JPS6117771B2 - - Google Patents

Info

Publication number
JPS6117771B2
JPS6117771B2 JP3217782A JP3217782A JPS6117771B2 JP S6117771 B2 JPS6117771 B2 JP S6117771B2 JP 3217782 A JP3217782 A JP 3217782A JP 3217782 A JP3217782 A JP 3217782A JP S6117771 B2 JPS6117771 B2 JP S6117771B2
Authority
JP
Japan
Prior art keywords
sulfur
vanadium
slag
item
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3217782A
Other languages
Japanese (ja)
Other versions
JPS58151328A (en
Inventor
Ei Ii Uirukomirusukii Igooru
Ei Rurasuki Antonio
Regetsuza Andoresu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUNIBAASHIITEI OBU KONSEPUSHON ZA
Original Assignee
YUNIBAASHIITEI OBU KONSEPUSHON ZA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUNIBAASHIITEI OBU KONSEPUSHON ZA filed Critical YUNIBAASHIITEI OBU KONSEPUSHON ZA
Priority to JP3217782A priority Critical patent/JPS58151328A/en
Publication of JPS58151328A publication Critical patent/JPS58151328A/en
Publication of JPS6117771B2 publication Critical patent/JPS6117771B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳现な説明】 本発明はや金スラグのような、バナゞりムを含
有する物質からバナゞりムの採取に関するもので
あり、詳现には、塩基性酞玠転炉で生じるスラグ
のような、鋌鉄粟錬工皋で生じる石灰分の倚いス
ラグの凊理に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the extraction of vanadium from materials containing vanadium, such as gold slag, and in particular from steel refining processes, such as slag produced in basic oxygen converters. This relates to the treatment of lime-rich slag produced in

本発明の方法は、埮粉末にしたスラグを硫黄又
は硫黄含有物質ず共に、流動床反応噚又は他の適
切な反応噚䞭で、空気又は酞玠の濃い空気で、
550℃から850℃たでの枩床で焌成し、䞔぀埗られ
る焌成物を垌硫酞溶液で浞出しお、バナゞりム有
䟡物を溶解するこずによ぀お行う。バナゞりムは
濃厚な溶液から沈柱、溶剀抜出、又は他の任意の
適切な、あるいは通垞の方法で採取するこずがで
きる。
The process of the present invention comprises combining pulverized slag with sulfur or sulfur-containing substances in a fluidized bed reactor or other suitable reactor in air or oxygen-enriched air.
This is carried out by firing at a temperature of 550°C to 850°C, and leaching the resulting fired product with a dilute sulfuric acid solution to dissolve vanadium valuables. Vanadium can be recovered from concentrated solution by precipitation, solvent extraction, or any other suitable or conventional method.

バナゞりムの重芁な䟛絊源の䞀぀は、や金スラ
グであり、詳现には、倧郚分のバナゞりムが耇雑
なスピネル・タむプの構造䜓を構成しお䞉䟡の状
態にな぀おいる、鋌鉄粟錬で生じるスラグであ
る。鋌鉄の粟錬に䜿甚する方法のいかんによ぀
お、スラグの含有する遊離石灰の量は䞀定しない
こずがある。塩基性酞玠転炉で生じるスラグは通
垞、CaOを45未満含有し、これがスラグからバ
ナゞりム有䟡物を抜出するのに䜿甚する珟行の方
法では、かなりの量の反応䜓を消費する。
One of the important sources of vanadium is gold slag and, in particular, steel smelting, where most of the vanadium forms complex spinel-type structures and is in the trivalent state. This is the slag produced. Depending on the method used to smelt steel, the amount of free lime contained in the slag may vary. The slag produced in basic oxygen converters typically contains less than 45% CaO, and the current methods used to extract vanadium values from the slag consume significant amounts of reactants.

や金スラグからバナゞりム有䟡物を採取するた
めに、倚数の方法が提案され、䞔぀䜿甚された。
や金スラグからのバナゞりム抜出に関する代衚的
な特蚱出願の䟋はペヌタヌスPeters〔米囜特
蚱第3929460号明现曞、1975幎12月30日〕、又はバ
ヌり゚ルBurwell〔米囜特蚱第3206277号明现
曞、1965幎月14日〕によるものであり、これら
ではスラグを炭酞ナトリりム又はアルカリ塩ず共
に反応噚䞭で酞玠の存圚で600℃から800℃たでの
枩床に加熱し、次に焌成物にアルカリ性浞出操䜜
を行い、続いおバナゞりムを採取するこずから成
る方法を開瀺しおいる。
A number of methods have been proposed and used to extract vanadium valuables from gold slag.
Typical patent applications relating to extraction of vanadium from gold slag include Peters (U.S. Pat. No. 3,929,460, December 30, 1975) or Burwell (U.S. Pat. No. 3,206,277) , September 14, 1965], in which the slag is heated with sodium carbonate or an alkali salt in a reactor in the presence of oxygen to a temperature of 600°C to 800°C, and then the calcined product is subjected to alkaline leaching. A method is disclosed comprising performing an operation and subsequently harvesting vanadium.

