JPS5914556B2 - Metallic diaphragm for electrolytic production of titanium, electrolytic cell using the diaphragm, and method for producing titanium in the electrolytic cell - Google Patents
Metallic diaphragm for electrolytic production of titanium, electrolytic cell using the diaphragm, and method for producing titanium in the electrolytic cellInfo
- Publication number
- JPS5914556B2 JPS5914556B2 JP53050162A JP5016278A JPS5914556B2 JP S5914556 B2 JPS5914556 B2 JP S5914556B2 JP 53050162 A JP53050162 A JP 53050162A JP 5016278 A JP5016278 A JP 5016278A JP S5914556 B2 JPS5914556 B2 JP S5914556B2
- Authority
- JP
- Japan
- Prior art keywords
- diaphragm
- electrolytic cell
- cathode
- titanium
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Electrolytic Production Of Metals (AREA)
Description
【発明の詳細な説明】
本発明はチタン電解製造用金属性隔膜および該隔膜を使
用する電解槽と該電解槽中でのチタンの製造法に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metallic diaphragm for electrolytically producing titanium, an electrolytic cell using the diaphragm, and a method for producing titanium in the electrolytic cell.
チタンの様な多価金属は従来その化合物、例えば4塩化
チタンから米国特許第2789943号,294303
2号および3082159号に記載の電解法によつて製
造されている。Polyvalent metals such as titanium have traditionally been synthesized from their compounds, e.g. titanium tetrachloride, in U.S. Pat.
It is manufactured by the electrolytic method described in No. 2 and No. 3082159.
一般に4塩化チタンを適当な方法によつて溶融アルカリ
又はアルカリ士金属塩浴に入れ電解解離して陰極上に金
属チタンを電着し陽極で塩素元素を放出する。チタン含
有電解槽中で陰極から陽極を分離するには種々の方法が
用いられている。陽極室と陰極室の間にある隔膜の様な
物理的障壁はチタンイオンが陰極室から陽極室に過度流
動するのを防ぐに必要である。In general, titanium tetrachloride is electrolytically dissociated by placing it in a molten alkali or alkali metal salt bath by an appropriate method to electrodeposit metallic titanium on the cathode and release elemental chlorine at the anode. Various methods have been used to separate the anode from the cathode in titanium-containing electrolytic cells. A physical barrier, such as a diaphragm, between the anode and cathode chambers is necessary to prevent excessive flow of titanium ions from the cathode chamber to the anode chamber.
もし過度のイオン流動が起つたならばチタンイオンは4
塩化チタンに酸化されそれによつて電解槽効率が低下す
る。隔膜はまた陽極室と陰極室の間に塩素イオンおよび
溶融塩浴をとおす必要がある。米国特許第278994
3号の隔膜は有孔電導性金属構造のもので使用の際陽極
又は陰極に交互に使う。If excessive ion flux occurs, the titanium ion
It is oxidized to titanium chloride, thereby reducing cell efficiency. The diaphragm is also required to pass the chloride ion and molten salt bath between the anode and cathode compartments. U.S. Patent No. 278994
The No. 3 diaphragm has a perforated conductive metal structure and is used alternately as an anode or a cathode.
隔膜を陰極とし金属チタンをその孔に沈着させ隔膜の多
孔性は減少する。隔膜が甚しく通らなくなD電解槽効率
が低下するとその電気極性を逆にして隔膜を陽極としそ
れからチタンを除去する。変動多孔性隔膜は便利である
が、絶えず監視し時々金属を電着させまたそれからとる
ことの必要のない隔膜が更に望ましい。従来の電解槽は
使用出来るが、陽極室陰極室間の隔膜は工業用電解装置
に必要な強度に対し一般に不充分なものであるか、又は
電解槽操業中絶えず注意して多孔性調整を必要とするも
のである。The porosity of the membrane is reduced by using the membrane as a cathode and depositing metallic titanium into its pores. When the diaphragm becomes severely impermeable and the efficiency of the D electrolytic cell decreases, the electrical polarity is reversed and the diaphragm becomes the anode and titanium is then removed. While variable porosity membranes are convenient, a membrane that does not require constant monitoring and occasional electrodeposition and removal of metal is more desirable. Conventional electrolyzers can be used, but the diaphragm between the anode and cathode chambers is generally insufficient for the strength required in industrial electrolyzers, or requires constant attention to porosity adjustment during cell operation. That is.
適当な物理的強度をもち操業中調整不要の一定多孔性を
もつ隔膜を使う金属電解製造用の改良電解槽およびその
電解槽操業方法が望まれている。チタンの様な金属は従
来例えば4塩化チタンから陽極,陰極および電解浴に金
属イオンを供給する装置をもつ電解槽中で塩化カリウム
と塩化リチウムの様な混合物の溶融塩浴中で電解生成し
ているのである。一般にこの様な方法は例えばレオンら
の゛4塩化チタンから電解生成した高純度チタン1(J
.OfMetalsl8,l967,3月)、レオンら
の6チタン電解生成における合成隔膜の使用1(Bur
eauOfminesRepOrtRl7648,l9
72)および米国特許第2789943号,29430
32号および3082159号に記載されている。What is desired is an improved electrolytic cell for the electrolytic production of metals that utilizes a membrane of adequate physical strength and constant porosity that does not require adjustment during operation, and a method of operating the cell. Metals such as titanium have traditionally been produced electrolytically, for example from titanium tetrachloride, in a molten salt bath of a mixture such as potassium chloride and lithium chloride in an electrolytic cell with equipment for supplying metal ions to the anode, cathode and electrolytic bath. There is. In general, such a method is used, for example, in the high-purity titanium 1 electrolytically produced from titanium tetrachloride (J.
