JPS59145763A - Alloy tool steel - Google Patents

Alloy tool steel

Info

Publication number
JPS59145763A
JPS59145763A JP2103583A JP2103583A JPS59145763A JP S59145763 A JPS59145763 A JP S59145763A JP 2103583 A JP2103583 A JP 2103583A JP 2103583 A JP2103583 A JP 2103583A JP S59145763 A JPS59145763 A JP S59145763A
Authority
JP
Japan
Prior art keywords
alloy tool
steel
tool steel
hardness
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2103583A
Other languages
Japanese (ja)
Other versions
JPS6254858B2 (en
Inventor
Shigeyasu Inoue
井上 茂保
Tadahiro Matsumoto
松本 忠博
Sadao Yoshida
貞夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOSHUHA KOGYO KK
Original Assignee
NIPPON KOSHUHA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOSHUHA KOGYO KK filed Critical NIPPON KOSHUHA KOGYO KK
Priority to JP2103583A priority Critical patent/JPS59145763A/en
Publication of JPS59145763A publication Critical patent/JPS59145763A/en
Publication of JPS6254858B2 publication Critical patent/JPS6254858B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an alloy tool steel having high performance, superior wear resistance, shock resistance and hardenability by adding specified amounts of C, Si, Mn, Cr, Mo and V to Fe. CONSTITUTION:The composition of an alloy tool steel is composed of, by weight, 1.3-2% C, <1% Si, <1% Mn, 9-13% Cr, 1.5-3% Mo, 0.5-2% V and the balance Fe with inevitable impurities. 0.8-3.5% Co may be added so as to increase the temper hardness further. The alloy tool steel is provided with superior characteristics by the composite effect of the added alloying elements and the balance among the components.

Description

【発明の詳細な説明】 本発明は、適正な熱処理を施すことによってロックウェ
ル硬度HRC64以上の高硬度が得られ耐摩耗性、耐衝
撃性、及び焼入性の優れた高性能の合金工具鋼に関する
ものである。
Detailed Description of the Invention The present invention provides a high-performance alloy tool steel that has a high hardness of Rockwell hardness HRC64 or higher by applying appropriate heat treatment and has excellent wear resistance, impact resistance, and hardenability. It is related to.

従来、冷間ダイス鋼を使用したロール材では、耐摩耗性
が悪いため、短期間で肌あれ、傷、〈ぼみ等の欠陥が発
生しやすく、ロール交換の頻度が多くなシ、シかも耐事
故性に劣るものである。また高速度鋼ロールは高価であ
り、クラックが入りやすく、研削性も悪いという欠点が
ある。
Conventionally, roll materials using cold die steel have poor abrasion resistance, so they tend to develop defects such as roughness, scratches, and dents in a short period of time, and the rolls may need to be replaced frequently. It has poor accident resistance. Furthermore, high-speed steel rolls are expensive, prone to cracking, and have poor grindability.

すなわち、冷間圧延業界において、ステン1ノス、珪素
鋼板、銅合金等を冷間圧延する際、これらに使用される
ロール材としては、ロールの種類、及び用途に応じて冷
間ダイス鋼、セミノ・イス鋼、高速度鋼が選択使用され
ている。
In other words, in the cold rolling industry, when cold rolling stainless steel sheets, silicon steel sheets, copper alloys, etc., the roll materials used for these are cold die steel, semi-finished steel, etc., depending on the type of roll and the purpose. - Chair steel and high speed steel are selectively used.

しかしながら、冷間圧延用ロールは、上述した金属鋼を
単に板状に圧延するだけでなく、ロール自体の研削性、
鏡面性、耐摩耗性、スポーリング鴨りラック畷剥離等の
品質特性が被圧延材の品質及びコストに多大な影響を及
はしている。
However, cold rolling rolls not only roll the above-mentioned metal steel into a plate shape, but also improve the grindability of the roll itself.
Quality characteristics such as specularity, abrasion resistance, spalling and rack peeling have a great influence on the quality and cost of rolled materials.