倚くの人々の提案による他の方法はヒルドレス
Hildreth〔米囜特蚱第3227545号明现曞、1966
幎月日〕が開瀺しおおり、この方法は埮粉末
にした焌成物を塩玠ガス又は塩酞ガス䞭で1000℃
で塩玠化し、次に遞択凝瞮しお塩化バナゞりムを
塩化鉄から分離し、次に塩化バナゞりムを粟補す
るこずから成぀おいる。
Another method suggested by many people is Hildreth [U.S. Pat. No. 3,227,545, 1966]
[January 4, 2016], and this method involves heating the fired product in chlorine gas or hydrochloric acid gas at 1000°C.
chlorination, followed by selective condensation to separate vanadium chloride from iron chloride, and then purification of vanadium chloride.

それでもやはり䜿甚する反応䜓はどれもスラグ
を必芁な枩床たで加熱するのに必芁な゚ネルギヌ
を発生しないので、これらの方法は党郚゚ネルギ
ヌを倧量に消費する。その䞊、塩基性酞玠転炉で
生じるスラグのように、スラグに石灰が倚い堎合
には反応䜓の消費量が倚く、䞔぀バナゞりムの採
取率は䜎いこずがありうる。ヒルドレスの開瀺し
た方法のように、若干の方法ぱネルギヌ消費量
が倚いうえに、高枩の塩玠又は塩酞を䜿甚するた
めに非垞に腐食性である。
Nevertheless, all of these methods are energy intensive since none of the reactants used generate the energy necessary to heat the slag to the required temperature. Moreover, if the slag is lime-rich, such as the slag produced in basic oxygen converters, the consumption of reactants may be high and the vanadium recovery rate may be low. Some methods, such as the method disclosed by Hildreth, are energy intensive and highly corrosive due to the use of hot chlorine or hydrochloric acid.

や金スラグ又は類䌌物からバナゞりム有䟡物を
採取する本明现曞に蚘茉の方法には珟圚実斜䞭の
方法よりも優れた䞋蚘の利点がある。
The method described herein for extracting vanadium values from gold slag or the like has the following advantages over currently practiced methods:

(a) 実際に䜿甚䞭の焌成方法党郚の゚ネルギヌを
倚量に消費する焌成工皋で必芁な゚ネルギヌ党
郚をスラグず䞀緒に焌成する硫黄又は硫黄含有
物質の酞化熱で䟛絊するので、゚ネルギヌの必
芁量はず぀ず少ない。
(a) Firing method in actual use All the energy required in the sintering process, which consumes a large amount of energy, is supplied by the oxidation heat of sulfur or sulfur-containing substances that are sintered together with the slag, so the amount of energy required is There are fewer and fewer.

(b) 本発明の方法で䞻ずしお䜿甚する反応䜓のコ
ストは䜎く、䞔぀゚ネルギヌ消費量が少ないた
めに、本発明の方法による補造の総括コストは
珟圚䜿甚䞭の他の方法よりも䜎い。
(b) Owing to the low cost and low energy consumption of the reactants primarily used in the process of the invention, the overall cost of production by the process of the invention is lower than other processes currently in use.

(c) 本発明の方法の党工皋では通垞の技法を䜿甚
しおいるので、この方法を珟存斜蚭に適甚する
か、又はこの方法に改造するのは容易である。
(c) All steps of the method of the invention use conventional techniques, so that it is easy to apply or retrofit existing facilities.

(d) 流出物は呚知の技法で合理的なコストで凊理
するこずができ、䞔぀腐食性は珟行のほずんど
の方法よりも少ない。
(d) The effluent can be treated by well-known techniques at reasonable cost and is less corrosive than most current methods.

本発明の方法は基本的に䞋蚘の数工皋から成぀
おいる。
The method of the present invention basically consists of the following several steps.

(a) スラグ又はバナゞりム含有物質及び硫黄又は
硫黄含有物質を粉砕しお適圓な粒床にする。
(a) Grinding slag or vanadium-containing materials and sulfur or sulfur-containing materials to the appropriate particle size;

(b) これらの物質の劥圓な量を適切な反応噚䞭に
連続的に仕蟌む。
(b) Continuously charging reasonable amounts of these substances into a suitable reactor.

(c) 反応噚䞭のスラグ又はバナゞりム含有物質及
び硫黄又は硫黄含有物質を所望の枩床で所望の
反応時間の間焌成する。
(c) Calcining the slag or vanadium-containing material and the sulfur or sulfur-containing material in the reactor at the desired temperature and for the desired reaction time.

(d) 焌成物を反応噚から連続的に取り出す。(d) Continuously remove the fired product from the reactor.

(e) 焌成物を硫酞溶液で浞出する。(e) Leaching the fired product with a sulfuric acid solution.

(f) 浞出工皋から出るパルプを固―液分離する。(f) Solid-liquid separation of pulp from the leaching process.

(g) 任意の適切な方法でバナゞりムを液から採
取する。
(g) extracting vanadium from the liquid by any suitable method;

次に本発明の方法の工皋を曎に詳现に説明す
る。
Next, the steps of the method of the present invention will be explained in more detail.