.. OfMetals 18, 1967, March), the use of synthetic diaphragms in the electro-production of 6-titanium by Leon et al.
eauOfminesRepOrtRl7648,l9
72) and U.S. Patent No. 2789943, 29430
No. 32 and No. 3082159.
これらの方法は例えば溶融塩化リチウム一塩化カリウム
陰極液中に直接4塩化チタンガスを吹込んでチタンイオ
ンを還元し陰極上に金属チタンを沈着させ陽極で塩素ガ
スを放出して般にチタンを満足に生成出来る。しかしチ
タンのような多価金属を電解槽の溶融塩浴中に導入又は
供給する改良法は必要なのである。電解槽の電解液中に
イオン化金属化合物を導人する新規改良法が今や発見さ
れた。These methods, for example, directly blow titanium tetrachloride gas into molten lithium chloride potassium monochloride catholyte to reduce titanium ions, deposit metallic titanium on the cathode, and release chlorine gas at the anode, generally achieving a satisfactory titanium content. Can be generated. However, there is a need for improved methods for introducing or supplying polyvalent metals, such as titanium, into the molten salt bath of an electrolytic cell. A new and improved method of introducing ionized metal compounds into the electrolyte of an electrolytic cell has now been discovered.
イオン化しうる金属類は少なくとも2価の金属である。
イオン化性金属化合物導人設備又は供給陰極は入口少な
くも1および出口少なくも1をもち金属化合物源泉から
電解液中に金属化合物を送るに適した供給管より成る。
供給陰極は管の少なくも出口を取まき実質的に完全な包
囲部品をもつ。この包囲部品は少なくも一部は電解液お
よび多価金属化合物イオンがとおるに適した電導性有孔
体よジ成る。操業中イオン化性多価金属化合物は管をと
おり電解液中に入る。電解液中に入る又は混合すると金
属化合物は金属化合物のイオンに解離すると思われる。
包囲部品はガス状金属化合物および(又は)不活性分散
性ガスによつて起つた撹拌を供給陰極内にうまく限定す
る。電源が少なくも有孔部品に電気的に接続されており
金属イオンを高原子価状態から低原子価状態に下げる様
有孔部品に充分の負荷電を供給する。金属化合物からの
溶解イオンを含む電解液は有孔部品をとおつて沈着陰極
室に入り陰極に達し固体金属が沈着する。一般に金属イ
オンは供給陰極内で又は供給陰極の実質的近くで高原子
価状態から低原子価状態に低下すると思われる。更に明
確にいうならば、本発明は0j.D大きく0.5迄の隔
膜係数と0.1乃至25の範囲の流量係数をもちかつ少
なくも有孔部品の表面hく電解槽の腐蝕環境に耐えうる
金属より成る有孔部品よジ成るチタン電解生成用溶融塩
浴をもつ電解槽の陰極室から陽極室を分離するに適した
金属性隔膜に関するものである。Ionizable metals are at least divalent metals.
The ionizable metal compound conductor equipment or feed cathode comprises a feed tube having at least one inlet and at least one outlet suitable for conveying the metal compound from the metal compound source into the electrolyte.
The supply cathode has a substantially complete enclosure surrounding at least the outlet of the tube. The enclosure consists at least in part of an electrically conductive porous material suitable for passage of electrolyte and polyvalent metal compound ions. During operation, the ionizable polyvalent metal compound passes through the tube and enters the electrolyte. It is believed that upon entering or mixing with the electrolyte, the metal compound dissociates into metal compound ions.
The enclosure element advantageously confines the agitation caused by the gaseous metal compound and/or inert dispersing gas within the feed cathode. A power source is electrically connected to at least the perforated component to provide a sufficient negative charge to the perforated component to lower the metal ions from a high valence state to a low valence state. An electrolytic solution containing dissolved ions from the metal compound enters the deposition cathode chamber through the perforated component and reaches the cathode where solid metal is deposited. Generally, the metal ions will be reduced from a high valence state to a low valence state within or substantially proximate to the supply cathode. More specifically, the present invention relates to 0j. D A titanium perforated part made of a metal having a diaphragm coefficient of up to 0.5 and a flow coefficient in the range of 0.1 to 25, and at least the surface of the perforated part is made of a metal capable of withstanding the corrosive environment of an electrolytic cell. The present invention relates to a metallic diaphragm suitable for separating the anode compartment from the cathode compartment of an electrolytic cell having a molten salt bath for electrolytic production.
本発明は更に溶融塩浴中でのチタン製造用電解槽に関す
るものであり、上記電解槽は浴を入れるに適した本体、
大気から浴を隔離する設備、上記本体中にある陽極室、
上記陽極室からガスを除去する設備、上記本体中にある
陰極室、上記陽極室内にあり少なくも一部浴中に浸漬し
ている少なくも1陽極、上記陰極室内にあり少なくも一
部浴中に浸漬している少なくも1沈着陰極、上記陽極と
陽極に接続している電力源、浴に多価金属イオンを供給
するに適した少なくも1供給設備および陰極室から陽極
室を分離する為浴中に少なくも一部浸漬されておりその
容器内の腐蝕環境に耐えうる少なくも1金属性有孔隔膜
より成りかつ上記隔膜は0j.D大きく05迄の隔膜係
数と0.1乃至25の範囲の流量係数をもち上記陽極お
よび陰極室外の電源から電気的に絶縁されているもので
ある。The invention further relates to an electrolytic cell for the production of titanium in a molten salt bath, said electrolytic cell comprising a body suitable for containing the bath;
Equipment for isolating the bath from the atmosphere, an anode chamber in the main body,
equipment for removing gas from said anode chamber; a cathode chamber in said body; at least one anode in said anode chamber and at least partially immersed in a bath; at least one deposited cathode immersed in the anode, said anode and a power source connected to the anode, at least one supply facility suitable for supplying polyvalent metal ions to the bath, and for separating the anode chamber from the cathode chamber. at least one metallic perforated diaphragm at least partially immersed in the bath and capable of withstanding the corrosive environment within the vessel; D has a diaphragm coefficient of up to 0.05 and a flow coefficient of 0.1 to 25, and is electrically insulated from the power source outside the anode and cathode room.
