JPS59145740A - Treatment of zinc leached slag - Google Patents

Treatment of zinc leached slag

Info

Publication number
JPS59145740A
JPS59145740A JP58018568A JP1856883A JPS59145740A JP S59145740 A JPS59145740 A JP S59145740A JP 58018568 A JP58018568 A JP 58018568A JP 1856883 A JP1856883 A JP 1856883A JP S59145740 A JPS59145740 A JP S59145740A
Authority
JP
Japan
Prior art keywords
zinc
leaching slag
fluidized bed
furnace
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58018568A
Other languages
Japanese (ja)
Other versions
JPS6122011B2 (en
Inventor
Yuzo Yamamoto
雄三 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58018568A priority Critical patent/JPS59145740A/en
Publication of JPS59145740A publication Critical patent/JPS59145740A/en
Publication of JPS6122011B2 publication Critical patent/JPS6122011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To suppress the amt. of the by-product sulfuric acid and the waste slag to be produced and to perform selective sulfatization by adding solid fuel to zinc-leached slag, blowing the same into a fluidized roasting furnace, and introducing the gaseous mixture composed of the smelting waste gas contg. an adjusted amt. of SO2 and oxygen into the furnace. CONSTITUTION:Granular fuel and pyrite of 5-20wt% of zinc-leached slag are added to hydrous filter cake consisting of the zinc leached slag under agitation. The slurry thereof is ejected with high-pressure gas or the like into the fluidized bed of a fluidized roasting furnace. A gaseous mixture of smelting waste gas contg. SO2 and oxygen is introduced in the furnace to maintain the fluidized bed. The amt. of the solid fuel in this case is adjusted to the amt. enough to maintain 650-700 deg.C suitable for selective sulfation of Zn, Cu and Cd in the zinc-leached slag. The total amt. of oxygen in the gaseous mixture is so adjusted that the concn. of O2 in the waste gas from the fluidized furnace is made >=1 times of the concn. of the SO2 after oxygen is consumed for sulfation reaction and combustion. The valuable metal in the leached slag is converted efficiently to a water-soluble sulfate by the above-mentioned treatment.

Description

【発明の詳細な説明】 本発明は通常の亜鉛の湿式製錬において生ずる浸出滓(
以下、亜鉛浸出滓という)を硫酸化焙焼して亜鉛浸出滓
に含有された亜鉛、銅、カドミウム等の有価金属を水溶
性硫酸塩に変換せしめる処理法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the use of leaching slag (
The present invention relates to an improvement in a treatment method in which zinc leaching slag (hereinafter referred to as zinc leaching slag) is sulfated and roasted to convert valuable metals such as zinc, copper, and cadmium contained in zinc leaching slag into water-soluble sulfate.

通常の湿式亜鉛製錬では亜鉛精鉱を酸化焙焼して生成し
た酸化亜鉛を硫酸酸性溶液(通常は電解廃液)で浸出し
、亜鉛を電解採取するのである。
In normal wet zinc smelting, zinc concentrate is oxidized and roasted, and the zinc oxide produced is leached out with an acidic sulfuric acid solution (usually electrolytic waste), and zinc is electrowinning.

該焙焼の際、原料中の鉄分は亜鉛と結合して不溶性の亜
鉛フェライト(亜鉄酸亜鉛)を生成するので、いわゆる
亜鉛浸出滓中には15〜25係の亜鉛が含まれている。
During the roasting, iron in the raw material combines with zinc to form insoluble zinc ferrite (zinc ferrite), so the so-called zinc leaching slag contains 15 to 25 zinc.

この亜鉛を回収する方法の一つに高温高酸浸出法がある
。この方法では高温度で余剰硫酸によりフェライトを分
解溶出するので、亜鉛のみならず鉄分をも多量に溶出す
るので、亜鉛から鉄分の分離のため〈ジャロサイト、ゲ
ーサイト、又けへマタイト等鉄化合物の結晶を生成する
工程が必要である。
One method for recovering this zinc is high-temperature, high-acid leaching. In this method, ferrite is decomposed and eluted using excess sulfuric acid at high temperatures, and a large amount of iron as well as zinc is eluted. A step to generate crystals is required.

これに対し、硫酸化焙焼法(特許第537551号)は
亜鉛浸出滓中の亜鉛、銅、カドミウムを硫酸塩に愛鳥し
く以下、硫酸化という)、鉄の大部分は溶出することな
く、上記の有価金属のみを浸出する方法である。
On the other hand, the sulfation roasting method (Patent No. 537551) converts zinc, copper, and cadmium in the zinc leaching slag into sulfates (hereinafter referred to as sulfation), but most of the iron does not elute and the above This method leaches only valuable metals.

しかし、硫酸化焙焼の硫黄源及び熱源として亜鉛浸出滓
とほぼ等量の硫化鉄精鉱を使用するため、焙焼設備、硫
酸工場等が大型になり、多量の硫酸を副生じかつ廃滓の
生成量が多め等の問題を含んでbる。
However, since iron sulfide concentrate is used as the sulfur source and heat source for sulfuric roasting, which is approximately the same amount as the zinc leaching slag, the roasting equipment, sulfuric acid plant, etc. have to be large-sized, and large amounts of sulfuric acid are produced as by-products and the waste slag is This includes problems such as a large amount of

亜鉛浸出滓と濃硫酸とを混和し、次いで焙焼して亜鉛等
有価元素のみを選択的に硫酸化する方法も知られてbる
。この場合、浸出残渣の発生量は前記硫酸化焙焼法に比
して著しく減少するが、その反面加熱用熱源として、燃
料を必要とすること、又so、 、 so、等の硫黄化
合物を含む排ガスを生ずるので、これら硫黄化合物を除
害処理しなければならなめこと等の不利な点も多い。
A method is also known in which zinc leaching slag and concentrated sulfuric acid are mixed and then roasted to selectively sulfate only valuable elements such as zinc. In this case, the amount of leaching residue generated is significantly reduced compared to the sulfated roasting method, but on the other hand, it requires fuel as a heat source for heating, and it also contains sulfur compounds such as SO, SO, etc. Since exhaust gas is generated, these sulfur compounds have to be treated to eliminate them, which has many disadvantages.

