JPS59145938A - Thermal flow sensor - Google Patents

Thermal flow sensor

Info

Publication number
JPS59145938A
JPS59145938A JP1940883A JP1940883A JPS59145938A JP S59145938 A JPS59145938 A JP S59145938A JP 1940883 A JP1940883 A JP 1940883A JP 1940883 A JP1940883 A JP 1940883A JP S59145938 A JPS59145938 A JP S59145938A
Authority
JP
Japan
Prior art keywords
heat flow
flow sensor
heat
amount
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1940883A
Other languages
Japanese (ja)
Other versions
JPS644133B2 (en
Inventor
Yoshiaki Arakawa
荒川 美明
Hiroshi Fukunaga
浩 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1940883A priority Critical patent/JPS59145938A/en
Publication of JPS59145938A publication Critical patent/JPS59145938A/en
Publication of JPS644133B2 publication Critical patent/JPS644133B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient

Abstract

PURPOSE:To obtain a thermal flow sensor which can be manufactured easily and can measure all the conduction heat quantity by placing a material which is capable of moving a liquid by capillarity, on a coating material of the surface and the rear side of a rectifying sensor. CONSTITUTION:A filter paper 11 is stuck to the part extending from a rear side 10a of a thermal flow senser 10 to a surface 10c through one end side face. Water which becomes a watedrop on the rear side 10a by the filter paper 11 moves to the surface 10c by capillarity, and can be moved on the surface side. The thickness of the filter paper 11 is made thin enough to <=100mum so that influence is not exerted on a heat conductance C of the thermal flow sensor 10. A dummy 12 is made of black silicone rubber having the same quality of material as the coating material, and prevents water from evaporating from one end 10b of the sensor 10. In this way, water which becomes a waterdrop on the rear side 10a of the sensor 10 can be evaporated from the surface 10c, therefore, all the conduction heat quantities can be measured.

Description

【発明の詳細な説明】 この発明は、物体の表面から対流と熱放射と液体(符に
水分)の#発とによって気体中へ放散さ4     れ
る至伝熱社を熱流密度(単位i1/ゴ・hまたはw /
 m )として一括計幽することのできる熱流センサに
関するものでわる。
DETAILED DESCRIPTION OF THE INVENTION This invention describes the heat flow density (unit: i1/go・h or w /
This relates to a heat flow sensor that can be measured all at once.

連名、物体(固体)中を伝熱する熱流密度は伝導により
伝熱され、物体表面から気体中へと放散される熱流密度
は対流と熱放射によって伝熱される。従来、このような
熱流密度を測定するための計測機器として熱流センサが
知られており、この熱流センサを物体中に埋設あるいは
物体表面に貼漸して、この物体から放散される熱流密凰
を計測するようにしている。
Jointly, the heat flow density that transfers heat in an object (solid) is conducted by conduction, and the heat flow density dissipated from the surface of the object into the gas is transferred by convection and thermal radiation. Conventionally, a heat flow sensor is known as a measuring device for measuring such heat flow density, and this heat flow sensor is embedded in an object or attached to the surface of an object to measure the heat flow density radiated from the object. I'm trying to measure it.

第1図に示すように、熱流ヒンサlは通常薄い熱抵抗体
2の表裏面間の温度差を熱電堆や差動結線した測温抵仇
体などの検出素子(図では熱電堆)3によって検出する
ものであり、上記熱抵抗体2の表裏面を被覆材4,5で
覆い、機械的採掘、電気的障害(短絡や雑音)からの保
護を行なう構造を持っている。これらの熱流センサにつ
いては、例えば、([オートメーションJ 1979年
6月VoL 、 24、Nu7、P−26〜29、臨時
増刊号)などで紹介されている。
As shown in Fig. 1, a heat flow sensor 1 normally detects the temperature difference between the front and back surfaces of a thin thermal resistor 2 using a detecting element 3 such as a thermopile or a differentially connected temperature measuring resistor (thermopile in the figure). It has a structure in which the front and back surfaces of the thermal resistor 2 are covered with covering materials 4 and 5 to protect it from mechanical mining and electrical disturbances (short circuits and noise). These heat flow sensors are introduced, for example, in ([Automation J June 1979 Vol. 24, Nu7, P-26-29, extra issue).

ところで、上記熱流センサでは、熱伝導によって、ある
いは対流と熱放射とによって移動する熱量は、計測でき
るものの、液体の蒸発によって移動する熱量については
全く関知しないものである。
By the way, although the heat flow sensor described above can measure the amount of heat transferred by thermal conduction or by convection and heat radiation, it is completely unaware of the amount of heat transferred by evaporation of the liquid.

これに対し、人体から放散される伝熱量、さらに一般的
には発汗する動物からの発熱量を測定したいという要望
、おるいは加熱炉内に水があり、その水の蒸発に伴なっ
て伝熱する伝熱量を知りたいという要望が医学分野、工
業分野をはじめ農業、建築などの各種の分野で近年急速
に増加してきている。
On the other hand, there is a desire to measure the amount of heat transfer dissipated from the human body, and more generally from a sweating animal, or there is a desire to measure the amount of heat transfer dissipated by the human body, or if there is water in the heating furnace and the amount of heat transferred as the water evaporates. The desire to know the amount of heat transferred has been rapidly increasing in recent years in various fields such as medicine, industry, agriculture, and architecture.