本発明はまた陽極室内にある少なくも1陽極および陰極
室内にある少なくも1陰極および電解槽中にある溶融塩
浴にチタン化合物を供給する設備をもつ電解槽において
チタンを製造する方法であつて、槽内の環境に耐えうる
表面を少なくももちOよジ大きく0.5迄の隔膜係数と
0.1乃至25の範囲の流量係数をもち上記陽極と陰極
室外の電源から電気的に絶縁されている有孔隔膜を陽極
室と陰極室を分離する為電解槽中に挿入する工程および
陽極陰極間に起電力を印加する工程を含むチタンの製法
に関する。本発明は更に溶融塩浴をもつ電解槽中の使用
に適した供給陰極設備にも関連をもつ。The invention also provides a method for producing titanium in an electrolytic cell comprising at least one anode in an anode chamber, at least one cathode in a cathode chamber, and provision for supplying a titanium compound to a molten salt bath in the electrolytic cell. The anode and cathode have at least a surface that can withstand the environment inside the tank, a diaphragm coefficient of up to 0.5, a flow coefficient in the range of 0.1 to 25, and the anode and cathode are electrically insulated from the outdoor power source. The present invention relates to a method for producing titanium, which includes a step of inserting a perforated diaphragm into an electrolytic cell to separate an anode chamber and a cathode chamber, and a step of applying an electromotive force between the anode and cathode. The invention further relates to a feed cathode installation suitable for use in an electrolytic cell with a molten salt bath.
上記設備は金属化合物源泉から電解槽中の溶融塩浴に上
記金属化合物を送るに適した少なくも1出口をもつ多価
金属化合物の槽への供給用管および上記管の少なくも出
口を取かこみ実質的に完全に包囲している部品よ)成ジ
上記包囲部品は多価金属化合物イオンおよび電解液がと
おシうる電導性有孔物体で少なくも一部が形成されてい
るものとする。本発明はまた(a)電解液のある試験電
池中に浸漬した一次陽極と一次陰極の間にわかつた直流
起電力を印加し、O))上記一次陽極と陰極間にありか
つ定めた間隔離れているオリフイスをもつ第1塩橋と第
2塩橋により上記電解液の規定部分と連絡している2測
定電極を用いて上記電解液の規定部分における電気特性
を測定し、(c)上記測定電極間の液中への金属隔膜挿
入がその隔膜を中間電極と変えるには不充分な一次電極
間の電圧変化を生ずる様な電導度をもつ上記測定電極間
の電解液に金属隔膜を挿入しかつ(d)上記電解液の規
定部分における電気特性を(b)におけると同様に再測
定することより成る電解槽に使用する金属性隔膜の適応
性を予備測定する方法にも関連をもつ。本発明の電解槽
は基本的に溶融塩浴を入れまた浴を大気から隔離するに
適した組合せ本体より成る。陽極室と陰極室は互に分離
して本体内にある。陽極室と陰極室はそれらの外の電源
から電気的に絶縁されておりまた電解槽操業中少なくも
一部が溶融塩中に浸漬されている少なくも1有孔金属性
隔膜によ如分離されている。この隔膜の流量係数(Cf
)が0,1乃至25の範囲内の場合隔膜係数(Cd)が
Oより大きく0,5迄の範囲であることが特徴である。
ここでCdは2.54cr1Lを一単位として示されま
たCfは隔膜表面積194cm2当り毎分リツトル当B
2.54CTL単位の平方根で示される。隔膜係数は下
記の方法で測定出来、次式で示される:電極間1.9C
71L離れておわまた操業中の一次電極間にある隔膜か
らそれ丈け離れているオリJャCスをもつ塩ブリツジによ
シ試験セル中の溶液と連絡しているカロメル測定電極に
よつて測定した時試験セルの1モル塩化ナトリウム水溶
液中の電圧(ボルト)とする。Said equipment incorporates a supply pipe to a bath of polyvalent metal compounds having at least one outlet suitable for conveying said metal compound from a metal compound source to a molten salt bath in an electrolytic cell, and at least an outlet of said pipe. The surrounding part is formed at least in part of an electrically conductive porous material through which polyvalent metal compound ions and electrolyte can pass. The present invention also includes: (a) applying a discrete direct current electromotive force between a primary anode and a primary cathode immersed in a test cell with an electrolyte; (c) measuring the electrical properties in the specified portion of the electrolytic solution using two measuring electrodes that are in communication with the specified portion of the electrolytic solution through a first salt bridge and a second salt bridge having orifices; Inserting a metal diaphragm into the electrolyte between said measuring electrodes having such conductivity that insertion of the metal diaphragm into the liquid between the electrodes results in an insufficient voltage change across the primary electrodes to convert the diaphragm into an intermediate electrode. and (d) relates to a method for preliminary determination of the suitability of a metallic diaphragm for use in an electrolytic cell, comprising re-measuring the electrical properties in a defined portion of the electrolyte as in (b). The electrolytic cell of the invention essentially consists of a combined body suitable for containing a molten salt bath and for isolating the bath from the atmosphere. The anode chamber and the cathode chamber are separated from each other within the main body. The anode chamber and the cathode chamber are electrically insulated from their external power source and separated by at least one perforated metallic diaphragm that is at least partially immersed in the molten salt during cell operation. ing. The flow coefficient of this diaphragm (Cf
) is in the range of 0.1 to 25, it is characterized in that the diaphragm coefficient (Cd) is greater than O and is in the range of 0.5.