例えばロール表面に発生しやすい傷、クラック、くぼみ
、剥離や肌あれ、スポーリング現象といった表面欠陥が
圧延によって製品にそのま\プリントされるため、製品
重賞を著しく損なうことになる等の欠点がある。
For example, surface defects that tend to occur on the roll surface, such as scratches, cracks, dents, peeling, rough skin, and spalling phenomena, are printed directly onto the product during rolling, which can significantly impair the product's award. be.

また、ロールの再研磨における作業時間の短縮、能率向
上の面からロールの良好な研削性が要求され、かつ耐摩
耗性を向上させてロール寿命の延長、及びロール交換の
ためのロス時間の短縮、能率の向上が強く求められてい
る。
In addition, good grindability of the roll is required from the viewpoint of shortening work time and improving efficiency in regrinding the roll, and improving wear resistance to extend the life of the roll and shorten the time lost for replacing the roll. , there is a strong need to improve efficiency.

このように、これらロールに対する要求が一段と強まシ
、かつロール原単価の低減、作業能率の向上を図るため
に、従来の冷間圧延用ロールの性能を一層向上させたロ
ール材の開発が強く要望されている。
As described above, the demand for these rolls has become even stronger, and in order to reduce the roll unit cost and improve work efficiency, there is a strong need to develop roll materials that further improve the performance of conventional cold rolling rolls. It is requested.

本発明は、上述した要望に応えるためになされたもので
、ロール性能に不可欠な耐摩耗性、耐研削性はもちろん
、スポーリング(クラック−剥離等に対する耐事故性を
向上させることを目的とした合金工具鋼を提供するもの
であって、これら合金工具鋼の圧延ロールに発生しゃす
い欠点を解決するため、化学組成としては、ダイス鋼と
高速度鋼の中間的組成を狙っておシ、その上最適な成分
バランスによって、熱処理硬さがf(RC64以上の高
硬度が得られ、耐摩耗性、耐疲労性、耐スポーリング性
、耐衝撃性等にすぐれた合金工具鋼で、しかも高価な合
金元素の添加も比較的少ないので冷間ロール材だけでな
く、その優れた特性を利用した他の用途、例えば冷開成
形用金型材やネジ転造ダイスなどにも効果を発揮できる
ものである。
The present invention was made in response to the above-mentioned demands, and aims to improve not only wear resistance and grinding resistance that are essential for roll performance, but also accident resistance against spalling (cracking, peeling, etc.). We provide alloy tool steels, and in order to solve the defects that tend to occur in rolling rolls of these alloy tool steels, we aim to have a chemical composition that is intermediate between die steel and high-speed steel. It is an alloy tool steel that has a heat treatment hardness of f (RC64 or higher) and has excellent wear resistance, fatigue resistance, spalling resistance, impact resistance, etc. due to the optimum composition balance, and is also expensive. Since the addition of alloying elements is relatively small, it is effective not only for cold roll materials, but also for other uses that take advantage of its excellent properties, such as cold-opening mold materials and thread rolling dies. .

以下、本発明による合金工具鋼の各成分及び含有範囲の
限定理由を詳細に説明する。
Hereinafter, the reasons for limiting the respective components and content ranges of the alloy tool steel according to the present invention will be explained in detail.

まず、本発明において、冷間ロール材に適用される合金
工具鋼としては、下記の特性が要求されている。
First, in the present invention, the following properties are required for the alloy tool steel applied to the cold roll material.

■ 工具鋼釜の焼入温度で高温焼戻しが可能であること ■ HRC62以上の焼戻硬度が得られること■ 優れ
た耐衝撃靭性と耐摩耗性、耐事故性を有すること ■ 研削性がよいこと ■ 経済性があること 以上の特性を具備したものとして、桟々の研究実験を行
なった結果、下記の合金工具鋼が開発された。
■ Must be capable of high-temperature tempering at the quenching temperature of a tool steel pot. ■ Must have a tempering hardness of HRC62 or higher. ■ Must have excellent impact toughness, wear resistance, and accident resistance. ■ Must have good grindability. ■ As a result of extensive research and experimentation, the following alloy tool steel was developed as having characteristics that go beyond being economical.