そこで、本発明首らは、液体の蒸発によって移動する熱
量(単位;熱流密度)をも含んだ伝熱量の測定が可能で
、”しかも従来の伝導、熱放射、対流のみで伝熱する熱
量の測定も可能な熱流センサを得るために鋭意夾験、検
討を重ねた結果、以下のような知見を得るに至った。こ
の知見について説明する前に本発明の理解を容易にする
ために従来の測定状況な関単に説明する。
Therefore, the inventors of the present invention are able to measure the amount of heat transfer, which includes the amount of heat transferred by evaporation of liquid (unit: heat flow density). As a result of intensive experiments and studies to obtain a heat flow sensor that can also perform measurements, we have come to the following findings.Before explaining this finding, we will explain the conventional The measurement situation will be briefly explained.

第2図は物体6中とその表面6aにそれぞれ熱流センサ
laおよびibを設置し、伝導あるいは対流と熱放射に
よって伝達する熱量を測定する様子を断面からみた図で
ある。この図において、熱の流れが1次元の熱流であれ
ば、伝導伝熱量Q、対流伝熱量qC1放射伝熱量qrと
すれば、Q= qr + qc   °−−”−”°−
゛°(1)となる。すなわち、物体6中に埋設された熱
流センサlaで測定した熱流密1f1mも、物体表面6
aに貼着された熱流センサ1bで得られる熱流密度1区
も同じイ直になる。
FIG. 2 is a cross-sectional view showing how heat flow sensors la and ib are installed inside the object 6 and on its surface 6a to measure the amount of heat transferred by conduction, convection, and thermal radiation. In this figure, if the heat flow is a one-dimensional heat flow, the amount of conductive heat transfer is Q, the amount of convective heat transfer is qC1, the amount of radiation heat transfer is qr, then Q= qr + qc °−−”−”°−
゛°(1). That is, the heat flow density 1f1m measured by the heat flow sensor la embedded in the object 6 is also the same as that of the object surface 6.
The heat flow density in section 1 obtained by the heat flow sensor 1b attached to point a is also the same.

なお、物体表面6aに貼着する熱流センサlbは、物体
表面6aの放射率と等しい放射率に気体側表面が帯色さ
れており、熱抵抗体2の表裏面間の温度差の検出素子3
として熱電堆を使用した場合は、次の関係式で熱流密度
を求めている。([高温学会誌J1978,4、(2)
) ここで、 f(D)・C−1;熱流センサを貼着したことによる熱
の乱れの値 λ;熱抵抗体の熱伝導率 d;熱抵抗体の厚さ n;熱電堆の差動熱電対の数 η;熱電堆に使用した熱電対の熱電能 V;熱電堆の出力電圧 一方・、埋設型の熱流センサ1aについては、次式とな
る。
The heat flow sensor lb attached to the object surface 6a has its gas side surface colored to have an emissivity equal to the emissivity of the object surface 6a, and detects the temperature difference between the front and back surfaces of the thermal resistor 2.
When a thermopile is used as a thermoelectric stack, the heat flow density is calculated using the following relational expression. ([Journal of High Temperature Society J1978, 4, (2)
) Here, f(D)・C-1; value of thermal disturbance due to the attachment of the heat flow sensor λ; thermal conductivity of the thermal resistor d; thickness n of the thermal resistor; differential of the thermopile Number of thermocouples η; Thermoelectric power V of the thermocouple used in the thermopile; Output voltage of the thermopile; On the other hand, for the buried type heat flow sensor 1a, the following equation is obtained.

ここで F(D);熱の乱れを含む係数で、物体の熱伝導率と熱
センサの熱伝導率が等しい とき、F(D)=1  となる。
Here, F(D) is a coefficient including thermal disturbance, and when the thermal conductivity of the object and the thermal conductivity of the thermal sensor are equal, F(D)=1.

なお、通常現場では設置の藺単な物体表面6aへの設置
屋の熱流センサ1bを使用することが多い。従って、以
下の説明においても物体表面6aに設置される熱流セン
サの場合を例にとって説明することにする。
Note that in the field, a heat flow sensor 1b is often used, which is difficult to install and is installed by an installer on the object surface 6a. Therefore, in the following description, the case of a heat flow sensor installed on the object surface 6a will be explained as an example.

次に、上記従来の測定状況をAil提として本発明省ら
の得た知見の説明をする。第3図は物体6の表面6aか
らの蒸発によって生じる勧賞の移動に伴なって伝熱され
る状態を示しだものである。図中、qvは蒸発による伝
熱量を示すものである。
Next, the findings obtained by the Ministry of the Invention and others will be explained based on the conventional measurement situation described above. FIG. 3 shows the state in which heat is transferred as the reward moves due to evaporation from the surface 6a of the object 6. In the figure, qv indicates the amount of heat transfer due to evaporation.