Here, Cd is expressed in units of 2.54cr1L, and Cf is B per liter per minute per diaphragm surface area of 194cm2.
It is expressed as the square root of 2.54 CTL units. The diaphragm coefficient can be measured by the following method and is expressed by the following formula: 1.9C between electrodes.
By means of a calomel measuring electrode in communication with the solution in the test cell through a salt bridge with an orifice 71 L away and a distance from the diaphragm between the primary electrodes in operation. The voltage (in volts) in a 1 molar aqueous sodium chloride solution in the test cell when measured.
Id−l−sは隔膜がVd+sに対する位置にある溶液
中の一次電極間に保たれた0.002アンペアの電流と
する。Let Id-l-s be the 0.002 amp current maintained between the primary electrodes in solution with the diaphragm in position relative to Vd+s.
V8は隔膜なしにVd+8のとおり測定した電圧(ボル
ト)とする。V8 is the voltage (in volts) measured as Vd+8 without a diaphragm.
Isは隔膜なしにId−1−sのとおり測定した際の溶
液中の一次電極間に保たれた0.002アンペアの電流
とする。Is is the current of 0.002 amps maintained between the primary electrodes in solution when measured as Id-1-s without a diaphragm.
流量係数は次式で表わされる:
但しhは隔膜をとおる水流量測定が得られる隔膜部分の
1面上194C7rL2面積をもつ円形隔膜部分の中心
線から上方に測つた場合約24℃における水25.4c
mの圧力水頭とする。The flow coefficient is expressed by the following equation: where h is the rate of water at approximately 24° C. measured upward from the center line of a circular diaphragm section having an area of 194C7rL2 on one side of the diaphragm section from which the water flow rate measurement through the diaphragm is obtained. 4c
Let the pressure head be m.
Fは隔膜部分をとおる約24℃の水流毎分当シの容量(
リツトル)とする。F is the current capacity of water flow per minute at approximately 24°C through the diaphragm (
Little).
隔膜の形態および大きさにより上記194cTn2より
小さい又は大きい隔膜も水量測定に使用出来る。Depending on the shape and size of the diaphragm, diaphragms smaller or larger than the above 194cTn2 can also be used for water measurement.
小さい又は大きい隔膜を使つた場合Fは上記194CT
!12面積をとおる水流量を表わす様計算する必要があ
る。少し異なつたいい方をすれば隔膜係数決定の上式は
根本的に隔膜と試験セルの溶液の合計抵抗から溶液の抵
抗を引いて溶液の抵抗で割つたものである。When using a small or large diaphragm, F is 194CT above.
! It is necessary to calculate the amount of water flowing through the 12 areas. In a slightly different way, the above formula for determining the diaphragm coefficient is essentially the sum of the resistances of the diaphragm and test cell solutions minus the resistance of the solution and divided by the resistance of the solution.
この計算から得られる数値は塩ブリツジが1.9CTf
L離れているので溶液1。9(177!の電気抵抗によ
つて隔膜の電気抵抗を表わしている。The value obtained from this calculation is that the salt bridge is 1.9 CTf.
Since the distance is L, the electrical resistance of the diaphragm is expressed by the electrical resistance of the solution 1.9 (177!).
計算値を溶液の?に換算するには1.9を乗ずればよい
。隔膜係数は試験セル中の隔膜の電気抵抗を表わしてい
る。隔膜係数はまた隔膜の孔中にある溶液の抵抗の尺度
であるとも思われる。隔膜係数(Cd)は隔膜の孔中に
ある溶液の抵抗の尺度でもあるという見地からすれば、
この値はOに近いのが望ましいことはいうまでもない。Calculated value of solution? To convert to , just multiply by 1.9. The diaphragm coefficient represents the electrical resistance of the diaphragm in the test cell. The diaphragm coefficient is also believed to be a measure of the resistance of the solution within the pores of the diaphragm. From the point of view that the diaphragm coefficient (Cd) is also a measure of the resistance of the solution in the pores of the diaphragm,
Needless to say, it is desirable that this value be close to O.