〔13重量比でC: 1.3〜2.0%、Si:1.0
・チ以下、Mn : 1.0%以下、Cr : 9.0
0〜l 3.00チ、Mo : 1.5〜3.0%、V
’:0.5〜2.1、残部Fe及び不純物からなる合金
工具鋼。
[13 Weight ratio: C: 1.3-2.0%, Si: 1.0
・Ti or less, Mn: 1.0% or less, Cr: 9.0
0~l 3.00chi, Mo: 1.5~3.0%, V
': 0.5 to 2.1, the balance being Fe and impurities. Alloy tool steel.

(II)重量比でc:i、a〜2.0%、Si:X、O
%以下、Mn:1.0%以下、Cr : 9.00〜1
3.00チ、Mo : 1.5〜3.0%、V : 0
.5〜2.0 % 、C。
(II) c:i, a~2.0% by weight, Si:X, O
% or less, Mn: 1.0% or less, Cr: 9.00-1
3.00chi, Mo: 1.5-3.0%, V: 0
.. 5-2.0%, C.

:0.8〜3.5%、残部Fe及び不純物からなる合金
工具鋼。
:0.8 to 3.5%, the balance being Fe and impurities.

ここで、上述した合金工具鋼の含有範囲は下記のように
なっている。
Here, the content range of the alloy tool steel mentioned above is as follows.

C:合金元素の中でも鉄鋼の諸性質に及ばす影きようが
大きい元素であシ、Cが適正に含有していれば、一部は
地質に溶けこみ、マルテンサイト組織を形成し、マトリ
ックスの硬さと強さを保持する。また、残シ大部分のC
は炭化物形成元素であるCrlMo、VなどとFeが加
わシ複炭°化物を形成して硬さと耐摩耗性を増大させる
働きがある。ここでC量が2.0チよシ多くなると、マ
トリックス中のC量や複炭化物量も多くなシ、硬さは向
上するが、脆性が増大する。従って、内部強度が不足し
、チッピングやスポーリングのような機械的摩耗の発生
が著しくなる。また、熱間加工もやや困難となシ、割れ
発生率が増大する。
C: Among all alloying elements, it is an element that has a large influence on the properties of steel.If C is properly contained, a portion of it will dissolve into the geology, form a martensitic structure, and strengthen the matrix. Retains hardness and strength. Also, most of the remaining C
CrlMo, V, etc., which are carbide-forming elements, and Fe are added to form a complex carbide, which has the effect of increasing hardness and wear resistance. Here, when the amount of C increases by 2.0 degrees, the amount of C and the amount of double carbide in the matrix also increase, and the hardness improves, but the brittleness increases. Therefore, the internal strength is insufficient, and mechanical wear such as chipping and spalling occurs significantly. In addition, hot working is also somewhat difficult and the incidence of cracking increases.

一方C量が1.3慢よシ少ないとマトリックスに固溶す
るC量も少なくなるため焼入れ性が悪くなシ、充分な熱
処理硬さが得られない。
On the other hand, if the C amount is less than 1.3, the amount of C dissolved in the matrix will also be small, resulting in poor hardenability and insufficient heat treatment hardness.

従って、耐摩耗性が不足することになシ、機械的摩耗は
著しく進むことになる。上述した理由″から本発明によ
る合金工具鋼のC量は1゜3〜2.0チに限定するのが
好ましい。
Therefore, not only is the wear resistance insufficient, but mechanical wear is also significantly accelerated. For the reasons mentioned above, it is preferable to limit the C content of the alloy tool steel according to the present invention to 1.3 to 2.0.

Si:Mnと同様脱酸作用があシ、鋼中ではすべて−v
)リツクス罠固溶して焼戻し抵抗性を増大させ、耐摩耗
性の向上に寄与する。しかし過剰添加すると脆くなり、
鍛造性を阻害し、靭性劣化をひき起すので、通常合金工
具鋼にほぼ近似した1、0%以下とする。
Si: Like Mn, it has a deoxidizing effect, and all -v in steel.
) Lix trap solid solution increases tempering resistance and contributes to improvement of wear resistance. However, if it is added in excess, it becomes brittle.
Since it inhibits forgeability and causes deterioration of toughness, it is usually set at 1.0% or less, which is almost similar to that of alloy tool steel.