(a) や金スラグ又はバナゞりム含有物質、及び硫
黄又は硫黄含有物質の粉砕。
(a) grinding of gold slag or vanadium-containing substances, and sulfur or sulfur-containing substances;

反応噚に仕蟌もうずするスラグ又はバナゞり
ム含有物質、及び硫黄又は硫黄含有物質を劥圓
な粒床たで粉砕お、通垞は米囜材料詊隓協䌚芏
栌で−10メツシナ100から−325メツシナ100
たでにするが、−100メツシナ100が適切で
あるこずを芋い出した。
The slag or vanadium-containing material to be charged to the reactor and the sulfur or sulfur-containing material are ground to a reasonable particle size, usually from -10 mesh 100% to -325 mesh 100 according to American Society for Testing and Materials standards.
%, but I found that -100 mesh 100% is appropriate.

曎に郜合のよいこずには、これらの物質は䞀
緒にしお粉砕するこずも、あるいは別個に粉砕
するこずもできる。それは、どちらの方法を䜿
甚しおも、や金の結果には差がないからであ
る。
More conveniently, these materials can be milled together or separately. This is because there is no difference in the yield results no matter which method is used.

スラグ䞭の石灰を硫酞化しお硫酞カルシりム
を生成させれば、粒子䞊に厚い局を圢成する傟
向があ぀お、総括的な硫酞化を䜎䞋させ、埓぀
お浞出工皋でバナゞりムを遊離させるためのス
ピネルの分解を䜎䞋させる。この䜜甚は粒子が
倧きいずきには曎に顕著になるので、バナゞり
ムの抜出率を高くするためにはスラグ又はバナ
ゞりム含有物質をある皋床埮粉末にするこずが
必芁である。
Sulfating the lime in the slag to form calcium sulfate tends to form a thick layer on the particles, reducing the overall sulfation and thus the spinel to liberate vanadium during the leaching process. decreases the decomposition of This effect becomes more pronounced when the particles are large, so in order to increase the extraction rate of vanadium, it is necessary to pulverize the slag or vanadium-containing material to some extent.

(b) これらの物質の反応噚ぞの仕蟌み。(b) Charge these substances to the reactor.

前項に蚘茉した物質は混和しお又は別々に、
䞔぀也燥しお、又は過埌のケヌキのたた、あ
るいは盎接摩砕機から出おきたスラリヌのたた
のどの圢態ででも、連続的に、又はバツチで反
応噚に仕蟌むこずができる。仕蟌み方法及び圢
態のどれを䜿甚しおも、や金の結果には実質的
な盞違がないこずを芋い出した。
The substances listed in the preceding paragraph may be mixed or separately,
It can then be fed to the reactor either continuously or in batches, either dry, as a cake after filtration, or as a slurry directly coming out of the attritor. It has been found that there is no substantial difference in the yield results regardless of the preparation method and format used.

反応噚内の熱収支ず物質収支ずを同時に満足
させるために、スラグ又はバナゞりム含有物質
䞭に存圚するカルシりム、マグネシりム、及び
マンガンを党郚硫酞化し、䞔぀所望の枩床で反
応を維持するのに十分な硫黄があるような方法
で、硫黄又は硫黄含有物質に察するスラグ又は
バナゞりム含有物質の比率を調敎する。䞻ずし
お、䜿甚する物質䞭の硫黄の含有濃床、及びス
ラグ又はバナゞりム含有物質䞭の遊離石灰の含
有濃床に基づいお、スラグ察硫黄、あるいはバ
ナゞりム含有物質察硫黄含有物質の比率に関す
るこの比率は通垞からたで倉動す
る。
In order to satisfy the heat balance and mass balance in the reactor at the same time, sufficient calcium, magnesium, and manganese present in the slag or vanadium-containing material are sulfated and to maintain the reaction at the desired temperature. The ratio of slag or vanadium-containing material to sulfur or sulfur-containing material is adjusted in such a way that sulfur is present. Primarily based on the concentration of sulfur in the material used and the concentration of free lime in the slag or vanadium-containing material, this ratio for the ratio of slag to sulfur or vanadium-containing material to sulfur-containing material is usually 5: It varies from 1 to 1:3.

(c) 物質の焌成。(c) Firing of the substance.

項(a)に蚘茉した物質は流動床反応噚のような
適切な反応噚䞭で、スラグ又はバナゞりム含有
物質、及び硫黄又は硫黄含有物質を酞化するの
に必芁な化孊量論量よりもから200たで
過剰の酞玠を甚いお、550℃から850℃たでの枩
床で、30分から12時間たでの反応時間の間、焌
成する。䜿甚する焌成ガスは空気又は酞玠の濃
い空気でよい。
The substances listed in paragraph (a) may be used in a suitable reactor, such as a fluidized bed reactor, in an amount of 0% less than the stoichiometric amount required to oxidize slag or vanadium-containing substances, and sulfur or sulfur-containing substances. Calcinate with an excess of oxygen up to 200% at a temperature of 550°C to 850°C for a reaction time of 30 minutes to 12 hours. The firing gas used may be air or oxygen-enriched air.

仕蟌み原料は也燥したもの又はスラリヌ状の
もののどちらを䜿甚しおも、次の浞出工皋で80
以䞊のバナゞりム抜出率を達成するには、70
過剰の空気を䜿甚しお、焌成枩床750℃、平
均反応時間時間が適圓であるこずを芋い出し
た。
Whether dry or slurry raw materials are used, the next leaching process will yield 80%
To achieve a vanadium extraction rate of over 70%
A calcination temperature of 750° C. and an average reaction time of 3 hours were found to be suitable using a % excess of air.