然しながら、実際上隔膜係数がOである隔膜を得ること
は不可能であわ、電解槽中に隔膜が存在しないときにの
みCd=Oなる条件が成立する。然しこの場合(隔膜の
不存在の場合)には正規の電解操業は不能で電流を電解
槽中に通すと熱のみが発生するにすぎない。従つて隔膜
係数の下限値は0に近い値の隔膜が好ましいという意味
で定められる。他方、隔膜係数が0.5を越えると、そ
の隔膜は非常に液密性になり、すなわちイオンの流れに
対して非常に大きな抵抗をもち、電流密度は電解槽の通
常の操業条件下において全く経済的に興味のない値に低
下してしまうので商業的な使用に適さない。以上の理由
で本発明の隔膜の隔膜係数は0よシ大きく0.5迄の値
をとらなければならない。流量係数(Cf)については
、Cf<0.1の場合には隔膜を通る電解液の全体の流
れは過度になりすぎて極端に非効率的になる。However, it is actually impossible to obtain a diaphragm with a diaphragm coefficient of O, and the condition that Cd=O is satisfied only when there is no diaphragm in the electrolytic cell. However, in this case (in the absence of a diaphragm), normal electrolytic operation is impossible and only heat is generated when current is passed through the electrolytic cell. Therefore, the lower limit value of the diaphragm coefficient is determined in the sense that a diaphragm having a value close to 0 is preferable. On the other hand, if the diaphragm coefficient exceeds 0.5, the diaphragm becomes very fluid-tight, i.e. has a very large resistance to the flow of ions, and the current density is completely reduced under normal operating conditions of the electrolyzer. It is not suitable for commercial use since it reduces to values that are not economically interesting. For the above reasons, the diaphragm coefficient of the diaphragm of the present invention must take a value greater than 0 and up to 0.5. Regarding the flow coefficient (Cf), if Cf<0.1, the overall flow of electrolyte through the diaphragm becomes too excessive and extremely inefficient.
この場合、Cd一Oのときのように電解槽は熱の発生の
みが生じる限界値に近づく。他方、Cf〉25の場合に
は隔膜を通る電解液の全体の流れは非常に少なくなる。
このような場合、上記のCd値の範囲内に入るためには
単位面積当りの隔膜の孔の数は非常に多数になり、そし
て隔膜の孔の径は非常に小さいので、このような隔膜の
製造は高価にすぎて工業用の用途には適さなくなる。以
上の理由で本発明の隔膜の流量係数は(隔膜係数がOよ
り大きく0.5迄の値をとらなければならないという条
件の下で)0,1乃至25の値をとらなければならない
。本発明の電解槽は更に陽極室内にあり少なくも−部が
浴中に浸漬されている少なくも1陽極をもつ。少なくも
一部が浴中に浸漬されている少なくも1沈着陰極が同様
に陰極室内にある。陽極で生成したガスを除去する適当
設備が陽極室に組合わせられる。イオン化性金属化合物
の様な金属含有供給物質を浴に送るに適した少なくも1
供給設備および陰極に沈着した金属を除去するに適した
設備が陰極室に組合わせられる。更に金属イオンを高原
子価状態から低原子価状態に還元し金属を沈着陰極に沈
着させるに充分な電気エネルギーを供給するに適した設
備を陽極および陰極に接続する。好ましい装置および方
法はチタン製造について述る。陰極室に供給されるチタ
ン化合物は少なくも一部、好ましくは実質的に完全に溶
融塩浴中でイオン化する特徴がある。チタンイオンは陰
極において高原子価状態から低原子価状態に還元される
。塩素の様なハロゲンガスは陽極で放出される。ガスお
よび金属チタンは適当な設備で電解槽から除去される。
付図は本発明を更に例証するものである。In this case, as in the case of CdO, the electrolytic cell approaches a limit value at which only heat is generated. On the other hand, if Cf>25, the overall flow of electrolyte through the diaphragm will be very low.
In such a case, in order to fall within the above Cd value range, the number of pores in the diaphragm per unit area is very large, and the diameter of the pores in the diaphragm is very small. Manufacturing is too expensive making it unsuitable for industrial use. For the above reasons, the flow coefficient of the diaphragm of the present invention must take a value from 0.1 to 25 (under the condition that the diaphragm coefficient must take a value greater than O and up to 0.5). The electrolytic cell of the invention further has at least one anode located within the anode chamber and at least partially immersed in the bath. Also within the cathode chamber is at least one deposited cathode, at least partially immersed in the bath. Appropriate equipment for removing the gas produced at the anode is associated with the anode chamber. at least one metal-containing feed material, such as an ionizable metal compound, suitable for delivering to the bath
Supply equipment and equipment suitable for removing metal deposited on the cathode are combined in the cathode chamber. Additionally, suitable equipment is connected to the anode and cathode to provide sufficient electrical energy to reduce the metal ions from a high valence state to a low valence state and to deposit the metal at the deposition cathode. Preferred apparatus and methods are described for titanium production. The titanium compound supplied to the cathode chamber is characterized by ionization at least partially, preferably substantially completely, in the molten salt bath. Titanium ions are reduced from a high valence state to a low valence state at the cathode. Halogen gases such as chlorine are released at the anode. Gas and titanium metal are removed from the electrolytic cell with suitable equipment.
The accompanying figures further illustrate the invention.
図1は本発明のチタン製造用電解槽の断面図である。FIG. 1 is a sectional view of an electrolytic cell for producing titanium according to the present invention.
図2は本発明の他の実施態様の断面図である。FIG. 2 is a cross-sectional view of another embodiment of the invention.
図3は本発明の隔膜をとおる水流速度測定設備の概略図
である。図4は本発明の隔膜の隔膜係数測定に適した設
備の概略図である。FIG. 3 is a schematic diagram of the equipment for measuring the water flow rate through the diaphragm of the present invention. FIG. 4 is a schematic diagram of equipment suitable for measuring the diaphragm coefficient of the diaphragm of the present invention.
図5は本発明の電解槽に使用する供給陰極の実施態様を
示している。FIG. 5 shows an embodiment of the feed cathode for use in the electrolytic cell of the invention.
図6は電解隔膜槽と組合せた本発明の実施態様を示して
いる。FIG. 6 shows an embodiment of the invention in combination with an electrolytic diaphragm cell.