Mn:脱酸剤として用いられるが過剰添加するとオース
テナイトを安定化し、その領域を拡大させ、残留オース
テナイト量が増大するため焼入硬さの低下につながるこ
とによシ逸常合金工具鋼にほぼ近似した1、0襲以下に
限定する。
Mn: Used as a deoxidizing agent, but when added in excess, it stabilizes austenite, expands its area, and increases the amount of retained austenite, leading to a decrease in hardening hardness, making it almost similar to ordinary alloy tool steel. Limited to 1 or 0 attacks or less.

Cr:マトリックス中にも炭化物中にも分布して存在し
ておシ、焼入温度の上昇によってマトリックスに多く固
溶する性質があシ、従ってマトリックス中のCrは炭化
物の固溶を高めることによって鋼に自硬性を与える焼入
深度を増大する効果が大きい。また、MOやVと複炭化
物をつ〈シ、この多量の炭化物の存在により高硬度と耐
摩耗性を増大している。
Cr: Exists in a distributed manner in both the matrix and the carbide, and tends to dissolve in solid solution in the matrix as the quenching temperature increases.Therefore, Cr in the matrix increases solid solution in the carbide. It has a great effect of increasing the quenching depth, which gives steel its self-hardening properties. Furthermore, MO, V, and multiple carbides are present, and the presence of a large amount of these carbides increases hardness and wear resistance.

しかるに、本発明による合金工具鋼のようにC量が多い
鋼種においてはCr量が9%よシ少なくなると高温度焼
戻しにおいて高硬度が得られなくなるとともに、耐摩耗
性の劣化をきたす。寸たCr量が13チ以上になると、
所定熱処理による自硬性が減退し、硬度水準の低下が大
きくなる結果、おのずから限界がある。従って上述した
理由から本発明による合金工具鋼のCr量は9.0−1
3.0%に限定してMOz鋼中ではC及びFeと化合し
て硬く微細な複炭化物を形成するため、自硬性が強く、
焼入性を増し、耐摩耗性を与える。また焼戻し軟化抵抗
や析出硬化にはCr以上の高い効果があシ、更に機械的
性質、殊に鋼の靭性に及ぼす効果は極めて太きい。しか
し熱処理後において未固溶の炭化物が多いと、耐摩耗性
には効果があるが、耐衝撃靭性は低下をきたすので、本
発明では焼入時の未固溶炭化物を出来るだけ少なくシ、
焼戻しで硬さを出すように炭化物形成元素を調整するこ
とが肝要である。
However, in steel types with a large amount of C, such as the alloy tool steel according to the present invention, if the amount of Cr is less than 9%, high hardness cannot be obtained in high temperature tempering, and wear resistance deteriorates. When the amount of Cr becomes 13 or more,
As a result of a predetermined heat treatment, the self-hardening property is reduced and the hardness level is significantly lowered, and as a result, there is a natural limit. Therefore, for the reasons mentioned above, the Cr content of the alloy tool steel according to the present invention is 9.0-1
When limited to 3.0%, it combines with C and Fe in MOz steel to form hard and fine double carbides, so it has strong self-hardening properties.
Increases hardenability and provides wear resistance. Further, it has a higher effect than Cr on temper softening resistance and precipitation hardening, and furthermore, it has an extremely large effect on mechanical properties, especially the toughness of steel. However, if there is a large amount of undissolved carbide after heat treatment, it is effective for wear resistance, but the impact toughness decreases.
It is important to adjust the carbide-forming elements so that hardness is achieved during tempering.

そこでMOl、5%以下では所定の硬度が得られず添加
の効果はなく、また3、0−以上では未固溶炭化物が多
くなる割には耐摩耗性への寄与が少ないものであシ、シ
かも経済的な面も考慮すれば、本発明による合金工具鋼
としてのMO量は゛1.5株〜3.0@%に限定するの
が好ましい。
Therefore, if MOI is less than 5%, the specified hardness cannot be obtained and the addition has no effect, and if it is more than 3,0-, there is a large amount of undissolved carbides, but the contribution to wear resistance is small. Considering the economic aspect as well, it is preferable that the amount of MO in the alloy tool steel according to the present invention is limited to 1.5% to 3.0%.