硫酞化反応は、硫黄又は硫黄含有物質を添加
する代りに、倖郚の任意の䟛絊源で補造した二
酞化硫黄又は䞉酞化硫黄、あるいは䞡者の混和
物を䜿甚し、このガス空気又は他のガスず混合
しお反応噚に吹き蟌むこずによ぀お行い、スラ
グ又はバナゞりム含有物質を硫酞化するこずも
できる。この堎合には、硫酞化しようずする物
質を所望の枩床に維持するために、他の熱源を
反応噚に䟛絊しなければならない。
The sulfation reaction uses sulfur dioxide or sulfur trioxide, or a mixture of both, produced from any external source, and mixes this gas with air or other gases, instead of adding sulfur or sulfur-containing substances. The slag or vanadium-containing material can also be sulphated by blowing it into the reactor. In this case, another source of heat must be supplied to the reactor in order to maintain the material to be sulfated at the desired temperature.

スラグず混和した硫黄又は硫黄含有物質を䜿
甚しおも、あるいは反応噚の倖郚で元玠硫黄を
燃焌させお生じた二酞化硫黄又は䞉酞化硫黄を
反応噚に吹き蟌んでも、どちらの堎合でもや金
の結果は同様である。
Whether sulfur or sulfur-containing materials are used mixed with the slag, or sulfur dioxide or sulfur trioxide produced by combustion of elemental sulfur outside the reactor is blown into the reactor, the result is gold or gold. are similar.

しかしながら、黄鉄鉱粟鉱又は他の金属硫化
物のような硫黄含有物質、あるいは元玠硫黄を
䜿甚すれば、反応噚に熱を党く远加しなくお
も、反応を所望の枩床に維持するのに必芁な熱
をすべお䟛絊できるずいう利点が曎に远加され
るこずを芋い出した。
However, the use of sulfur-containing materials such as pyrite concentrate or other metal sulfides, or elemental sulfur, allows the reaction to maintain the desired temperature without adding any heat to the reactor. It has been found that there is an additional advantage of being able to supply all the heat.

(d) 焌成物の反応噚からの取り出し。(d) Removal of the fired product from the reactor.

反応噚䞭で生じた焌成物は連続又はバツチの
どちらででも盎接浞出容噚䞭に取り出しお、バ
ナゞりム有䟡物を溶解するこずができ、あるい
は浞出する前に適圓な焌成物冷华噚䞭で冷华す
るこずもできる。焌成物を盎接浞出タンク䞭に
取り出す堎合には、それの含熱量のために、浞
出はより高枩で行われお、バナゞりム抜出率を
わずかに高くするこずができる。
The calcined product produced in the reactor can be removed either continuously or in batches directly into a leaching vessel to dissolve the vanadium values, or it can be cooled in a suitable calcined product cooler before leaching. You can also do it. If the calcined product is removed directly into the leaching tank, due to its heat content, the leaching can be carried out at a higher temperature to give a slightly higher vanadium extraction rate.

(e) 焌成物の浞出。(e) Leaching of fired products.

焌成物は、冷えおいおも、盎接反応噚から出
た熱いたたのどちらでも、かき混ぜおいる容噚
䞭で10/から100/たでの硫酞で30分か
ら10時間たでの間浞出する。それでもやはり焌
成物の含有するバナゞりム有䟡物の80以䞊の
抜出率を達成し、䞔぀仕蟌み物の含有する鉄及
びカルシりムを実質的に党郚赀鉄鉱及びセツコ
りの圢態にしお固圢残留物䞭に残すためには硫
酾50/ず時間ずで十分であるこずを芋い
出した。
The calcined material, either cold or still hot directly from the reactor, is leached with 10 g/- to 100 g/- sulfuric acid for 30 minutes to 10 hours in a stirring vessel. Nevertheless, in order to achieve an extraction rate of 80% or more of the vanadium valuables contained in the fired product, and to leave substantially all of the iron and calcium contained in the charged product in the form of hematite and snails in the solid residue. It has been found that 50g/2 hours of sulfuric acid is sufficient for this purpose.

(f) 固―液分離。(f) Solid-liquid separation.

焌成物を浞出しお埗られるパルプは、濃瞮し
おから濃瞮噚の排出物を過するか、あるいは
盎接過するかのどちらの方法ででも分離する
こずができる。どちらの方法が適切かは、浞出
しお埗られるパルプの過速床だけで決たる。
The pulp obtained by leaching the calcined product can be separated either by concentrating it and passing it through the concentrator effluent, or by passing it directly. Which method is suitable depends only on the overspeed of the pulp obtained by leaching.

(g) 浞出溶液からのバナゞりム採取。(g) Vanadium extraction from leach solution.

溶液䞭のバナゞりムは任意の適切な方法で、
䟋えば沈柱させお䞃バナゞりム酞ナトリりム、
すなわち「レツド・ケヌキ」、Na2H2V6O17の圢
態にしお採取するこずができる。
Vanadium in solution can be dissolved in any suitable manner by
For example, precipitated sodium heptavanadate,
That is, it can be collected in the form of "red cake", Na 2 H 2 V 6 O 17 .