本発明の目的は上記の従来法の欠点を解決し、亜鉛浸出
滓を流動炉においてso、を含む製錬排ガスを利用し、
かつ副生硫酸および廃滓の発生量の抑制を可能ならしめ
る亜鉛浸出滓の処理法を提供するにある。すなわち、本
発明によれば、亜鉄酸亜鉛の形態の亜鉛を含む亜鉛浸出
滓を選択的硫酸化焙焼し、該浸出滓中の亜鉛、銅、カド
ミウムをそれぞれ水溶性硫酸塩とする亜鉛浸出滓の処理
法において、該浸出滓からなる含水フィルターケーキに
粒状の固体燃料を添加し攪拌してスラリーとし、該スラ
リーを高圧空気又は高圧蒸気を介して流動焙焼炉の流動
層内部に吹き込み、go、を含む製錬排ガスと工業用酸
素の混合ガスを導入して該流動層を維持し、その際該固
体燃料の量は該流動焙焼炉の温度を、該浸出滓中の亜鉛
、銅、カドミウムの選択的硫酸化に適した温度の650
〜7000Cの範囲に維持するに必要かつ充分であるよ
うに調節するとともに該混合ガス中の総酸素量は該固体
燃料の燃焼に消費された後、該流動炉の排ガス中の酸素
濃度がSOtg度の少なくとも1倍以上であることを特
徴とする亜鉛浸出滓の処理法、が得られる。
The purpose of the present invention is to solve the above-mentioned drawbacks of the conventional method, to process zinc leaching slag in a fluidized fluidized furnace, using smelting exhaust gas containing
Another object of the present invention is to provide a method for treating zinc leaching slag that makes it possible to suppress the amount of by-product sulfuric acid and waste slag. That is, according to the present invention, zinc leaching slag containing zinc in the form of zinc ferrite is selectively sulfated and roasted to convert zinc, copper, and cadmium in the leaching slag into water-soluble sulfates. In the sludge processing method, granular solid fuel is added to the water-containing filter cake made of the leaching slag and stirred to form a slurry, and the slurry is blown into the fluidized bed of a fluidized roasting furnace via high-pressure air or high-pressure steam, The fluidized bed is maintained by introducing a mixed gas of smelting exhaust gas and industrial oxygen containing go, and the amount of the solid fuel controls the temperature of the fluidized torrefaction furnace and the zinc and copper in the leaching slag. , 650 at a temperature suitable for selective sulfation of cadmium.
After the total amount of oxygen in the mixed gas is consumed in the combustion of the solid fuel, the oxygen concentration in the exhaust gas of the fluidized bed furnace reaches SOtg degree. There is obtained a method for treating zinc leaching slag, characterized in that the zinc leaching slag is at least one time or more.

次に、本発明な図面によって説明する。Next, the present invention will be explained with reference to drawings.

第1図は本発明方法の1実施例のフロートシート図であ
る。一般に、湿式亜鉛製錬工程内において、亜鉛浸出滓
は充分に洗浄した後濾過され、水分25〜4(lを含む
フィルターケーキとして得られる。この程度の含水率で
あれば、該浸出滓に対して、10〜20係の固体副原料
を混合しても攪拌すればスラリー化することができる。
FIG. 1 is a float sheet diagram of one embodiment of the method of the present invention. Generally, in the wet zinc smelting process, the zinc leaching slag is thoroughly washed and filtered to obtain a filter cake containing 25 to 4 (l) of moisture. Even if 10 to 20 parts of solid auxiliary raw materials are mixed, it can be made into a slurry by stirring.

このように、スラリー状態で原料を供給できる流動焙焼
法では、フィルターケーキの乾燥用の予備処理工程が不
要になるという利点がある。添加する副原料として、固
体燃料、亜鉛、鋼、カドミウムの回収対象となる有価金
属の硫酸化率を向上させる助剤としての硫酸ナトリウム
、炭酸ナトリウム又は水酸化ナトリウム等のナトリウム
塩類がある。
As described above, the fluidized roasting method, which allows raw materials to be supplied in a slurry state, has the advantage of eliminating the need for a pretreatment step for drying the filter cake. As auxiliary raw materials to be added, sodium salts such as sodium sulfate, sodium carbonate, or sodium hydroxide are used as auxiliary agents to improve the sulfation rate of valuable metals to be recovered from solid fuel, zinc, steel, and cadmium.