■:マ) IJラックス中び炭化物中に分布しているが
Cr、MO,1,υもマトリックスに固溶t、難く、主
として炭化物中に含まれる。このVはCとの親和力が大
きく、大部分のVはCとともに炭化物形成に作用し、M
O1W第1W物よシ更に硬く安定なV系炭化物を形成す
る。ちなみに、■の炭化物形成能力はTi、Nbに次い
て大きいとされ、v景は必然的にC量によって大きな制
限を受けることになる。また一部マトリックスに固溶し
たVは焼戻硬度、焼戻軟化抵抗を高める働きをする。こ
のV系炭化物は熱に強く、耐摩耗性を著しく向上させ、
しかも結晶粒の粗大化を抑制する作用も併せて有する強
力な炭化物である。従って本発明による合金工具鋼のよ
うにC量の高い鋼種においてFivが0.5チ以下では
期待できる効果が得られず、添加効果は薄いものでア)
、シかも2,0%以上になると研削性を著しく阻害する
ことになシ、熱間加工性も低下してし塘う。上述した理
由により、本発明による合金工具鋼のV量は0,5〜2
.0チに限定するのが好ましい。
■: M) Although Cr, MO, 1, and υ are distributed in the carbide in the IJ lux, they are difficult to solidly dissolve in the matrix and are mainly contained in the carbide. This V has a large affinity with C, and most of the V acts together with C to form carbides, and M
O1W forms a V-based carbide that is harder and more stable than the first W material. Incidentally, the carbide forming ability of (2) is said to be the second highest after Ti and Nb, and the v-shape is inevitably severely limited by the amount of C. Further, V partially dissolved in the matrix functions to increase tempering hardness and tempering softening resistance. This V-based carbide is resistant to heat and significantly improves wear resistance.
Furthermore, it is a strong carbide that also has the effect of suppressing the coarsening of crystal grains. Therefore, in a steel type with a high C content such as the alloy tool steel according to the present invention, if Fiv is less than 0.5 inches, the expected effect cannot be obtained, and the effect of addition is weak.
If the content exceeds 2.0%, the grindability will be significantly impaired and the hot workability will also deteriorate. For the reasons mentioned above, the V content of the alloy tool steel according to the present invention is 0.5 to 2.
.. It is preferable to limit it to 0.

Co : peとの親和性はよいが炭化物形成は、はと
んどなく、マトリックスにのみ固溶し、マルテンサイト
を強化することによシ焼戻軟化抵抗を増大させ、COを
含まないものに比してている。
Co: has good affinity with PE, but rarely forms carbides; it forms a solid solution only in the matrix, strengthens martensite, increases resistance to tempering softening, and does not contain CO. I'm comparing it.

つぎに、本発明による鋼と、従来一般に使用されている
比較鋼との実験による化学成分を第1表に示し、熱処理
条件と硬さ及び機械的性質は第2表に示す。
Next, Table 1 shows the experimental chemical composition of the steel according to the present invention and comparative steel commonly used in the past, and Table 2 shows the heat treatment conditions, hardness, and mechanical properties.

以下余白 〈第1表〉 (註ンA:本発明の第1の合金工具鋼 B:本発明の第2の合金工具鋼 F:高速度鋼 〈第2表〉 ここで、抗折力の測定は10ψX110mの抗折試験片
を作成し、支点間距離80111!、ポンチ先@5Rの
1点荷重でアムスラー万能試験機を用いて求めた。また
シャルピー衝撃値はI O$X 55ynwで10″、
深さ2mmのノツチの試験片を使用した。
The following margins <Table 1> (Note A: First alloy tool steel of the present invention B: Second alloy tool steel of the present invention F: High speed steel <Table 2> Here, measurement of transverse rupture strength A bending test piece of 10 ψ x 110 m was prepared, and the distance between the supporting points was 80111!, and it was determined using an Amsler universal testing machine with a single point load of the punch tip @ 5R.The Charpy impact value was 10'' at I O$X 55ynw,
A test piece with a notch having a depth of 2 mm was used.