第2図と第3図の状態において、従来の熱流センサlb
を物体表面に貼着した場合、どの様な出力が得られるか
を確認するため、第4図に示すような恒温水槽7を用い
て実験した。この恒温水槽7の水槽は、内径200訂、
g、高さ75闘の有底円筒形で、この時の水深は50酊
であった。この恒温水槽7の上部に250龍ダ×2朋厚
さの軟鋼板8a、8bを被ぜた。軟鋼板8aは、250
朋グの中央の200朋pの部分の全面に一様に10酊間
隔で2 y+m lの貫通孔を325@穿設したもので
あり、8bは貫通孔を形成しなかったもので、両歌鋼板
8a、8bはいずれもその表面が黒色塗装されたものを
用いた。この2棟類の軟鋼板8a。
In the conditions shown in Figures 2 and 3, the conventional heat flow sensor lb
In order to confirm what kind of output can be obtained when the material is attached to the surface of an object, an experiment was conducted using a constant temperature water bath 7 as shown in FIG. The water tank of this constant temperature water tank 7 has an inner diameter of 200,
It was cylindrical with a bottom, 75g high, and the water depth at this time was 50m. The upper part of this constant temperature water tank 7 was covered with mild steel plates 8a and 8b having a thickness of 250 mm x 2 mm. The mild steel plate 8a is 250
325 holes of 2 y + ml were drilled uniformly at 10-inch intervals on the entire surface of the 200 mm center part of the frame, and 8b did not have any through holes. The surfaces of both steel plates 8a and 8b were painted black. Mild steel plate 8a for these two buildings.

8bの表面に熱流センサを貼着し、水温を同一としたと
きにどのような出力が得られるが比軟検討した。また、
熱流センサlbとしては、外形寸法が縦50...横1
00...厚さ約3間で、その被扱材が黒色シリコーン
ゴム製で、その検出素子がクロメル・アルメルの熱電堆
であるものを使用した。そして、この熱流センサ1bを
5朋厚さの軟鋼板を有し、標準熱流を発生することので
きる別途に用意した装置によって校正したときの校正定
数は、50〜150℃において、1171cal/ m
” ・h−mVと一定であった。なお、この標準熱流発
生装置Mでは水の蒸発は一切ない構造のものであった。
A heat flow sensor was attached to the surface of 8b, and a comparative study was conducted to determine what kind of output could be obtained when the water temperature was the same. Also,
The external dimensions of the heat flow sensor lb are 50. .. .. Horizontal 1
00. .. .. The material used was about 3 mm thick, the material to be treated was made of black silicone rubber, and the detection element was a thermoelectric stack of chromel/alumel. When this heat flow sensor 1b is calibrated using a separately prepared device that has a mild steel plate with a thickness of 5 mm and can generate a standard heat flow, the calibration constant is 1171 cal/m at 50 to 150°C.
” ·h-mV. Note that this standard heat flow generator M had a structure in which no water evaporated at all.

上記恒温水槽7を60℃と90℃で各々一定とし、第4
図に示すように、各々軟鋼板8a、8bの表面に熱流セ
ンサ1bを貼着し、それぞれの熱流密度を測定したとこ
ろ、第5図のようになった。
The constant temperature water tank 7 is kept constant at 60°C and 90°C, and the fourth
As shown in the figure, a heat flow sensor 1b was attached to the surface of each of the mild steel plates 8a and 8b, and the heat flow density of each was measured, and the result was as shown in FIG.

軟鋼板8aでは、水蒸気が2間グの孔を通して上方へ逃
げ、それによって熱量が運ばれているにもかかわらず、
熱流セ/すl’bの指示値は、図に示すように軟鋼板8
bと同数値となっており、変化しでいない。これは、水
蒸気が熱流センサ1bの軟鋼板8a側の面で凝縮して霧
を結び、熱流センサlbの大気側からは水が#発してい
ないために蒸発によって放熱する熱量を検知していない
ためである。これに対し、この水蒸気によって運ばれる
熱量を検知するために、たとえば熱流センサlbにいく
つかの貫通孔を穿設しておく方法が考えられるが、これ
は用をなさない。というのは、熱流センサ1bの測定原
理が熱抵抗体の宍裏面間の温度差検知によシ出力を得る
ことにあるので、単に熱流セ/すIt)K設けた貫通孔
を水蒸気が通り抜けても、上記の温度差には検知されて
こないからである。従って、蒸発が熱流センサ1bの気
体側の表面から行なわれるようにすれば、その奪い去る
熱量によって熱抵抗体の表裏面間の温度差は変化し、そ
れによって蒸発による伝熱量を検知できることになる。
In the mild steel plate 8a, water vapor escapes upward through the two holes, and heat is carried away by it.
The indicated value of heat flow center/sl'b is as shown in the figure for mild steel plate 8.
It is the same value as b and remains unchanged. This is because the water vapor condenses on the surface of the heat flow sensor 1b on the mild steel plate 8a side and forms a mist, and since no water is emitted from the atmosphere side of the heat flow sensor 1b, the amount of heat radiated by evaporation is not detected. It is. On the other hand, in order to detect the amount of heat carried by this water vapor, a method may be considered in which, for example, several through holes are bored in the heat flow sensor lb, but this is useless. This is because the measurement principle of the heat flow sensor 1b is to obtain an output by detecting the temperature difference between the bottom and back surfaces of the thermal resistor. This is because the temperature difference mentioned above is not detected. Therefore, if evaporation is performed from the gas side surface of the heat flow sensor 1b, the temperature difference between the front and back surfaces of the thermal resistor changes depending on the amount of heat removed, and the amount of heat transfer due to evaporation can thereby be detected. .