固体燃料の添加量については後述するが、ナトリウム塩
の添加量は亜鉛浸出滓に対して0.1〜1.0重tチで
ある。このようにして得られたスラリーは流動焙焼炉の
流動層のレベルに取付けたフィードガンを通じて高圧空
気又は高圧蒸気により、流動層内に噴霧して供給される
。このように、スラリーを高圧空気−!たは高圧蒸気で
噴霧することにより、スラリーは流動層内に分散し、急
速に水分を蒸発させかつ昇温させるので、流動層の部分
的な温度低下や部分的な流動不良を防止することができ
る。また、該スラリー噴霧により、原料である亜鉛浸出
滓は比較的粒径の大なる二次粒子を形成するので、流動
層内で一部分は微細な一次粒子に分解されるが、キャリ
ーオーバーとなるものの大部分は流動層に留まり、亜鉛
等の硫酸化に必要な滞留時間を確保することができる。
The amount of the solid fuel added will be described later, but the amount of the sodium salt added is 0.1 to 1.0 weight t based on the zinc leaching slag. The slurry thus obtained is atomized and fed into the fluidized bed by high pressure air or high pressure steam through a feed gun installed at the level of the fluidized bed of the fluidized torrefaction furnace. In this way, the slurry is mixed with high pressure air! By spraying with high-pressure steam or spraying, the slurry is dispersed within the fluidized bed, rapidly evaporating water, and raising the temperature, which prevents partial temperature drop and partial fluidization failure in the fluidized bed. can. In addition, due to the slurry spraying, the zinc leaching slag, which is the raw material, forms secondary particles with a relatively large particle size, so some of them are decomposed into fine primary particles in the fluidized bed, but there is carryover. Most of it remains in the fluidized bed, ensuring the residence time necessary for sulfation of zinc and the like.

カルサインは一部キヤリーオーバーとなって排ガスとと
もに炉外に排出され、また一部はオーバーフロー排出口
°より抜き出される。
A portion of the calcine becomes a carryover and is discharged outside the furnace together with the exhaust gas, and a portion is extracted from the overflow outlet.

流動焙焼炉には、また流動層を維持し、かつ亜鉛等の硫
酸化に必要なSOlを生成するため、SO2を含む製錬
排ガスと工業用酸素からなる混合ガスを供給する。亜鉛
精鉱は通常流動焙焼炉で酸化焙焼し、焙焼炉排ガスは約
350°Cに冷却後、ホットコットレルで除塵してから
硫酸工場に送られるので、これを分岐して利用すること
ができる。゛すなわち、排ガスの組成はSO28〜l 
Ovol qi)、0゜3〜5 vol %であるが、
燃料の燃焼用酸素を確保し且つ亜鉛浸出滓の流酸化に充
分な′SO8分圧が得られるような酸素濃度を保持する
ため、工業用酸素を混合して用いる。流動層における硫
酸化反応は次式で辰わされる。
The fluidized roasting furnace is also supplied with a mixed gas consisting of smelting exhaust gas containing SO2 and industrial oxygen in order to maintain the fluidized bed and generate SO1 necessary for sulfating zinc and the like. Zinc concentrate is normally oxidized and roasted in a fluidized roasting furnace, and the exhaust gas from the roasting furnace is cooled to approximately 350°C, dusted with a hot cotterel, and then sent to a sulfuric acid factory, so it can be used separately. I can do it.゛In other words, the composition of the exhaust gas is SO28~l
Ovol qi), 0°3-5 vol%,
In order to secure oxygen for fuel combustion and to maintain an oxygen concentration such that a sufficient 'SO8 partial pressure is obtained for flow oxidation of the zinc leaching slag, industrial oxygen is used as a mixture. The sulfation reaction in the fluidized bed is accomplished by the following equation.

Fe、 03 ZnO@Fe、03+SO,’−+ znso、 +F
e、O,@@@@ f2)CuO”F6203 +so
、 −+ cuso、 + F6203 ””  (3
)CdO@Fe2O3+SO3→Cd50.+Fe、0
s−6@6 T41流動層の温度は鉄の酸化を防止する
ためには600°C以上が良く、銅及び亜鉛の硫酸化率
の高いのは650〜700°Cである。第2図は焙焼温
度と銅、亜鉛の硫酸化率の関係を示す実験データである
Fe, 03 ZnO@Fe, 03+SO,'-+ znso, +F
e, O, @@@@ f2) CuO"F6203 +so
, −+ cuso, + F6203 ”” (3
) CdO@Fe2O3+SO3→Cd50. +Fe, 0
The temperature of the s-6@6 T41 fluidized bed is preferably 600°C or higher to prevent oxidation of iron, and a temperature of 650 to 700°C provides a high sulfation rate of copper and zinc. Figure 2 shows experimental data showing the relationship between roasting temperature and the sulfation rate of copper and zinc.

流動層の温度を維持するために、亜鉛浸出滓に固体燃料
、たとえば粉炭または粉コークスを添加する。燃料の消
費量をできるだけ抑制し、排カス量の増加を防止するた
めに、燃焼に必要な酸素は、    空気でなく、高濃
度の工業用酸素を使用する。工業用酸素は前記SO,を
含む夷錬排ガスと混合して流動炉のウィンドボックスに
供給する(以下、吹込みガスとl/>5)。流動層内に
おけるSOlの生成および固体燃料の燃焼によって秋込
みガス中の遊離酸素が消費される。そこで、炉内におけ
る酸素分圧を高めるためには過剰の工業用酸素を添加す
ることが有効である。
In order to maintain the temperature of the fluidized bed, a solid fuel, such as pulverized coal or coke, is added to the zinc leaching slag. In order to suppress fuel consumption as much as possible and prevent an increase in the amount of waste gas, highly concentrated industrial oxygen is used instead of air for the oxygen required for combustion. Industrial oxygen is mixed with the SO-containing waste gas and supplied to the wind box of the fluidized bed furnace (hereinafter referred to as blowing gas). Free oxygen in the fall gas is consumed by the generation of SOI and combustion of solid fuel in the fluidized bed. Therefore, in order to increase the oxygen partial pressure in the furnace, it is effective to add excess industrial oxygen.