第2表からも明らかなように、本発明鋼の抗折力、衝撃
値は、比較鋼よシ明らかに高い数値を示しておシ、耐靭
性においては優れた性能を持っていることが判る。
As is clear from Table 2, the transverse rupture strength and impact value of the steel of the present invention are clearly higher than those of the comparative steel, indicating that it has excellent performance in terms of toughness. .

また、第1図には本発明鋼の連続焼戻し硬さ曲線を示し
、第2図には西原式摩耗試験機による耐摩耗性の比較を
示しており、本発明鋼の焼入、焼戻し硬さは、冷間圧延
用ロールに必要な硬さであシ、かつ開発目標としたHR
C62以上の硬さをRC61に調質したものを使用し、
相手材として熱処理硬さHRC60の合金工具鋼5KD
IIを使用した。
In addition, Fig. 1 shows the continuous tempering hardness curve of the inventive steel, and Fig. 2 shows a comparison of wear resistance using a Nishihara type abrasion tester. is the hardness required for cold rolling rolls, and the HR that was the development target.
Using a hardness of C62 or higher that has been tempered to RC61,
Alloy tool steel 5KD with heat treatment hardness HRC60 as mating material
II was used.

なお、試験条件としては回転数80 Or、p、Bすベ
シ度01負荷応力170 kll/1rFrrX、潤滑
は通常の潤滑油を使用した。
The test conditions were a rotational speed of 80 Or, p, B degree of 01, load stress of 170 kll/1rFrrX, and normal lubricating oil was used for lubrication.

以上、詳細に説明したように、本発明による合金工具鋼
の耐摩耗性は、従来の比較鋼Fの高速度鋼に僅かに及ば
ないが、従来の冷間ダイス鋼(C。
As explained above in detail, the wear resistance of the alloy tool steel according to the present invention is slightly inferior to that of the conventional high-speed steel of comparison steel F, but it is slightly inferior to that of the conventional high-speed steel of comparative steel F.

D、E)よシはるかに良好である。D, E) are much better.

また、上述したように本発明における合金工具鋼の優れ
た特徴は、添加する合金元素の複合効果と成分74ラン
スによって得られるものであり、耐摩耗性と耐衝撃性を
も具備し、耐疲労性、耐事故性に極めて良好な性能を有
する合金工具鋼である。
In addition, as mentioned above, the excellent characteristics of the alloy tool steel of the present invention are obtained by the combined effect of the alloying elements added and the component 74 lance, and it also has wear resistance and impact resistance, and has excellent fatigue resistance. This alloy tool steel has extremely good performance in terms of durability and accident resistance.

さらに、本発明による第2の合金鋼は第1の合金鋼にC
Oを0.8〜3.5チ付加したものであるから、第1の
合金鋼よりも焼戻し硬さが大となシ、従って耐摩耗性も
一層向上することが確認されている等の効果を奏する。
Furthermore, the second alloy steel according to the present invention has C
Since it has 0.8 to 3.5 inches of O added to it, it has been confirmed that the tempering hardness is greater than that of the first alloy steel, and therefore the wear resistance is further improved. play.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による合金工具鋼の連続焼戻し硬さを示
す説明図、第2図は西原式摩耗試験機による耐摩耗性の
比較図である。
FIG. 1 is an explanatory diagram showing the continuous tempering hardness of the alloy tool steel according to the present invention, and FIG. 2 is a comparison diagram of the wear resistance measured by a Nishihara type wear tester.

Claims (1)