これに基づいて、次に上記の熱流センサ1bの気体側表
面から蒸発が行なわれればよいので、熱流センサlbの
熱抵抗体材料として、たとえば布や紙あるいは多孔性材
料を採用し、熱流センサlbの軟鋼板8a側の面で一旦
凝縮した水を毛細管現象によって、熱流セ/すの気体側
表面へ移動さぜ、その表面から再蒸さ6さぜる方法が考
えられるが、これも採用できない。それは、上記(2)
、(3)式にみるごとく対流と熱放射による伝熱量を測
定する場合は、熱抵抗体の材料の熱伝導率λか変化しな
い(一定である)ことが要求されるにもかかわらず、熱
抵抗体材料が多孔負材料で吸湿するものであれば、吸湿
時と乾燥時とでは、そ4     の熱伝導率匝が1桁
程殿(例えばQ、05kcal/(m・h ・’C)か
らo、sb+7’< m −h−℃)に)変わってしま
い、このような熱流センサは用をなさないからである。
Based on this, since evaporation only needs to be performed from the gas side surface of the heat flow sensor 1b, for example, cloth, paper, or a porous material is adopted as the thermal resistor material of the heat flow sensor 1b, and the heat flow sensor 1b is One possible method is to move the water once condensed on the surface of the mild steel plate 8a to the gas side surface of the heat flow chamber by capillary action, and re-steam it from that surface, but this method cannot be adopted either. That is (2) above.
, when measuring the amount of heat transfer due to convection and thermal radiation as shown in equation (3), even though it is required that the thermal conductivity λ of the material of the thermal resistor does not change (is constant), If the resistor material is a porous negative material that absorbs moisture, its thermal conductivity will be about an order of magnitude higher (for example, from Q, 05kcal/(m・h・'C)) between when it absorbs moisture and when it is dry. o, sb + 7'< m - h - °C), and such a heat flow sensor is of no use.

ここにおいて、熱流センサ1bの被機材上に毛細管現象
を生じる材料を配設すれば、上記難点を解消できること
に思い至った。
Here, we have come to the conclusion that the above-mentioned difficulties can be overcome by disposing a material that causes capillary action on the substrate of the heat flow sensor 1b.

本発明は上記知見に基づいてなされたものである。すな
わち、本発明は、熱抵抗体と、この熱抵抗体の表畏の温
度差を検出する検出素子を抜機、作画する表裏各彼核材
上に物置移動現象によって液体(主に水)を移動させる
ことのできる材料を配設するとともに上記表裏各材料が
上記液体を媒体として連結されるように構成したもので
bる。
The present invention has been made based on the above findings. That is, the present invention removes a thermal resistor and a detection element that detects the temperature difference between the front and rear surfaces of the thermal resistor, and moves a liquid (mainly water) onto each of the front and back core materials by a storage movement phenomenon. In addition, the front and back materials are connected to each other using the liquid as a medium.

本発明において、毛細管現象等の物置移動現象により液
体を移動さ〔る材料は、濾紙、カーゼなどが適尚であり
、また、被覆材の全面を蜜に憶うものではなく、例えば
脱脂した糸を被覆材4翫に刺子のように縫いつける方法
も考えられる。要するに、本発明における成体移動およ
び蒸発用材料は、熱流上/すの被測定面(裏面)側で凝
縮した液体を熱流センサの表面に速やかに移動させるこ
とができるものならばよい。
In the present invention, filter paper, case, etc. are suitable as the material that moves the liquid by a storage movement phenomenon such as capillary action, and the material that does not cover the entire surface of the covering material is, for example, a degreased thread. Another possible method is to sew it onto the covering material in a sashiko-like manner. In short, the material for mass transfer and evaporation in the present invention may be any material as long as it can quickly move the liquid condensed on the surface to be measured (back surface) of the heat flow sensor to the surface of the heat flow sensor.

また、上記材料を熱流センサの気体側の表面を懐う場合
、この表面の全面に亘って密に覆わない方が良い。その
理由は次のようである。すなわち、熱放射を伴なう伝熱
量の測定では被測定面の放射率と熱流センサの気体側放
射率を一致さ?ることが必要である。ところが、周知の
ように吸湿した材料の放射率は、水分の影響によって放
射率が約1に近くなる。従って、このような吸湿する劇
料で熱流センサの表面を全面に亘って密に捗っていると
、この熱流センサの放射率は、吸湿時において常に放射
率が1に近い11となってしまう。この状態では、例え
ば光沢のある金属面(光沢のある金属面の放射率は一例
を挙げれば0.1程度である)からの放散熱量を測定す
る場合には、たとえ乾燥時にセンサの表面の放射率が0
.1程度となるようにしておいても、蒸発を伴なう伝熱
量の計測時には放射率が1近くの凪となってしまう。そ
のため、熱かれセンタが対流による伝熱量と蒸発による
伝熱量とが正しく計測される方式となっていても、残り
の放射による伝熱量を過大に評価してしまうことになる
。その結果として、物体の全伝熱量を評価する場合、測
定誤差を生じてしまうからである。
Further, when the above-mentioned material is applied to the gas side surface of the heat flow sensor, it is better not to cover the entire surface tightly. The reason is as follows. In other words, when measuring the amount of heat transfer that involves thermal radiation, is it necessary to match the emissivity of the surface to be measured and the gas side emissivity of the heat flow sensor? It is necessary to However, as is well known, the emissivity of a material that has absorbed moisture approaches approximately 1 due to the influence of moisture. Therefore, if the entire surface of the heat flow sensor is densely covered with such a harmful material that absorbs moisture, the emissivity of this heat flow sensor will always be 11, which is close to 1, when moisture is absorbed. . In this state, for example, when measuring the amount of heat dissipated from a shiny metal surface (the emissivity of a shiny metal surface is about 0.1, for example), it is necessary to rate is 0
.. Even if it is set to be about 1, the emissivity becomes a lull close to 1 when measuring the amount of heat transfer accompanied by evaporation. Therefore, even if the heating center is configured to accurately measure the amount of heat transferred by convection and the amount of heat transferred by evaporation, the remaining amount of heat transferred by radiation will be overestimated. This is because, as a result, measurement errors occur when evaluating the total heat transfer amount of the object.