カルサインは一部キヤリーオーバーとして炉外に排出さ
れ、クーラー、ホットコットレル等で捕集され、また一
部はオーバーフローとして流動層から直接抜出される。
A portion of the calcine is discharged outside the furnace as a carryover and collected in a cooler, hot cotterel, etc., and a portion is directly extracted from the fluidized bed as an overflow.

これらは合わせて浸出工程に送られ、製錬工程内におけ
る洗浄水(以下、工程水という〕で、亜鉛、カドミウム
、銅等を浸出回収する。浸出滓(以下、廃滓という)の
主成分はヘマタイトであるが、亜鉛精鉱中の銀が濃縮さ
れているので浮遊選鉱により銀精鉱として回収し、尾鉱
は廃棄される。
These are sent together to the leaching process, where zinc, cadmium, copper, etc. are leached and recovered using the washing water (hereinafter referred to as process water) in the smelting process.The main components of the leaching slag (hereinafter referred to as slag) are Although it is hematite, the silver in the zinc concentrate is concentrated, so it is recovered as silver concentrate through flotation, and the tailings are discarded.

流動焙焼炉排ガスは除塵してから、主系統の酸化焙焼炉
排ガスと共に硫酸工場に送られる。炉出口におけるガス
組成は吹込みガスの組成、燃料消費量によって変るが、
S03約1%、So、3〜6チ、0,4〜8チ(乾ガス
基準)であり、硫酸原料に適している。また、第1図に
示すごとく、硫酸化焙焼炉への吹込みガスは硫酸工場に
送るべき製錬排ガスの一部を分岐して利用したものであ
るから”、排ガスの発生量は硫酸化m現を行なわない場
合とはとんと変らない。従って、硫酸工場容量も、覚醒
化焙焼を行なわない場合とほとんど変らない。硫酸化溶
焼に使用する製ei排ガス中のSO3の一部は硫酸根と
なり、亜鉛及び銅と結合して固定されるので硫酸工場に
おける硫酸の生成蓋はそれだけ減少する。
After removing dust from the fluidized torrefaction furnace exhaust gas, it is sent to the sulfuric acid factory together with the main oxidation roaster exhaust gas. The gas composition at the furnace outlet varies depending on the composition of the blown gas and fuel consumption.
The S03 content is about 1%, the So content is 3-6%, and the content is 0.4-8% (based on dry gas), making it suitable for sulfuric acid raw materials. In addition, as shown in Figure 1, the gas blown into the sulfation roasting furnace is a branched part of the smelting exhaust gas that should be sent to the sulfuric acid factory. There is no difference in the sulfuric acid plant capacity compared to the case where the oxidation roasting is not carried out.Therefore, the capacity of the sulfuric acid plant is also almost the same as the case where the awakening roasting is not carried out. Since it forms roots and binds and fixes zinc and copper, the amount of sulfuric acid produced at the sulfuric acid factory is reduced accordingly.

本発明方法において、さらに亜鉛浸出滓の5〜20重景
係のパイライトを添加し、該パイライトの(2)化に必
要な量の酸素を含む工業用酸素を前記吹込、みガスに追
加することにより、流動層内におけるso、、5度を高
め、硫酸化反応を促進することもできる。
In the method of the present invention, 5 to 20 layers of pyrite is further added to the zinc leaching slag, and industrial oxygen containing the amount of oxygen necessary for converting the pyrite to (2) is added to the blown gas. Therefore, it is possible to increase the temperature in the fluidized bed and promote the sulfation reaction.

前出の特許第537551号におけるパイライト必要量
は亜鉛浸出滓に対して約100重量係であるが、本発明
方゛法では・流動層の温度制御は別に燃料を用いて行な
うので、本発明方法におけるパイライトの添加量は亜鉛
浸出滓中の亜鉛。
The required amount of pyrite in the above-mentioned patent No. 537551 is about 100 parts by weight for the zinc leaching slag, but in the method of the present invention, the temperature control of the fluidized bed is separately performed using fuel, so the method of the present invention The amount of pyrite added in is the amount of zinc in the zinc leaching slag.

銅およびカドミウムの硫酸化に必要なS02の一部また
は全量を供給し且つ炉排ガスのS02濃度を若干高める
に必要な量を限度として決められるので極めて僅かであ
る。
The amount is extremely small because it is determined to be the amount necessary to supply part or all of the amount of S02 required for the sulfation of copper and cadmium and to slightly increase the S02 concentration of the furnace exhaust gas.

パイライトの酸化のために必要な酸素は工業用酸素によ
って供給するので、パイライトの酸化によって生成する
ガスは、SOlが大部分と工業用酸素中の不純物として
の少量のN、ガスのみである。ちなみに、0,92%の
工業用酸素を用いた場合の生成ガスは5O290チ、N
210係程度である。
Since the oxygen necessary for the oxidation of pyrite is supplied by industrial oxygen, the gases produced by the oxidation of pyrite are mostly SO1 and only a small amount of N and gas as impurities in the industrial oxygen. By the way, when using 0.92% industrial oxygen, the gas produced is 5O290, N
It is about 210 people.

これらの802ガスは反応(1)〜(4)によって硫酸
根として固定されるから、排ガス量の増加はN。
Since these 802 gases are fixed as sulfate radicals through reactions (1) to (4), the increase in exhaust gas amount is due to N.

分のみであり、僅かである。It is only a minute, and it is small.