レツド・ケヌキの沈殿は固―液分離埌に、也
燥又は溶融のどちらかで「颚也air dried」
品䜍、又は「溶融fused」品䜍ずいう工業品
䜍のレツド・ケヌキを埗るこずができる。
After solid-liquid separation, the precipitate of the let cake is "air dried" either by drying or by melting.
It is possible to obtain an industrial grade red cake of grade or "fused" grade.

浞出溶液からバナゞりムを採取する他の方法
は溶剀抜出によるものである。この方匏では玔
床のよい生成物を埗るこずができる。抜出剀は
第四玚アミン又は適切な溶剀であ぀およく、こ
れからバナゞりム酞アンモニりムのようなバナ
ゞりム塩を沈殿させるこずができる。この生成
物を600℃から800℃たでの枩床で焌成すれば、
玔床の高い五酞化バナゞりム生成物を埗る。
Another method of extracting vanadium from leach solutions is by solvent extraction. In this method, a product with good purity can be obtained. The extractant may be a quaternary amine or a suitable solvent from which vanadium salts such as ammonium vanadate can be precipitated. If this product is calcined at a temperature of 600℃ to 800℃,
A highly pure vanadium pentoxide product is obtained.

それでもやはり、これらの方法は液からバ
ナゞりムを採取するのに適甚するこずのできる
皮々の方法のうちの単なる䟋である。
Nevertheless, these methods are only examples of the various methods that can be applied to extract vanadium from liquids.

䞋蚘は本明现曞に蚘茉した条件で詊隓した物質
の実斜䟋である。
Below are examples of materials tested under the conditions described herein.

実斜䟋  塩基性酞玠転炉で生成した䞋蚘の組成 V.V2O5ずしお 6.5重量 Fe 15.0重量 Mn.MnOずしお 3.3重量 P.P2O5ずしお 3.1重量 Si.SiO2ずしお 11.1重量 Mg.MgOずしお 3.8重量 Ca.CaOずしお 42.1重量 を有する鋌鉄粟錬スラグを粉砕しお、米囜材料詊
隓協䌚芏栌で−150メツシナ100にし、䞔぀䞋蚘
の組成、 Fe.FeS2ずしお 74.0重量 Si.SiO2ずしお 19.3重量 を有する、米囜材料詊隓協䌚芏栌で−200メツシ
ナ100の黄鉄鉱浮遞粟鉱ず混和した。スラグ及
び黄鉄鉱粟鉱はスラグ黄鉄鉱2/1の割合で混
和し、也燥しお、化孊量論量よりも70過剰の空
気を甚い、750℃で運転しおいる流動床反応噚䞭
に連続的に仕蟌んだ。反応噚の内郚での平均反応
時間は時間であり、䞔぀仕蟌み速床は日圓り
炉床m2圓り7.5メヌトル・トンであ぀た。反応
噚から排出する焌成物を宀枩たで冷华し、䞔぀硫
酞の45/溶液で、固圢物30で時間浞出し
た。パルプは曎に過し、䞔぀ケヌキは氎掗し
た。液ず掗浄ずを混和しお、バナゞりムを24.2
/含有し、䞔぀バナゞりムの82を溶解抜出
した溶液を埗た。この溶液は又鉄を1.2/、マ
ンガンを0.6/及び、も぀ず少量の他の䞍玔物
を含有しおいた。
Example 1 The following composition produced in a basic oxygen converter VV 2 O 5 6.5% by weight Fe 15.0% Mn.MnO 3.3% by weight PP 2 O 5 3.1% by weight Si.SiO 2 11.1% by weight Mg A steel smelting slag containing 3.8% by weight as MgO and 42.1% by weight as Ca.CaO is ground to 100% -150 mesh according to American Society for Testing and Materials standards, and has the following composition: 74.0% by weight as Fe.FeS 2 -200 mesh 100% pyrite flotation concentrate with American Society for Testing and Materials specifications having 19.3% by weight as SiO 2 . The slag and pyrite concentrate are mixed in a 2/1 ratio of slag/pyrite, dried and placed in a fluidized bed reactor operating at 750°C with a 70% excess of air over the stoichiometric amount. Continuously prepared. The average reaction time inside the reactor was 4 hours and the charging rate was 7.5 metric tons per square meter of hearth per day. The calcined product discharged from the reactor was cooled to room temperature and leached with 45 g/solution of sulfuric acid at 30% solids for 3 hours. The pulp was further strained and the cake was washed with water. Mix the solution and washing to add 24.2% vanadium.
A solution was obtained in which 82% of vanadium was dissolved and extracted. The solution also contained 1.2 g/m iron, 0.6 g/m manganese, and small amounts of other impurities.