この難点を解消するだめには、例えば前記したよ縫いつ
けるなどの手段をとれはよい。
To overcome this difficulty, it would be best to take measures such as sewing as described above.

本発明においては、毛細管現象によって液体をIHjl
Jさ?ることのできる材料を熱流センサの&側の被核材
から表側の被覆材にかけて配設するので、熱流センサの
一方の面で水滴となった液体を蒸発さ虻ることができ、
それによって、対流と熱放射による伝熱量に蒸発による
伝熱量を加えた全伝熱量の評価を容易に行なうことがで
きる。さらに本発明の熱流センサは、従来の熱流センサ
の裏面から表面にかけて毛細管現象等の物置移動現象に
よって液体を移動させることができる材料を配設しただ
けの構造なので、製作が容易で、製造コストか少なくて
済み、実用性に豊むものである。
In the present invention, liquid is transferred to IHjl by capillary action.
J? Since the material that can be used as water droplets is placed from the nucleated material on the & side of the heat flow sensor to the covering material on the front side, it is possible to evaporate the liquid that has become water droplets on one side of the heat flow sensor.
Thereby, the total amount of heat transfer, which is the sum of the amount of heat transfer due to convection and thermal radiation plus the amount of heat transfer due to evaporation, can be easily evaluated. Furthermore, the heat flow sensor of the present invention has a structure in which a material that can move liquid by storage movement phenomena such as capillary action is provided from the back side to the front side of the conventional heat flow sensor, so it is easy to manufacture and has a low manufacturing cost. It requires less and is highly practical.

また、不発明に係る熱流センサを粉体あるいはレンガの
ような多孔性の物体の中に埋設して使用した場合も、こ
れらの多孔性物体内で液体の移動が生じても、上記同様
、液体は熱流ヒンジの一方の面から他方の面へ運ばれ、
結果として液体の移動に伴なう伝熱量をも含めた全伝熱
量の測定を容易に行なうことができる。
Furthermore, even if the heat flow sensor according to the invention is embedded in porous objects such as powder or bricks, even if liquid moves within these porous objects, the liquid will not move as described above. is carried from one side of the heat flow hinge to the other,
As a result, the total amount of heat transfer including the amount of heat transfer accompanying the movement of the liquid can be easily measured.

次に実施例によって本発明をさらに評価に説明する。Next, the present invention will be further explained and evaluated by examples.

〔実施例〕〔Example〕

第6図において、符号10は熱流センサを示すもので、
この熱流センサlOは、前記の熱流センサlbと同構成
、同寸法に形成されている。この熱流センサlOの裏面
10aから一側端10bを経て表面10cに至る部分に
濾紙11が貼漸されている。この濾紙11は毛細管現象
を生じ、厚さの助い材料として採用したもので、その厚
さは約200μmに形成されている。この濾紙11によ
って熱流センサの裏側の面で水滴となった水を表側の面
へ毛細¥I現象によって移動させることができ、この表
側から蒸発させることができる。
In FIG. 6, numeral 10 indicates a heat flow sensor,
This heat flow sensor IO has the same configuration and the same dimensions as the heat flow sensor lb described above. A filter paper 11 is pasted from the back surface 10a of this heat flow sensor IO to the front surface 10c via one side end 10b. This filter paper 11 causes capillary action and is used as a material to help increase the thickness, and its thickness is approximately 200 μm. With this filter paper 11, water that has become droplets on the back side of the heat flow sensor can be moved to the front side by the capillary phenomenon, and can be evaporated from the front side.