更に、流動層内では亜鉛、銅、カドミウムの硫酸化反応
によって固定され−ないS03が相当量生成される。6
50〜700’CにおけるSO,のSO3への理論転化
率は40〜50チであるが、硫酸化焙焼炉における転化
率はこれよりはかなり低く、硫酸化焙滉炉排ガス中には
SO3が1%前後含まれている。
Furthermore, in the fluidized bed, a considerable amount of unfixed S03 is produced by the sulfation reaction of zinc, copper, and cadmium. 6
The theoretical conversion rate of SO to SO3 at 50 to 700'C is 40 to 50 degrees, but the conversion rate in the sulfation roaster is much lower than this, and SO3 is present in the sulfation roaster exhaust gas. It contains around 1%.

このような遊離SO1は排ガスの洗浄塔で除去され、排
水中和工場に送られる。従って、上述したごとき基準で
パイライトの量を制御する限り、パイライトの使用によ
る硫酸化焙焼炉排ガスの増加は無視し得る程度に少ない
。この上うに、パイライトを添加すれば、上記説明に示
すごとく排ガス量を増加させることなく、SO2の供給
量を増すことができるので、反応系内におけるSO,清
度な高め、硫酸化反応を促進し、能率を向上させること
ができる。
Such free SO1 is removed in an exhaust gas scrubbing tower and sent to a wastewater neutralization plant. Therefore, as long as the amount of pyrite is controlled according to the criteria described above, the increase in sulfation roasting furnace exhaust gas due to the use of pyrite is negligible. In addition, by adding pyrite, it is possible to increase the amount of SO2 supplied without increasing the amount of exhaust gas as shown in the above explanation, increasing SO and purity in the reaction system and promoting the sulfation reaction. and improve efficiency.

本発明方法の実施にあたっては、亜鉛浸出滓の一部、1
0〜20%程度を0.1〜3mm、gに造粒して流動層
vc直接供給することにより、流動層の安定化を計るこ
ともできる。きわめて粒子の細かい原料を流動層で反応
させる場合、流動層を安定させるために、粒径の比較的
大きな補助装入物の一部はカルサインとともに炉外に排
され、カルサイン中に混入してくるので、浸出以降の工
程に影響を及ぼさないものでなければならない。このよ
うな観点から、原料そのものを造粒して用いるのが最も
適している。
In carrying out the method of the present invention, a portion of the zinc leaching slag, 1
It is also possible to stabilize the fluidized bed by granulating approximately 0 to 20% to a size of 0.1 to 3 mm and g and directly supplying it to the fluidized bed VC. When extremely fine-grained raw materials are reacted in a fluidized bed, in order to stabilize the fluidized bed, some of the auxiliary charge with relatively large particle sizes is discharged from the furnace together with the calcine, and is mixed into the calcine. Therefore, it must be something that does not affect the processes after leaching. From this point of view, it is most suitable to use the raw material itself after granulating it.

本発明の効果は次の通りである。The effects of the present invention are as follows.

(1)ハイライトを使用しないか、また使用してもわず
かであるので副生硫酸や廃滓の発生量が著しく抑制され
る。
(1) Since highlight is not used or only a small amount is used, the amount of by-product sulfuric acid and waste slag generated is significantly suppressed.

(2)安価な固体燃料を用いるため、流動層の温度維持
のためのエネルギーコストはわずかですみ、一方従来法
に比して流動層の小型化により処理する総ガス敗が著し
く減少するため総エネルギー消費を低減で永る。
(2) Since cheap solid fuel is used, the energy cost for maintaining the temperature of the fluidized bed is small, and on the other hand, the total gas loss to be processed is significantly reduced due to the miniaturization of the fluidized bed compared to conventional methods. Longer life by reducing energy consumption.

(3)  流動層関連設備および排ガス処理設備が小型
化するため、総合設備費が低減される。
(3) Overall equipment costs are reduced because fluidized bed-related equipment and exhaust gas treatment equipment are downsized.

次に、本発明を実施例によってさらに具体的に説明する
が、本発明はその要旨を越えない限り以下の実施例によ
って制限されろものではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 直径4m(内寸)の流動炉を使用し、炉内温度は予め6
80°Cに昇温し、乾燥した亜鉛浸出滓をベッドとして
、第1表に示す組成の亜鉛浸出滓フィルターケーキ(水
分28係)に乾を基準で90kp / Tの粉炭(発熱
1−6500 km/kA’)を混合してスラリーとし
、これを2本のフィードガンから流動炉に供給した。同
時に、5027チ、0,6.5チ、水分15チの酸化焙
焼炉排ガス4500 Nm”/4及び0.9296の工
業用酸素37ONm”/時をウィンドボックスに供給し
、流動層を維持し淘スラリーの供給tは乾葉基準で亜鉛
浸出滓換算2.5 Tz4である。流動層の温度は65
0〜680’Cで維持された。流動層の高さは約2.5
mで、装入物の平均滞留時間は約14時間である。オー
バーフロー及びキャリーオーバーを合せてカルサインと
した。
Example 1 A fluidized fluidized furnace with a diameter of 4 m (inner dimension) was used, and the temperature inside the furnace was set to 6 m in advance.
The temperature was raised to 80°C, and the dried zinc leaching slag was used as a bed, and the zinc leaching slag filter cake (moisture 28 parts) having the composition shown in Table 1 was coated with powdered coal of 90 kp/T on a dry basis (heat generation 1-6500 km). /kA') was mixed to form a slurry, which was supplied to the fluidized bed furnace through two feed guns. At the same time, 4500 Nm"/4 of oxidizing roaster exhaust gas with 5027 cm, 0.6.5 cm, and 15 cm moisture and 37 ONm"/hour of industrial oxygen with 0.9296 cm were supplied to the wind box to maintain the fluidized bed. The supply t of the removal slurry is 2.5 Tz4 in terms of zinc leaching slag on a dry leaf basis. The temperature of the fluidized bed is 65
It was maintained at 0-680'C. The height of the fluidized bed is approximately 2.5
m, the average residence time of the charge is approximately 14 hours. The overflow and carryover were combined into the calsign.