液は曎に化孊量論量の次亜塩玠酞ナトリりム
で酞化しお䞉䟡のバナゞりムを五䟡の状態にし、
Na2SO4を30/、NaCを60/添加し、PH
で、90℃で時間加熱しお䞃バナゞりム酞ナト
リりムを沈殿させた。沈殿埌、溶液を過し、䞔
぀生成したレツド・ケヌキを颚也した。也燥した
ケヌキはV2O595.5及びFe0.15を含有しおい
る。沈殿効率は91であり、䞔぀スラグからレツ
ド・ケヌキぞのバナゞりムの総括採取率は74.6
であ぀た。
The solution is further oxidized with a stoichiometric amount of sodium hypochlorite to convert trivalent vanadium into a pentavalent state.
Add 30g/Na 2 SO 4 and 60g/NaC, adjust pH
In step 2, sodium heptavanadate was precipitated by heating at 90°C for 8 hours. After precipitation, the solution was filtered and the resulting red cake was air-dried. The dried cake contains 95.5% V 2 O 5 and 0.15% Fe. The precipitation efficiency is 91%, and the overall recovery rate of vanadium from slag to reed cake is 74.6%.
It was hot.

実斜䟋  もう䞀぀実斜䟋では、鋌鉄粟錬過皋で生じた䞋
蚘の組成、 V.V2O5ずしお 4.6重量 Fe 13.8重量 Mn・MnOずしお 2.9重量 P.P2O5ずしお 3.8重量 Mg・MgOずしお 13.2重量 Ca・CaOずしお 46.1重量 を有するバナゞりム含有スラグを粉砕しお、米囜
材料詊隓協䌚芏栌で−150メツシナ100にし、䞔
぀米囜材料詊隓協䌚芏栌で−100メツシナ100
の、元玠硫黄62.0重量、SiO223.3重量及び他
の䞍掻性物質少量を含有する硫黄粟鉱ず混和し
た。スラグ硫黄粟鉱3/1の比率でスラグを混
和し、䞔぀日圓り、反応噚の炉床面積m2圓
り、10メヌトル・トンの速床で流動床反応噚䞭に
連続的に仕蟌んで、平均反応時間3.5時間の間750
℃で反応させた。
Example 2 In another example, the following composition generated in the steel refining process, 4.6% by weight as VV 2 O 5 Fe 13.8% by weight as Mn/MnO 2.9% by weight as PP 2 O 5 3.8% by weight as Mg/MgO A vanadium-containing slag having a content of 13.2% by weight as Ca and 46.1% by weight as CaO is ground to -150 mesh 100% according to the American Society for Testing and Materials standards, and -100 mesh 100% according to the American Society for Testing and Materials standards.
of sulfur concentrate containing 62.0% by weight of elemental sulfur, 23.3% by weight of SiO 2 and small amounts of other inert materials. Mixing slag in a ratio of slag/sulfur concentrate = 3/1 and continuously charging it into a fluidized bed reactor at a rate of 10 metric tons per square meter of hearth area of the reactor per day, 750 for an average reaction time of 3.5 hours
The reaction was carried out at ℃.

反応噚から取り出した焌成物を宀枩たで冷华
し、䞔぀固圢物30で、H2SO4の45/溶液で
浞出した。埗られたパルプを曎に過し、ケヌキ
を氎掗した。過ず掗液ずを混合しお、バナゞり
ムの抜出率が79で、バナゞりム27.7/、鉄
0.9/、マンガン0.8/、及び䜎濃床の他の
䞍玔物を含有する溶液を埗た。
The calcined product removed from the reactor was cooled to room temperature and leached with 45 g/solution of H 2 SO 4 at 30% solids. The resulting pulp was further filtered and the cake was washed with water. The extraction rate of vanadium was 79%, and 27.7 g of vanadium and iron were extracted by mixing the filter and washing liquid.
A solution was obtained containing 0.9 g/manganese, 0.8 g/manganese, and low concentrations of other impurities.

次に実斜䟋に蚘茉した方法ず同䞀の方法で溶
液からバナゞりムを沈殿させお、V2O597.2重量
及びFe0.10重量を含有するレツド・ケヌキ
を埗た。沈殿効率は94であり、䞔぀スラグから
レツド・ケヌキぞのバナゞりムの総括採取率は
74.3であ぀た。
Vanadium was then precipitated from the solution in the same manner as described in Example 1 to obtain a red cake containing 97.2% by weight of V 2 O 5 and 0.10% by weight of Fe. The precipitation efficiency is 94%, and the overall recovery rate of vanadium from slag to red cake is
It was 74.3%.

Claims (1)