各図中の接尾字をつけた同一番号は異なる実施態様内の
同一機能をする部品を示している。Identical numbers with suffixes in each figure indicate parts with identical functions in different embodiments.
図1は多価金属、例えばチタンを溶融塩浴中でその化合
物から電解生成する電解槽10を示している。以後の記
述はチタンの電解生成に関する。しかしこれは一般に多
価金属にも適用される。溶融又は融解塩はチタン化合物
の溶媒としての特性をもつ。この塩類又はそれらの混合
物は例えばNaCl,LiCl−KCl,LiC]−K
Cl−NaCl,およびLiCl−KCl−CaCl2
である。チタンを4塩化チタンから回収する場合溶融塩
浴はアルカリ又はアルカリ土金属・・ロゲン化物、出来
ればリチウムとカリウムの塩化物を含むものがよい。浴
に使う塩類の共融混合物はそれが低融点をもつので便利
である。電解槽10は容器12の材質に実質的に悪影響
なく溶融・・ロゲン化物塩浴と4塩化チタンを入れるに
適した本体又は容器12を含む。FIG. 1 shows an electrolytic cell 10 in which a polyvalent metal, such as titanium, is electrolytically produced from its compounds in a molten salt bath. The following description relates to the electrolytic production of titanium. However, this also generally applies to polyvalent metals. The molten or molten salt has properties as a solvent for the titanium compound. These salts or mixtures thereof include, for example, NaCl, LiCl-KCl, LiC]-K
Cl-NaCl, and LiCl-KCl-CaCl2
It is. When recovering titanium from titanium tetrachloride, the molten salt bath preferably contains an alkali or alkaline earth metal chloride, preferably chlorides of lithium and potassium. A eutectic mixture of salts for use in the bath is convenient because it has a low melting point. Electrolytic cell 10 includes a body or vessel 12 suitable for containing a molten chloride salt bath and titanium tetrachloride without substantially adversely affecting the material of vessel 12.
容器12には種々多数材質が適当しているが一般に金属
、例えば鋼又はニツケルで出来ている。容器12の内部
は少なくも陽極室14と沈着陰極室16に別かれている
。陽極室14と陰極室16は互に有孔金属隔膜17で区
分されている。隔膜支持物15は電解槽10操業中の隔
膜強度を補強する為任意に隔膜17と組合わせられる。
隔膜基質は全体にわたジ多数の孔又は穴をもつ金属網、
板又は薄膜が好ましい。Container 12 is generally made of metal, such as steel or nickel, although many different materials are suitable. The interior of the container 12 is divided into at least an anode chamber 14 and a deposition cathode chamber 16. The anode chamber 14 and the cathode chamber 16 are separated from each other by a perforated metal diaphragm 17. The diaphragm support 15 is optionally combined with the diaphragm 17 to reinforce the diaphragm strength during operation of the electrolytic cell 10.
The diaphragm matrix is a metal mesh with numerous holes or holes throughout;
A plate or a thin film is preferred.
この孔は例えば旋孔、打抜、編織、焼結によつて形成出
来る。般に基質中の孔は実質的に均一大きさがよい。隔
膜17は望む隔膜係数(Cd)と流量係数Cfとなる様
電解法又は非電気的方法で充分なニツケル又はコバルト
を着けてある米国標準ふるいメツシユ50(297ミク
ロン)乃至250(63ミクロン)、好ましくは100
(149ミクロン)乃至200(74ミクロン)をもつ
織つた金網が好ましい。着けた金属は本質的にニツケル
又はコバルトのいずれかより成るものが好ましい。適当
する沈着法はメツキ液に光沢剤量を少なくして見てにぶ
い又は粗い表面とするに適したこの分野で既知の方法が
よい。表1に隔膜17のメツキに用いるに適した非電気
的コバルトおよびニツケルメツキ溶液の例を示している
。隔膜基質は例えば鋼又はステインレス鋼の様な鉄でよ
いが、容器10内の腐蝕性環境に耐えまた隔膜として働
らく規定温度において充分な強度を保つコバルト、ニツ
ケル又は少なくも約50重量%のコバルト又はニツケル
を含むそれらの合金の様な金属が好ましい。This hole can be formed, for example, by turning, punching, knitting, or sintering. Generally, the pores in the matrix should be substantially uniform in size. Diaphragm 17 is preferably a U.S. standard sieve mesh 50 (297 microns) to 250 (63 microns), coated with sufficient nickel or cobalt by electrolytic or non-electrical methods to provide the desired diaphragm coefficient (Cd) and flow coefficient Cf. is 100
(149 microns) to 200 (74 microns) woven wire mesh is preferred. Preferably, the deposited metal consists essentially of either nickel or cobalt. Suitable deposition methods may be those known in the art suitable for reducing the amount of brightener in the plating solution to produce visually dull or rough surfaces. Table 1 provides examples of non-electrical cobalt and nickel plating solutions suitable for use in plating diaphragm 17. The diaphragm matrix may be ferrous, such as steel or stainless steel, but may also contain cobalt, nickel, or at least about 50% by weight to withstand the corrosive environment within the container 10 and to have sufficient strength at specified temperatures to act as a diaphragm. Metals such as cobalt or alloys thereof containing nickel are preferred.
特に隔膜基質は工業的に純ニツケルが好ましい。陽極1
8は陽極室14中にあジ電解槽10操業中溶融・・ロゲ
ン化物塩浴中に少なくも一部浸漬されている。In particular, the membrane substrate is preferably industrially pure nickel. Anode 1
8 is at least partially immersed in a molten chloride salt bath in the anode chamber 14 during operation of the electrolytic cell 10.