主要成分の分析例を第1表に示す。硫酸化@廃炉排ガス
はSO□+80.3.5係、0,3.5%で洗浄塔で除
塵してから、硫酸工場に送った。ガス量は乾量換算で約
530ONm37時である。カルサインは工程水で浸出
した。廃滓の分析例を第1表に示す。浸出率はZn85
%、Cd 85%、Cu80%である。
Table 1 shows an example of analysis of the main components. The sulfurized @ decommissioned reactor exhaust gas was treated with SO□ + 80.3.5%, 0.3.5%, to remove dust in a cleaning tower, and then sent to the sulfuric acid factory. The amount of gas is approximately 530 ONm37 hours in terms of dry amount. Calcine was leached out in the process water. An example of analysis of tailings is shown in Table 1. Leaching rate is Zn85
%, Cd 85%, Cu 80%.

第1表 実施例2 第2表に示す組成の亜鉛浸出滓フィルターケーキ(水分
35係)に乾量基準で5.8係の粉炭(発熱量6500
 kcaL/kP)及び20%のパイライトを添加して
スラリーとした。粉炭は水分20係、パイライトは水分
10係でスラリー濃度は69係(水分31チ)である。
Table 1 Example 2 Zinc leaching slag filter cake with the composition shown in Table 2 (moisture 35 parts) was mixed with powdered coal of 5.8 parts dry weight (calorific value 6500 parts).
kcaL/kP) and 20% pyrite were added to form a slurry. Powdered coal has a moisture content of 20 parts, pyrite has a moisture content of 10 parts, and the slurry concentration is 69 parts (moisture content 31 parts).

前記流動炉に硫酸工場乾燥塔出口ガス(So、8.15
%、 028.0 % ) 4000 Nm”/R,。
The sulfuric acid factory drying tower outlet gas (So, 8.15
%, 028.0%) 4000 Nm”/R,.

0□92%の工業用酸素130ONms/時の混合ガス
をウィンドボックスに供給しつつ、スラリーを2本のガ
ンで亜鉛浸出滓乾量基準で5.2T/時で供給した。こ
の時、パイライトの供給量は1.0T4゜石炭は0.3
T/?jである。
While supplying a mixed gas of 0□92% industrial oxygen at 130 ONms/hour to the wind box, the slurry was supplied by two guns at a rate of 5.2 T/hour based on the dry weight of the zinc leaching slag. At this time, the amount of pyrite supplied is 1.0T4°, and the amount of coal is 0.3
T/? It is j.

亜鉛浸出滓の硫酸化に必要なS02の量の計算値は次の
通りである。但し、硫酸化率はFeは2.5係5、Zn
、Cdは90%、pb、cuは1(10%とした。
The calculated amount of S02 required for sulfation of zinc leaching slag is as follows. However, the sulfation rate is 2.5 for Fe and 5 for Zn.
, Cd was 90%, and pb and cu were 1 (10%).

cuso4の生成   3.9  Nm3SOz /T
ZnSO4〃60.7    〃 Cd S 04   ”     0.3    //
Fev (804) t ”     3.7    
ttPbSO4〃8.1   〃 Ca S 04   “    6.0〃亜鉛浸出滓よ
り生成 −31,5// 合計  51.2 Nm”SO,/、pのAgを宮んで
おり、浮遊選鉱によって欽稍鉱として回収する巳とがで
きる。
Generation of cuso4 3.9 Nm3SOz /T
ZnSO4〃60.7〃CdS04” 0.3 //
Fev (804) t” 3.7
ttPbSO4〃8.1〃Ca S 04 " 6.0〃Produced from zinc leaching slag -31,5// Total 51.2 Nm"SO,/, contains p Ag, and is converted into pyrite by flotation. You can collect the snake.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のフローシート図、第2図は
鋼、亜鉛の硫酸化率と温度の関係を示すグラフ図である
。 特許出願人 三菱金属株式会社 代 理 人   白   川  義   直$/m 泥仁 550   600  6らQ    ’IQO750
遍攻・Q /
FIG. 1 is a flow sheet diagram of an embodiment of the present invention, and FIG. 2 is a graph diagram showing the relationship between the sulfation rate and temperature of steel and zinc. Patent applicant Mitsubishi Metals Co., Ltd. Representative Yoshi Shirakawa $/m Dorojin 550 600 6raQ 'IQO750
Wandering attack/Q/

Claims (3)