【特蚱請求の範囲】  バナゞりム含有物質又はスラグを粉砕しお埮
现な粒床にし、䞔぀適切な反応噚䞭で、硫黄又は
硫黄含有物質ず、あるいは二酞化硫黄ガス及び
又は䞉酞化硫黄ガスず反応させお埗られる焌
成物を硫酞溶液で浞出しお、溶存する他金属の濃
床が䜎くバナゞりムの濃床の高い溶液ず、鉄、カ
ルシりム及び他の元玠を含有する固圢残留物ずを
生成させ、任意の適圓な方法あるいは通垞の方法
で、該溶液からバナゞりムを採取するにあた぀
お、 (a) 該スラグ又はバナゞりム含有物質を粉砕し
お、米囜材料詊隓協䌚芏栌で−10メツシナ玄
100から−325メツシナ100たでの粒床に
し、䞔぀該硫黄又は硫黄含有物質、䟋えば元玠
硫黄又は黄鉄鉱粟鉱ず混和しお、スラグ察硫黄
含有物質の割合をからたでにし、 (b) 該混和物を適切な反応噚に仕蟌み、 (c) 該含応噚䞭の該混和物を、空気あるいは酞玠
含有量の少ない空気を䜿甚し、から200
たで過剰の酞玠䞭で、550℃から850℃たでの枩
床で1/2時間から10時間たでの範囲の反応時間
の間、焌成し、 (d) 生成する焌成物を該焌成工皋から連続的に取
り出し、 (e) 該焌成物を硫酞が/から100/たで
の硫酞溶液で、10℃から100℃たでの枩床で、
1/2時間から20時間たでの間浞出し、 (f) 該浞出で埗られるパルプを固液分離し、 (g) 任意の適切な方法又は通垞の方法で、可溶性
のバナゞりムを該溶液から採取する、 こずを特城ずする、鋌鉄粟錬スラグのようなバナ
ゞりム含有物質からバナゞりムを採取する方法、
特に鋌鉄粟錬甚の塩基性酞玠転炉で生じるスラグ
のような石灰分の倚いスラグを凊理する方法。  スラグ又はバナゞりム含有物質及び硫黄又は
硫黄含有物質の粒床が米囜材料詊隓協䌚芏栌で、
−10メツシナ玄100から−325メツシナ100た
での範囲内である、䞊蚘第項に蚘茉の方法。  混和物を也燥しお、あるいは湿぀たたたで、
反応噚に仕蟌む前蚘第項に蚘茉の方法。  スラグ硫黄、又はスラグ硫黄含有物質、
あるいはバナゞりム含有物質硫黄含有物質の混
和比率がからたでの範囲内である、
前蚘第項に蚘茉の方法。  焌成枩床が550℃から850℃たでの範囲内であ
る、前蚘第項に蚘茉の方法。  焌成時間が1/2時間から10時間たでの範囲内
である、前蚘第項に蚘茉の方法。  焌成ガスを空気、酞玠の濃い空気、空気及び
二酞化硫黄、空気及び䞉酞化硫黄、酞玠の濃い空
気及び二酞化硫黄、酞玠の濃い空気及び䞉酞化硫
黄、空気及び二酞化硫黄及び䞉酞化硫黄、あるい
は酞玠の濃い空気及び二酞化硫黄及び䞉酞化硫黄
から遞定する、前蚘第項に蚘茉の方法。  二酞化硫黄及び又は䞉酞化硫黄を反応噚
の内郚で補造しおもよく、あるいは倖郚で補造し
お反応噚内に吹き蟌んでもよい、前蚘第項に蚘
茉の方法。  焌成工皋から出る焌成物を、熱いうちに、あ
るいは冷えおから、硫酞が10/から100/
たでの溶液で浞出する、前蚘第項に蚘茉の方
法。  浞出枩床が10℃から100℃たでの範囲内で
ある前蚘第項に蚘茉の方法。  浞出工皋で生じるパルプに液―固分離凊理
を斜す、前蚘第項に蚘茉の方法。  固―液分離工皋から埗られる液䞭に含有
するバナゞりムを採取しお、䞃バナゞりム酞ナト
リりム、すなわち「レツド・ケヌキred
cake」、Na2H2V6O17の圢態にする、前蚘第項
に蚘茉の方法。  固―液分離工皋から埗られる液䞭に含有
するバナゞりムを溶剀抜出で採取しお、バナゞり
ム酞アンモニりム、NH4VO3の圢態にする、前蚘
第項に蚘茉の方法。
[Claims] 1. Grinding a vanadium-containing material or slag to a fine particle size and reacting it with sulfur or a sulfur-containing material or with sulfur dioxide gas and/or sulfur trioxide gas in a suitable reactor. The resulting calcined product is leached with a sulfuric acid solution to produce a solution with a high concentration of vanadium and low concentrations of other dissolved metals, and a solid residue containing iron, calcium, and other elements, and any In extracting vanadium from the solution by any suitable or conventional method, (a) grind the slag or vanadium-containing material to approximately -10 mesh according to American Society for Testing and Materials standards;
100% to 100% -325 mesh and blended with the sulfur or sulfur-containing material, such as elemental sulfur or pyrite concentrate, with a slag to sulfur-containing material ratio of 5:1 to 1:3. (b) charging the mixture into a suitable reactor; (c) converting the mixture in the reactor to between 0% and 200% using air or air with a low oxygen content;
(d) Calcinate the resulting calcined product continuously from said calcining step at a temperature of from 550°C to 850°C for a reaction time ranging from 1/2 hour to 10 hours in excess oxygen. (e) The calcined product is treated with a sulfuric acid solution containing 5 to 100 g of sulfuric acid at a temperature of 10 to 100 °C,
(f) subjecting the pulp obtained from said leaching to solid-liquid separation; (g) extracting soluble vanadium from said solution by any suitable or conventional method; A method for extracting vanadium from a vanadium-containing material such as steel smelting slag,
A method of treating lime-rich slag, such as that produced in basic oxygen converters, especially for steel smelting. 2 The particle size of the slag or vanadium-containing substance and the sulfur or sulfur-containing substance is according to American Society for Testing and Materials standards,
The method of paragraph 1, wherein the method is in the range of about 100% -10 meshes to 100% -325 meshes. 3. Dry or moisten the mixture.
The method according to item 1 above, wherein the method is charged into a reactor. 4 Slag: sulfur, or slag: sulfur-containing substance,
Alternatively, the mixing ratio of vanadium-containing substance: sulfur-containing substance is within the range of 5:1 to 1:3,
The method according to item 1 above. 5. The method according to item 1 above, wherein the firing temperature is within the range of 550°C to 850°C. 6. The method according to item 1 above, wherein the firing time is within the range of 1/2 hour to 10 hours. 7 The firing gas is air, oxygen-rich air, air and sulfur dioxide, air and sulfur trioxide, oxygen-rich air and sulfur dioxide, oxygen-rich air and sulfur trioxide, air and sulfur dioxide and sulfur trioxide, or oxygen. 2. The method according to item 1, wherein the method is selected from air rich in air and sulfur dioxide and sulfur trioxide. 8. The method according to item 1 above, wherein the sulfur dioxide and/or sulfur trioxide may be produced inside the reactor or may be produced externally and blown into the reactor. 9. Add 10g to 100g of sulfuric acid to the fired product from the firing process while it is still hot or after it has cooled down.
The method according to item 1 above, wherein the method is leached with a solution of up to 10. The method according to item 1 above, wherein the leaching temperature is within the range of 10°C to 100°C. 11. The method according to item 1 above, wherein the pulp produced in the leaching step is subjected to liquid-solid separation treatment. 12 The vanadium contained in the liquid obtained from the solid-liquid separation process is collected and converted into sodium heptavanadate, i.e., “red cake”.
2. The method according to item 1 above, wherein the method is in the form of ``Cake)'', Na 2 H 2 V 6 O 17 . 13. The method according to item 1, wherein the vanadium contained in the liquid obtained from the solid-liquid separation step is collected by solvent extraction and converted into ammonium vanadate, NH 4 VO 3 .
JP3217782A 1982-03-01 1982-03-01 Method of sampling vanadium from slug containing vanadium and similar article Granted JPS58151328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3217782A JPS58151328A (en) 1982-03-01 1982-03-01 Method of sampling vanadium from slug containing vanadium and similar article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3217782A JPS58151328A (en) 1982-03-01 1982-03-01 Method of sampling vanadium from slug containing vanadium and similar article

