea formaldehyde, melamine, and phenol formaldehyde coated on an insulated wire and method for producing the same
US4723083A (en) Electrodeposited mica on coil bar connections and resulting products
GB2150153A (en) Electrodeposition of mica on coil or bar connections
US4576694A (en) Method for producing electrically insulated conductor
JPS59146108A (en) Method of producing self-adhesive wire
JPH03241609A (en) Flat-type superthin film insulated wire
JPS6036047B2 (en) Manufacturing method of self-fused electric wire
JPS5851419A (en) Method of producing electrically insulating conductor
JPS6121376B2 (en)
JPS62189709A (en) Manufacture of coil
JP5198790B2 (en) Insulated wire
JPS612208A (en) Method of producing twisted insulated wire
JPS62237610A (en) Self-bonding insulated wire
JP2006523776A (en) Electrodeposition coating method, electrodeposition coating, and electrodeposition product
JPS60189119A (en) Method of producing preferable solderable electrodeposited insulated wire
JPS5931802B2 (en) Manufacturing method of insulated conductor
US3598705A (en) Method of treating the surface of aluminum and aluminum alloys,and insulation coated conductors obtained thereby
JPS6248088A (en) Metal core circuit board and manufacture thereof
JPS5934692A (en) Method of producing flexible printed circuit board
JPS5986286A (en) Method of producing flexible printed circuit board
JPH0853776A (en) Coating method of metal oxide and metal oxide coated material