陽極18の材質は溶融・・ロゲン化物塩浴の腐蝕作用に
耐えるものでありまた槽操業中に正荷電陽極で生成され
る塩素元素に耐えるものである。適当な陽極材料は炭素
又はグラフアイトである。陰極20は陰極室16内にあ
ね電解槽10操業中溶融・・ロゲン化物塩浴中に少なく
も一部浸漬されている。沈着陰極20は金属チタンがそ
の上に沈着した後回収される様な、例えば普通の炭素鋼
又はチタンの様な金属又は炭素のごとき材質である。陰
極室16はまた槽10の内容物を加熱冷却して望む温度
に保つ加熱設備(図示されていない)および槽10の操
業中浴融・・ロゲン化物塩浴にチタン含有供給物質を送
るに適した供給設備22をもつ。The material of the anode 18 is resistant to the corrosive effects of the molten chloride salt bath and to the elemental chlorine produced at the positively charged anode during bath operation. Suitable anode materials are carbon or graphite. The cathode 20 is at least partially immersed within the cathode chamber 16 in a molten chloride salt bath during operation of the electrolyzer 10 . The deposited cathode 20 is a material such as carbon or a metal such as common carbon steel or titanium, on which titanium metal is deposited and then recovered. The cathode chamber 16 is also equipped with heating equipment (not shown) for heating and cooling the contents of the vessel 10 to the desired temperature, and a bath melting system suitable for delivering a titanium-containing feed material to the halogenide salt bath during operation of the vessel 10. It has a supply facility 22.
操業中4塩化チタンは原料設備24から輸送管26をと
おり供給設備22に送られそこで4塩化チタンは供給設
備22の多数の孔28から陰極室16内の溶融一和ゲン
化物塩浴中に出る。容器12には陽極18、陰極20お
よび供給設備22への人口に蓋30,30aおよび30
bがつけてある。蓋30,30aおよび30bは容器1
2内の調整雰囲気を保ちまた実質的に操作効率を低下す
るに充分な量の大気、特に窒素、酸素、2酸化炭素およ
び水蒸気が操業中容器12内に入らぬ様容器12に取は
ずし得る様つけてある。蓋30,30aおよび30bは
室14と16から酸素を実質的に完全に排除出来るとよ
い。蓋30aはまた固体金属チタンが陰極20上に沈着
した後に金属チタンを陰極室16から取出す設備となる
。操業中電解槽10内の雰囲気は調整し雰囲気ガスを低
い規定量に限定する。酸素の実質的量、特に空気中に通
常ある量に近い量の存在は槽効率、槽の操業寿命および
チタン製品の品位を低下するので好ましくない。したが
つて室14と16から酸素および他の反応性ガスを実質
的に完全に排除することh′−好ましい。蓋30aは酸
素を排除しかつ固体元素チタンが沈着陰極20に着いた
後陰極室16から金属チタンを取出す設備となるに適し
ている。陽極18で生成した塩素ガスは陽極室14から
塩素除去設備又はパイプ32をとおつて凝縮器又は塩素
貯槽(図示されていない)に送られる。During operation, titanium tetrachloride is sent from raw material facility 24 through transport pipe 26 to supply facility 22 where it exits through a number of holes 28 in supply facility 22 into the molten monogenide salt bath in cathode chamber 16. . The container 12 has an anode 18, a cathode 20 and a lid 30, 30a and 30 for supplying equipment 22.
b is added. Lid 30, 30a and 30b are container 1
The container 12 is removable so that a sufficient amount of atmosphere, particularly nitrogen, oxygen, carbon dioxide, and water vapor, does not enter the container 12 during operation to maintain a controlled atmosphere within the container 2 and to substantially reduce operating efficiency. It's attached. The lids 30, 30a and 30b preferably substantially completely exclude oxygen from the chambers 14 and 16. The lid 30a also provides a facility for removing solid titanium metal from the cathode chamber 16 after it has been deposited on the cathode 20. During operation, the atmosphere inside the electrolytic cell 10 is adjusted and the atmospheric gas is limited to a low specified amount. The presence of substantial amounts of oxygen, particularly those approaching the amount normally found in air, is undesirable as it reduces cell efficiency, cell operating life, and titanium product quality. It is therefore preferred h'-to substantially completely exclude oxygen and other reactive gases from chambers 14 and 16. The lid 30a is suitable for excluding oxygen and providing a facility for removing metallic titanium from the cathode chamber 16 after solid elemental titanium has arrived at the deposited cathode 20. Chlorine gas produced at the anode 18 is sent from the anode chamber 14 through chlorine removal equipment or pipe 32 to a condenser or chlorine storage tank (not shown).
発電器又は整流器34の様な電気供給設備がチタンイオ
ンを+4原子価から低原子価状態に下げ負荷電沈着陰極
20上に金属チタンを着けまた正荷電陽極18で塩素元
素を放出するに充分な電気エネルギーを電解槽10に供
給するに適している。陽極18、沈着陰極20、供給設
備22および隔膜17は容器12から絶縁物35により
電気的に絶縁されている。更に隔膜17は陽極18と陰
極20に接続する電気回路の様な陽極室14と陰極室1
6の外部電源から電気的に絶縁されている。換言すれば
隔膜17は容器12内にあつて隔膜に電気的負荷を与え
る接続なく電解槽10中ではたらく。容器12は任意に
通路又は置場となる適当にはなれたフランジ(複数)3
6の様な隔膜取つけ設備をもち隔膜17をそれにとりつ
ける。An electrical supply, such as a generator or rectifier 34, reduces the titanium ions from a +4 valence state to a lower valence state, depositing metallic titanium on the negatively charged deposition cathode 20 and providing sufficient electrical power to release elemental chlorine at the positively charged anode 18. It is suitable for supplying electrical energy to the electrolytic cell 10. The anode 18, the deposition cathode 20, the supply equipment 22 and the diaphragm 17 are electrically insulated from the container 12 by an insulator 35. Further, the diaphragm 17 has an anode chamber 14 and a cathode chamber 1, such as electrical circuits connected to the anode 18 and the cathode 20.