上記熱流センサlOの一側端10bに存在する濾紙11
の表面10c方向の面積は、熱流センサ10の表面10
cの全面積50X100mmの広さに対して、0,2 
x 100vaと極めて小さい。従って、この部分の濾
紙11の熱伝導率が吸湿時と転線時で熱伝導率が変わっ
ても、熱流センサlOの熱コンダクタンスCは、変わら
ないとみなすことかできる。なお、熱流せンサlOの表
・共面に存仕する陶紙11のために、熱流センサ10の
厚さは、約3朋から約3.4mmへほぼ10%程度増加
することになる。そのため、この濾紙11が吸湿時と乾
燥時でその熱伝導率がかわることによる熱流センサ10
の全熱コンダクタンスCへの影響、さらに最終的な校正
定数への影響は、10%程度と見積られ、やや影響か大
きくなる。従って、本発明を実用に供するには、上記濾
紙11の厚みも、きらに薄くすることが必要である。実
用可能な熱流センサでは100μmかそれ以上に薄い濾
紙を用いることが測定稍吸を確保する上からは必要であ
る。
Filter paper 11 present at one end 10b of the heat flow sensor IO
The area in the surface 10c direction of the heat flow sensor 10 is the area of the surface 10c of the heat flow sensor 10.
0.2 for the total area of c 50 x 100 mm
x 100va, which is extremely small. Therefore, even if the thermal conductivity of the filter paper 11 in this portion changes between when absorbing moisture and when changing the line, it can be considered that the thermal conductance C of the heat flow sensor 1O does not change. Note that due to the ceramic paper 11 existing on the front and coplanar surfaces of the heat flow sensor 10, the thickness of the heat flow sensor 10 increases by about 10% from about 3 mm to about 3.4 mm. Therefore, the heat flow sensor 10 due to the fact that the thermal conductivity of the filter paper 11 changes when it absorbs moisture and when it dries.
The influence on the total thermal conductance C and further on the final calibration constant is estimated to be about 10%, which is a somewhat large influence. Therefore, in order to put the present invention into practical use, it is necessary to make the thickness of the filter paper 11 very thin. In a practical heat flow sensor, it is necessary to use a filter paper as thin as 100 μm or more in order to ensure sufficient absorption for measurement.

なお、図中、符号12は熱流センサ10の一側端10b
に設けたダミーを示すものである。このダミー12は熱
流センサ10の被恍材と同材買の黒色シリコーンゴム製
で、熱流センサlOの一1111端10bから水が蒸発
することを防止するためのものである。従って、このダ
ミー12は、熱流センサlOの一側端10bでの蒸発を
防止できれば艮いものであり、熱流センサ10の厚さが
薄いときは、その−側端lObでの蒸発は無視できる程
巣となるので、設けなくてもよい。
In addition, in the figure, the reference numeral 12 indicates one end 10b of the heat flow sensor 10.
This figure shows the dummy set in the figure. This dummy 12 is made of black silicone rubber made of the same material as the material to be treated in the heat flow sensor 10, and is used to prevent water from evaporating from one end 10b of the heat flow sensor 10. Therefore, this dummy 12 is useful if it can prevent evaporation at one end 10b of the heat flow sensor 10, and when the thickness of the heat flow sensor 10 is thin, evaporation at the negative end 10b is negligible. Therefore, it is not necessary to provide it.

次・に上記構成の熱流センサ10によって伝熱量を求め
る時の検出式について説明する。上記熱流センサlOに
おいて、凝縮した液体が物置移動現象によって熱流セン
サlOの裏面10aから表面10cへ違ばれ、さらに蒸
発に伴なって放散される熱量を熱流センサー0で測定す
る場合の蒸発のみによる伝M景を検出する関係式を求め
ると、以下のようになる。
Next, a detection formula for determining the amount of heat transfer using the heat flow sensor 10 having the above configuration will be explained. In the heat flow sensor 10 described above, the condensed liquid is transferred from the back surface 10a to the front surface 10c of the heat flow sensor 10 due to storage movement phenomenon, and the amount of heat dissipated due to evaporation is measured by the heat flow sensor 0. The relational expression for detecting M-scenes is determined as follows.

λ q v = −−V  ”°°…゛1゛°°゛…°°”
°(4)dnη 従って、蒸発と対流と熱放射による伝熱の総和を検出す
る場合の全伝熱量の正しい検出式は、上記(4)式およ
び前記(2)式から ・・・・・・・・・ (5) となる8 ところが、実際には出力は、(5)式における(Vt+
■2 )で一括出力されるので、全伝熱量は、下記形式
で表現することができる。
λ q v = −−V ”°°…゛1゛°°゛…°°”
°(4)dnη Therefore, when detecting the sum of heat transfer due to evaporation, convection, and thermal radiation, the correct detection formula for the total amount of heat transfer is based on equation (4) and equation (2) above. ... (5) 8 However, in reality, the output is (Vt+
(2) Since it is output all at once, the total amount of heat transfer can be expressed in the following format.

qv+qc+qr、=A (L+ +v、)  ・・・
・・−(6iA;熱流センサの平均校正定数 ここで、上記(5)(61式を比べ検討してみると、た
とえは、上1iaAlはとしてλ/’dnηに牝当する
11゜ずなわち標準熱流発生装置で熱流センサー0に既
知の熱流密度が真流するようにして校正した時の校正定
数A。を与えると、正しい検出筒に対して小さい唾を与
えることになってしまう。一方、熱流発生装置で熱の乱
れを生じる場合の校正定数、すなわちf(D)・c 1
を言んだ校正定数が得られるようにして校正した値A1
を用いれば、正しい恢出姐に対して大巾に大きな1直を
与えることになってしまう。
qv+qc+qr,=A (L+ +v,)...
...-(6iA; Average calibration constant of heat flow sensor Here, if we compare and consider the above equation (5) (61), for example, the above 1iaAl is 11° which corresponds to λ/'dnη, that is, If you give the calibration constant A when calibrating the standard heat flow generator so that the known heat flow density flows directly to the heat flow sensor 0, you will end up giving a small amount to the correct detection tube.On the other hand, Calibration constant when heat turbulence occurs in a heat flow generator, that is, f(D)・c 1
The value A1 is calibrated to obtain the calibration constant that says
If you use this, you will end up giving a large shift to the correct maid.