【特許請求の範囲】[Claims] (1)亜鉄酸亜鉛の形態の亜鉛を含む亜鉛浸出滓を選択
的硫酸化焙焼し、該浸出滓中の亜鉛、銅、カドミウムを
それぞれ水溶性硫酸塩とする亜鉛浸出滓の処理法におい
て、該浸出滓からなる含水フィルターケーキに粒状の固
体燃料を添加し攪拌してスラリーとし、該スラリーを高
圧空気又は高圧蒸気を介して流動焙焼炉の流動層内に吹
き込み、SO。 を含む製錬排ガスと工業用酸素の混合ガスを導入して該
硫動層を維持し、その際該固体燃料の量は該流動焙焼炉
の温度を該浸出滓中の亜鉛、銅、カドミウムの選択的硫
酸化に適した温度の650〜700’Cの範囲に維持す
るに必要かつ充分であるように調節するとともに該混合
ガス中の総酸素量は硫酸化反応および該固体燃料の燃焼
に消費された後、該流動炉の排ガス中00.濃度がS0
2濃度の少な(とも1倍以上であることを特徴とする亜
鉛浸出滓の処理法。
(1) A method for treating zinc leaching slag in which zinc leaching slag containing zinc in the form of zinc ferrite is selectively sulfated and roasted, and zinc, copper, and cadmium in the leaching slag are each converted into water-soluble sulfates. , granular solid fuel is added to the water-containing filter cake consisting of the leaching slag and stirred to form a slurry, and the slurry is blown into a fluidized bed of a fluidized roasting furnace via high pressure air or high pressure steam to produce SO. The sulfur layer is maintained by introducing a mixture of smelting exhaust gas and industrial oxygen containing The total amount of oxygen in the mixed gas is adjusted to be necessary and sufficient to maintain the temperature in the range of 650 to 700'C, which is suitable for the selective sulfation of the solid fuel, and the total amount of oxygen in the mixed gas is After being consumed, 0.00. concentration is S0
2. A method for treating zinc leaching slag characterized by having low concentrations (both of which are 1 times or more).
(2)  亜鉄酸亜鉛の形態の亜鉛を含む亜鉛浸出滓を
選択的硫酸化焙焼し、該浸出滓中の亜鉛、銅、カドミウ
ムをそれぞれ水溶性硫酸塩とする亜鉛浸出滓の処理法に
おいて、該浸出滓からなる含水フィルターケーキに粒状
の固体燃料と該亜鉛浸出滓の5〜20重量幅のパイライ
トとを添加し、攪拌してスラリーとし、該スラリーを高
圧空気又は高圧蒸気を介して流動炉の流動層内に吹き込
み、S02を含む製錬排ガスと工業用酸素の混合ガスを
導入して該流動層を維持し、その際該固体燃料の量は該
流動焙焼炉の温度を該浸出滓中の亜鉛、銅、カドミウム
の選択的硫酸化及び該パイライトの酸化に適した650
〜700°Cの温度範囲を維持するに必要かつ充分であ
るように調節するとともに該混合ガス中の総酸素量は硫
酸化反応並びに該固体燃料の燃焼及び該パイライトの酸
化に消費された後、該流動炉の排ガス中のO1譲度がs
02濃度の少なくとも1倍以上であることを特徴とする
亜鉛浸出滓の処理法。
(2) In a method for treating zinc leaching slag, in which zinc leaching slag containing zinc in the form of zinc ferrite is selectively sulfated and roasted, and zinc, copper, and cadmium in the leaching slag are converted into water-soluble sulfates, respectively. , Add granular solid fuel and 5 to 20 weight range of pyrite from the zinc leaching slag to a water-containing filter cake made of the leaching slag, stirring to form a slurry, and fluidizing the slurry through high-pressure air or high-pressure steam. A mixed gas of smelting exhaust gas containing S02 and industrial oxygen is blown into the fluidized bed of the furnace to maintain the fluidized bed, and the amount of the solid fuel is adjusted to the temperature of the fluidized torrefaction furnace to maintain the fluidized bed. 650 suitable for selective sulfation of zinc, copper, and cadmium in the slag and oxidation of the pyrite
After the total amount of oxygen in the gas mixture has been consumed in the sulfation reaction and the combustion of the solid fuel and the oxidation of the pyrite, the temperature is adjusted to be necessary and sufficient to maintain a temperature range of ~700°C. The O1 yield in the exhaust gas of the fluidized bed furnace is s
1. A method for treating zinc leaching slag, characterized in that the concentration is at least one times that of 02.
(3)  前記亜鉛浸出滓の10〜20重量%を0,1
〜3mmy5に造粒して該流動層に装入する特許請求の
範囲f1)または(2)に記載された亜鉛浸出滓の処理
法。
(3) 10 to 20% by weight of the zinc leaching slag is 0.1
The method for treating zinc leaching slag according to claim f1) or (2), wherein the granules are granulated to a size of ~3 mmy5 and charged into the fluidized bed.
JP58018568A 1983-02-07 1983-02-07 Treatment of zinc leached slag Granted JPS59145740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58018568A JPS59145740A (en) 1983-02-07 1983-02-07 Treatment of zinc leached slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58018568A JPS59145740A (en) 1983-02-07 1983-02-07 Treatment of zinc leached slag

Publications (2)

Publication Number Publication Date
JPS59145740A true JPS59145740A (en) 1984-08-21
JPS6122011B2 JPS6122011B2 (en) 1986-05-29

Family

ID=11975225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58018568A Granted JPS59145740A (en) 1983-02-07 1983-02-07 Treatment of zinc leached slag

Country Status (1)