【特許請求の範囲】 (11重量比でC:1.3〜2.0%、si:i、o%
以下、Mn : 1.0%以下、Cr : 9.00〜
13.00%、MO: 1.5〜3.0%、V:0.5
〜2.0%、残部p’e及び不純物套かうなることを特
徴とする合金工具鋼。 (2)重量比でC:1.3〜2.0%、Si:1.0%
以下、Mn:1.0%以下、Cr : 9.00〜13
.00%、Mo : 1.5〜3,0チ、V:0.5〜
2.0%、Co:0.8〜3.5%、残部Fe及び不純
物妻からなることを特徴とする合金工具鋼。
[Claims] (11 weight ratio C: 1.3 to 2.0%, si: i, o%
Below, Mn: 1.0% or less, Cr: 9.00~
13.00%, MO: 1.5-3.0%, V: 0.5
-2.0%, balance p'e and impurities. (2) C: 1.3-2.0%, Si: 1.0% by weight
Below, Mn: 1.0% or less, Cr: 9.00-13
.. 00%, Mo: 1.5~3.0ch, V: 0.5~
2.0%, Co: 0.8 to 3.5%, the balance being Fe and impurities.
JP2103583A 1983-02-10 1983-02-10 Alloy tool steel Granted JPS59145763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2103583A JPS59145763A (en) 1983-02-10 1983-02-10 Alloy tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2103583A JPS59145763A (en) 1983-02-10 1983-02-10 Alloy tool steel

Publications (2)

Publication Number Publication Date
JPS59145763A true JPS59145763A (en) 1984-08-21
JPS6254858B2 JPS6254858B2 (en) 1987-11-17

Family

ID=12043703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2103583A Granted JPS59145763A (en) 1983-02-10 1983-02-10 Alloy tool steel

Country Status (1)

Country Link
JP (1) JPS59145763A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179762A (en) * 1983-03-30 1984-10-12 Daido Steel Co Ltd Cold tool steel
JPS6428344A (en) * 1987-07-24 1989-01-30 Dai Ichi High Frequency Co Ltd Roll for scale breaker
KR20160010930A (en) * 2014-07-21 2016-01-29 국민대학교산학협력단 (High wear-resistant cold work tool steels with enhanced impact toughness

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146316A (en) * 1975-06-11 1976-12-15 Hitachi Metals Ltd Tool steel for brazed cutter
JPS5290405A (en) * 1976-01-22 1977-07-29 Amsted Ind Inc Process of producing highhcarbon hard alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146316A (en) * 1975-06-11 1976-12-15 Hitachi Metals Ltd Tool steel for brazed cutter
JPS5290405A (en) * 1976-01-22 1977-07-29 Amsted Ind Inc Process of producing highhcarbon hard alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179762A (en) * 1983-03-30 1984-10-12 Daido Steel Co Ltd Cold tool steel
JPS6428344A (en) * 1987-07-24 1989-01-30 Dai Ichi High Frequency Co Ltd Roll for scale breaker
JPH0577741B2 (en) * 1987-07-24 1993-10-27 Daiichi Koshuha Kogyo Kk
KR20160010930A (en) * 2014-07-21 2016-01-29 국민대학교산학협력단 (High wear-resistant cold work tool steels with enhanced impact toughness

Also Published As

Publication number Publication date
JPS6254858B2 (en) 1987-11-17

Similar Documents

Publication Publication Date Title
JP2956324B2 (en) Bearing steel with excellent workability and rolling fatigue
JP2842579B2 (en) High strength spring steel with excellent fatigue strength
EP1156125A2 (en) Austenitic stainless steel excellent in fine blankability
JPS59179762A (en) Cold tool steel
WO2020203570A1 (en) Composite roll for rolling use made by centrifugal casting, and method for manufacturing same
EP1431409A1 (en) Free cutting alloy
JP2636816B2 (en) Alloy tool steel
JP2001026836A (en) Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength
JPH0555585B2 (en)
US7297214B2 (en) Free cutting alloy
JPH05163563A (en) High-speed steel for end mill
JPS59145763A (en) Alloy tool steel
EP0957182B1 (en) A martensitic heat resisting steel
JPS5925957A (en) High toughness chisel for breaker
JP2953304B2 (en) Roll outer tube material for continuous sheet casting machine
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
JP2900783B2 (en) Rolling intermediate roll with excellent fatigue strength
JP3064672B2 (en) High strength spring steel
JPH01208437A (en) High chrome-typed roll steel having improved grindability for rolling
JPS6121300B2 (en)
JP2655860B2 (en) Alloy steel and rolls for cold forming rolls
JP2553440B2 (en) Reinforcing roll material for rolling
Nakamura et al. Development of high fatigue strength free machining microalloyed steel for connecting rods
JPH101749A (en) Roll material for cold rolling
JPH07179988A (en) Hot tool steel excellent in high temperature strength