従って、実用に供する熱流センサとしては、全熱コンダ
クタンスCが大きいセンナを製作し、熱の乱れのimf
(D)・0−′ を極めて小さくすることが測定f%1
mの確保の上から必要となる。そして、熱の乱れのI直
f (D )・a 1が無視できない時には、上記した
AoとA、の算術平均匝を用いれは実用上よいことにな
る。
Therefore, as a heat flow sensor for practical use, a sensor with a large total thermal conductance C is manufactured, and the imf of thermal turbulence is
(D)・0-' can be made extremely small by measurement f%1
It is necessary to secure m. When the thermal disturbance I(D)·a 1 cannot be ignored, it is practical to use the arithmetic mean of Ao and A described above.

上記熱流センサlOの乾燥時の校正定数A s aと、
濾紙11のない(従来の熱流センサlb)場合の校正定
数A+b (これら校正定数AtaおよびAlbは、い
ずれも熱の乱れを甘んだ条件で校正された匝)とを比軟
した結果を第7図に示す。また、この図には上記熱流セ
ンサ1bを熱の乱れのない条件で校正した111A。も
併わぜて示す。熱の乱れのある条件で校正した校正定数
は、上記熱流センサlOにおいて、従来の熱流センサ1
bに比べて約13チ増の籠となり、この分だけ急開が恕
くなっていることを示している。ここで、蒸発を伴なわ
ない伝熱量の計測では平均校正定数としてA=1327
/rrt・h”invを用い、蒸発を伴なう伝熱量の計
測では平均校正定数としてA−(117+98)/ 2
 =108 kcal/ 7rL ・h−mVを用いる
こととしだ。
A calibration constant A s a of the heat flow sensor lO during drying;
The result of comparing the calibration constant A+b (both calibration constants Ata and Alb are calibrated under conditions that take into account thermal turbulence) without the filter paper 11 (conventional heat flow sensor lb) is shown in the seventh table. As shown in the figure. In addition, this figure shows a diagram 111A in which the heat flow sensor 1b is calibrated under conditions without heat turbulence. are also shown. The calibration constants calibrated under conditions with thermal turbulence are the same as those of the conventional heat flow sensor 1 in the heat flow sensor
The cage is approximately 13 inches larger than B, indicating that it is more difficult to open quickly. Here, when measuring the amount of heat transfer without evaporation, the average calibration constant is A = 1327.
/rrt・h”inv is used to measure the amount of heat transfer accompanied by evaporation, and the average calibration constant is A-(117+98)/2.
= 108 kcal/7rL · h-mV is used.

上記熱流センサ10を第4図に示した恒温水槽7によっ
て実験した結果を第8図に示す(第5図に対応)。軟鋼
板8bの場合は第5図の結果とよく一致する。すなわち
、水の蒸発による熱の移動がないため、一致する匝を示
すことが正しい結果を与えていると判断される。しかし
、軟鋼板8aの表面に熱流センサ10を貼層して放散熱
量を開側した凪は、図に示すように同一の被測定面温毀
において約2.2〜2.3倍の値となっている。すなわ
ち、放射と対流による伝熱量と、水の蒸発による伝熱量
とがほぼ等しい結果を与えており、従来の熱流センサ1
bそのままでは蒸発を伴なう伝熱11:を評価できない
ことが定量的に明らかになるとともに、本発明の熱流セ
ンサ10の有効性が明らかとなった。
The results of an experiment using the heat flow sensor 10 described above using the constant temperature water bath 7 shown in FIG. 4 are shown in FIG. 8 (corresponding to FIG. 5). In the case of the mild steel plate 8b, the results match well with the results shown in FIG. In other words, since there is no transfer of heat due to water evaporation, it is determined that showing matching boxes gives the correct result. However, as shown in the figure, the heat flux sensor 10 is laminated on the surface of the mild steel plate 8a, and the radiated heat is approximately 2.2 to 2.3 times as large as the temperature of the surface to be measured, as shown in the figure. It has become. In other words, the amount of heat transferred by radiation and convection is almost equal to the amount of heat transferred by evaporation of water, and the conventional heat flow sensor 1
b It became quantitatively clear that the heat transfer 11: accompanied by evaporation cannot be evaluated as it is, and the effectiveness of the heat flow sensor 10 of the present invention became clear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱流セ/すの一例を示す構成図、第2図
は従来の熱流密度の測定状況の説明図、第3図は蒸発が
ある場合の伝熱状態の説明図、第4図は実験用の恒温水
槽の構成図、第5図は第4図の実験装置を使い蒸発がお
る場合とない場合について行なった従来の熱流センサに
よる測定結果を示すグラフ、第6図は本発明に係る熱流
センサの一実施例を示す斜視図、第7図は標準熱流発生
装置によシ氷めた従来および本発明の熱流センサの校正
定数と温度との関係を示すグラフ、第8図は第4図の実
験装置において行なった本発明の熱流センサによる放散
熱量の測定結果を示すグラフである。 2・・・熱抵抗体、3・・・検出菓子、4,5・・・被
覆材、6・ ・物体、11・・・濾紙(動員移動現象に
よって成体を移動さぜることのできる材料)。 出願人昭オロ電工株式会社 第1図 第2図 第3図 ノ 第5図 籟汲11!寵の1、宵 第6図
Fig. 1 is a configuration diagram showing an example of a conventional heat flow unit, Fig. 2 is an explanatory diagram of a conventional heat flow density measurement situation, Fig. 3 is an explanatory diagram of a heat transfer state when there is evaporation, and Fig. 4 is an explanatory diagram of a heat transfer state when there is evaporation. Figure 5 is a diagram showing the configuration of a constant-temperature water tank for experiments, Figure 5 is a graph showing measurement results using a conventional heat flow sensor using the experimental apparatus shown in Figure 4 with and without evaporation, and Figure 6 is a graph showing the results of measurements made using the present invention. FIG. 7 is a graph showing the relationship between the calibration constant and temperature of the conventional heat flow sensor and the heat flow sensor of the present invention frozen by a standard heat flow generator, and FIG. 8 is a perspective view showing an embodiment of the heat flow sensor according to 5 is a graph showing the measurement results of the amount of heat dissipated by the heat flow sensor of the present invention performed in the experimental apparatus of FIG. 4. FIG. 2... Heat resistor, 3... Detection confectionery, 4, 5... Covering material, 6... Object, 11... Filter paper (material that can move and stir the adult body through the mobilization movement phenomenon) . Applicant Showoro Electric Works Co., Ltd. Figure 1, Figure 2, Figure 3, Figure 5, Figure 11! Favor 1, Evening Figure 6