Publications (2)

Publication Number Publication Date
JPS58151328A JPS58151328A (en) 1983-09-08
JPS6117771B2 true JPS6117771B2 (en) 1986-05-09

Family

ID=12351649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3217782A Granted JPS58151328A (en) 1982-03-01 1982-03-01 Method of sampling vanadium from slug containing vanadium and similar article

Country Status (1)

Country Link
JP (1) JPS58151328A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646358B2 (en) * 1999-06-09 2011-03-09 関西電力株匏䌚瀟 Method for producing trivalent vanadium sulfate and method for producing vanadium electrolyte
JP4593732B2 (en) * 2000-07-04 2010-12-08 関西電力株匏䌚瀟 Method for producing trivalent and tetravalent mixed vanadium compound and method for producing vanadium electrolyte
CN100582257C (en) * 2007-11-26 2010-01-20 攀枝花钢铁(集团)公叞 Method for roasting high calcium vanadium slag with fluidizing apparatus
CN109097567A (en) * 2018-10-10 2018-12-28 攀钢集团钒钛资源股仜有限公叞 The secondary pickling technique of vanadium slag calcification baking clinker

Also Published As

Publication number Publication date
JPS58151328A (en) 1983-09-08

Similar Documents

Publication Publication Date Title
US4298379A (en) Production of high purity and high surface area magnesium oxide
MXPA97004353A (en) Improved method for the recovery of pl
CN114684801B (en) Method for preparing high-purity ferric phosphate by using pyrite cinder
US3932580A (en) Process for purifying technical grade molybdenum oxide
US3776717A (en) Method for processing of red mud
US4152252A (en) Purification of rutile
US3667906A (en) Method for producing manganese dioxide containing less potassium
US2654653A (en) Method of producing concentrates of uranium and vanadium from lowbearing ores
CN1952192A (en) Process for extracting vanadium from peroxide sintered ore and furnace slag
GB2194941A (en) Process for recovering vanadium values
JPS6117771B2 (en)
US4137293A (en) Producing gypsum and magnetite from ferrous sulfate and separating
AU2010217184A1 (en) Zinc oxide purification
JPS6122011B2 (en)
US3677700A (en) Process for producing battery-grade manganese dioxide
WO1999041417A2 (en) Method for producing high-purity molybdenum chemicals from molybdenum sulfides
US3900552A (en) Preparation of highly pure titanium tetrachloride from perovskite or titanite
US3554733A (en) Process obtaining sulfurous gases and magnetite or iron sponge from waste ferrous sulfate
CA3157393A1 (en) Vanadium recovery process
CA1102142A (en) Recovery of useful materials from calcines
US3106451A (en) Method of producing manganese sulfate
KR20220116169A (en) A method for producing copper metal from copper concentrates without generating waste
US1618795A (en) Process for the recovery of titanic acid, iron, and magnesia from titaniferous ores
US3726667A (en) Process of leaching sulfide containing materials with hot,strong sulfuric acid
JPS63166935A (en) Sampling of metal and elemental sulfure from metal sulfide