Country Link
JP (1) JPS59145740A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228435A (en) * 1986-03-31 1987-10-07 Mitsubishi Metal Corp Method and apparatus for sulfating and roasting tailing produced by zinc leaching
EP0741192A1 (en) * 1995-05-05 1996-11-06 Metallgesellschaft Ag Method for working up zinc and iron oxide bearing residual material
JP2016533431A (en) * 2013-10-02 2016-10-27 オウトテック (フィンランド) オサケ ユキチュアOutotec (Finland) Oy Method for removing arsenic and / or antimony from smoke
CN108893609A (en) * 2018-06-14 2018-11-27 青海华信环保科技有限公司 A method of recycling copper cadmium zinc from copper-cadmium slag obtained by zinc hydrometallurgy
CN109161688A (en) * 2018-09-13 2019-01-08 白银有色集团股份有限公司 A method of recycling copper, cadmium from copper-cadmium slag
CN109517996A (en) * 2019-01-07 2019-03-26 合肥工业大学 A kind of technique that auxiliary agent strengthens iron in acid-hatching of young eggs extraction pyrite cinder
CN114606400A (en) * 2022-01-28 2022-06-10 云锡文山锌铟冶炼有限公司 Method for treating arsenic-zinc-containing leaching residues of high-iron
CN114622098A (en) * 2022-03-18 2022-06-14 广西科技师范学院 Method for recovering high-purity cadmium from copper-cadmium-zinc slag
CN115261622A (en) * 2022-03-18 2022-11-01 广西科技师范学院 Method for recovering high-purity zinc sulfate from copper-cadmium-zinc slag

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228435A (en) * 1986-03-31 1987-10-07 Mitsubishi Metal Corp Method and apparatus for sulfating and roasting tailing produced by zinc leaching
EP0741192A1 (en) * 1995-05-05 1996-11-06 Metallgesellschaft Ag Method for working up zinc and iron oxide bearing residual material
JP2016533431A (en) * 2013-10-02 2016-10-27 オウトテック (フィンランド) オサケ ユキチュアOutotec (Finland) Oy Method for removing arsenic and / or antimony from smoke
US10081848B2 (en) 2013-10-02 2018-09-25 Outotec (Finland) Oy Method and plant for removing arsenic and/or antimony from flue dusts
CN108893609A (en) * 2018-06-14 2018-11-27 青海华信环保科技有限公司 A method of recycling copper cadmium zinc from copper-cadmium slag obtained by zinc hydrometallurgy
CN109161688A (en) * 2018-09-13 2019-01-08 白银有色集团股份有限公司 A method of recycling copper, cadmium from copper-cadmium slag
CN109517996A (en) * 2019-01-07 2019-03-26 合肥工业大学 A kind of technique that auxiliary agent strengthens iron in acid-hatching of young eggs extraction pyrite cinder
CN109517996B (en) * 2019-01-07 2020-08-07 合肥工业大学 Process for extracting iron in sulfuric acid cinder by aid of enhanced acid leaching method
CN114606400A (en) * 2022-01-28 2022-06-10 云锡文山锌铟冶炼有限公司 Method for treating arsenic-zinc-containing leaching residues of high-iron
CN114606400B (en) * 2022-01-28 2023-09-22 云锡文山锌铟冶炼有限公司 Treatment method of high-iron arsenic-zinc-containing leaching residues
CN114622098A (en) * 2022-03-18 2022-06-14 广西科技师范学院 Method for recovering high-purity cadmium from copper-cadmium-zinc slag
CN115261622A (en) * 2022-03-18 2022-11-01 广西科技师范学院 Method for recovering high-purity zinc sulfate from copper-cadmium-zinc slag
CN115261622B (en) * 2022-03-18 2023-11-07 广西科技师范学院 Method for recovering high-purity zinc sulfate from copper-cadmium-zinc slag
CN114622098B (en) * 2022-03-18 2023-11-07 广西科技师范学院 Method for recycling high-purity cadmium from copper-cadmium-zinc slag

Also Published As

Publication number Publication date
JPS6122011B2 (en) 1986-05-29

Similar Documents

Publication Publication Date Title
US4619814A (en) Process for the recovery of non-ferrous metals from sulphide ores and concentrates
US3984312A (en) Process for insolubilizing potentially water pollutable wastes from sodium or ammonium type sulfur dioxide air pollution control systems
US3053651A (en) Treatment of sulfide minerals
FI61522C (en) FOERFARANDE FOER UTVINNING AV ICKE-JAERNMETALLER UR SULFIDMATERIAL
JPS6124329B2 (en)
JPS59145740A (en) Treatment of zinc leached slag
CN109576497A (en) A kind of method that the closed cycle of zinc smelting factory waste residue utilizes
CN109534387A (en) A kind of method that zinc sulfite is oxidized to zinc sulfate
CN101403041A (en) Method for removing arsenic sulphur elements in golden ore concentrate hard to treat
AU747980B2 (en) Melt and melt coating sulphation process
JP3945216B2 (en) Waste acid gypsum manufacturing method
CN110129551A (en) The method for preparing high-grade zinc oxide and feed grade zinc oxide simultaneously using rotary kiln
Hodge Wastes problems of the iron and steel industries
JPS63494B2 (en)
CN115066390B (en) Method for producing copper metal from copper concentrate without producing waste
CN113136488B (en) Wet treatment process for iron vitriol slag in zinc hydrometallurgy
US2435340A (en) Process for the treatment of marmatitic zinc ores
US3803288A (en) Recovery of sulfur and iron oxide from pyritic materials
JPS6040500B2 (en) Metal recovery method
WO1982001381A1 (en) A method for the chlorinating refinement of iron raw materials
US3514281A (en) Production of pyrite and/or sulfuric acid as by-product of copper smelting process
KR930006088B1 (en) Hydrometallurgical recovery of metals and elemental sulphur from metallic sulphides
JPS58161734A (en) Production of metal lead from sulfide rich ore
JPS6117771B2 (en)
CA1182274A (en) Recovery of magnesium sulfate from a solution of a mixture of magnesium sulfate and transition metal sulfates