Claims (1)

【特許請求の範囲】[Claims] 熱抵抗体と、この熱抵抗体の表裏の温に差を検出する検
出素子と、これらの表裏を保護する被覆材とを有してな
り、物体から放散される熱流密度を測定する熱流ヒンサ
において、上記表面側の被覆材および裏面側の被覆材上
に物置移動現象によって液体を移動さぜることのできる
材料を配設するとともに上記衣裏各材料が上記液体を媒
体として連結されるように構成したことを特赦とする熱
流セ/す。
A heat flow hinger for measuring heat flow density dissipated from an object, which includes a thermal resistor, a detection element that detects a difference in temperature between the front and back sides of the thermal resistor, and a covering material that protects these front and back surfaces. , A material capable of moving a liquid by a storage movement phenomenon is disposed on the front side covering material and the back side covering material, and each material of the lining is connected using the liquid as a medium. The heat flow is amnesty for what has been constructed.
JP1940883A 1983-02-08 1983-02-08 Thermal flow sensor Granted JPS59145938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1940883A JPS59145938A (en) 1983-02-08 1983-02-08 Thermal flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1940883A JPS59145938A (en) 1983-02-08 1983-02-08 Thermal flow sensor

Publications (2)

Publication Number Publication Date
JPS59145938A true JPS59145938A (en) 1984-08-21
JPS644133B2 JPS644133B2 (en) 1989-01-24

Family

ID=11998427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1940883A Granted JPS59145938A (en) 1983-02-08 1983-02-08 Thermal flow sensor

Country Status (1)

Country Link
JP (1) JPS59145938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025122A (en) * 2007-07-19 2009-02-05 Tokyo Electric Power Co Inc:The Cable conductor temperature estimation method in consideration of latent heat effect in tunnel, cable conductor temperature estimation system, and cable conductor temperature estimation program
JP2016133484A (en) * 2015-01-22 2016-07-25 セイコーエプソン株式会社 Heat flow sensor and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025122A (en) * 2007-07-19 2009-02-05 Tokyo Electric Power Co Inc:The Cable conductor temperature estimation method in consideration of latent heat effect in tunnel, cable conductor temperature estimation system, and cable conductor temperature estimation program
JP2016133484A (en) * 2015-01-22 2016-07-25 セイコーエプソン株式会社 Heat flow sensor and electronic apparatus

Also Published As

Publication number Publication date
JPS644133B2 (en) 1989-01-24

Similar Documents

Publication Publication Date Title
US3720103A (en) Heat flux measuring system
Parkinson A simple method for determining the boundary layer resistance in leaf cuvettes
Fuchs Heat flux
WO2019184076A1 (en) Method for measuring heterogeneous content of finite-thickness material based on virtual heat source principle
Sorli et al. Fast humidity sensor for high range 80–95% RH
JPS59145938A (en) Thermal flow sensor
Atherton et al. Thermal characterisation of μL volumes using a thin film thermocouple based sensor
McIntyre In situ measurement of U-values
Bohac et al. New planar disc transient method for the measurement of thermal properties of materials
JPS5471679A (en) Thermal resistance measuring device
Rochatka Method elaboration for determining heat losses within heat leakage bridges occurring in isothermal and cooling bodies
JPS60146118A (en) Method and apparatus for measuring level of interface
RU2361184C2 (en) Device for determining heat transfer characteristics
Kojima et al. Matric potential sensor using dual probe heat pulse technique
Cull Thermal contact resistance in transient conductivity measurements
Koestoer Zero method heat flux sensor
RU2527128C2 (en) Measurement of heat conductivity and heat resistance of construction structure
JPS6138534A (en) Heat flow sensor
RU2331063C1 (en) Differential scanning calorimeter
JPH0323555Y2 (en)
JPS5923369B2 (en) Zero-level heat flow meter
SU731365A1 (en) Device for measuring heat conductance coefficient of solid bodies
RU2029322C1 (en) Radio probe
Labudová et al. Hot wire and hot plate apparatuses for the measurement of the thermophysical properties
Pilkington et al. In situ thermal conductivity measurements of building materials with a thermal probe