It is electrically isolated from the external power source of 6. In other words, the diaphragm 17 is located within the container 12 and operates in the electrolytic cell 10 without any connections that impose an electrical load on the diaphragm. The container 12 is optionally provided with suitably spaced flanges 3 that provide a passageway or storage area.
A diaphragm mounting equipment such as 6 is provided, and the diaphragm 17 is attached to it.
図1の実施態様操業中隔膜17の交換が必要となつたな
らば隔膜17を除去する前第2隔膜(図示していない)
を使つていないフランジ36中に隔膜17と並置する。
任意にフランジ36の使用によV)2又はそれ以上の隔
膜を同時に使用出来る。またフランジ36は少なくも陰
極室16内でまた任意に陽極室14においても陰極液又
は陽極液中にある固体物質による隔膜17の機械的破損
又は物理的閉塞を防ぐ為の少なくも1P過設備(図示さ
れていない)をつけるに使用出来る。図2は電解槽総合
設備10aの好ましい実施態様を示すものでその外部加
熱および(又は)冷却容器12aは陰極室16a中に塩
化カリウム一塩化リチウム一2塩化チタン−3塩化チタ
ンを含む陰極液を入れかつ陽極室14a中に塩化リチウ
ム一塩化カリウム電解液を入れるに適している。The embodiment of FIG. 1 is operated with a second diaphragm (not shown) before removing the diaphragm 17 if it becomes necessary to replace the diaphragm 17.
juxtaposed with the diaphragm 17 in the unused flange 36.
Optionally, by use of flanges 36, V) two or more diaphragms can be used simultaneously. The flange 36 is also provided at least in the cathode compartment 16 and optionally in the anolyte compartment 14 to prevent mechanical damage or physical blockage of the diaphragm 17 by solid materials present in the catholyte or anolyte. (not shown) can be used to attach. FIG. 2 shows a preferred embodiment of the electrolytic cell general equipment 10a, in which the external heating and/or cooling vessel 12a has a catholyte containing potassium chloride, monolithium chloride, titanium dichloride, and titanium trichloride in the cathode chamber 16a. It is suitable for placing a lithium chloride monopotassium chloride electrolyte into the anode chamber 14a.
陽極室14aは陰極室16aから陽極18aの周りを少
しはなれて取v巻いている多孔性織網隔膜17によつて
区分されている。隔膜の使用寿命を延ばす為隔膜と陽極
の距離は陽極直径の少なくも14倍、好ましくは1/4
乃至1−1/2倍とし、直径と実質的に等しいのが最も
よい。2沈着陰極20aおよびチタンイオン供給設備又
は供給陰極22aは互にまた隔膜17aと離れて陰極室
16a中にある。The anode chamber 14a is separated from the cathode chamber 16a by a porous woven mesh diaphragm 17 surrounding the anode 18a at a distance. To extend the service life of the diaphragm, the distance between the diaphragm and the anode should be at least 14 times, preferably 1/4, the diameter of the anode.
Best is between 1-1/2 times and substantially equal to the diameter. A two-deposition cathode 20a and a titanium ion supply facility or supply cathode 22a are located in the cathode chamber 16a separated from each other and from the diaphragm 17a.
容器12aはまた隔膜17aおよび槽10cの種々の電
気負荷設備から電気的に絶縁されている。容器12aは
陽極室14aおよび(又は)陰極室16aに大気ガスが
入るのを防ぐ様実質的に気密とするに適している。Vessel 12a is also electrically isolated from diaphragm 17a and the various electrical loads of vessel 10c. The container 12a is suitable to be substantially airtight to prevent atmospheric gases from entering the anode chamber 14a and/or the cathode chamber 16a.
電解槽10aを調整した実質的に不活性雰囲気中で操業
出来る様保護ガス導入設備37から密閉容器12a内に
保護ガスを入れる。チタンに対しての調整雰囲気は通常
操業温度で電解液およびチタンに対し実質的に不活性な
アルゴン又はヘリウムの様なガスである。4塩化チタン
と共に塩化リチウム一塩化カリウム電解液を使う場合操
業温度は通常塩混合物の共融点(約348℃)から約6
50℃、好ましくは475℃乃至575℃である。A protective gas is introduced into the closed container 12a from the protective gas introduction equipment 37 so that the electrolytic cell 10a can be operated in a regulated substantially inert atmosphere. The controlled atmosphere for titanium is typically a gas such as argon or helium that is substantially inert to the electrolyte and titanium at operating temperatures. When using a lithium chloride potassium monochloride electrolyte with titanium tetrachloride, the operating temperature is usually about 6 ℃ below the eutectic point of the salt mixture (about 348°C).
50°C, preferably 475°C to 575°C.
当然操業温度は使用する特定電解液の融点又は範囲によ
つて変るだろう。陽極18a1沈着陰極20a又は供給
陰極22aの交換又は検査の為取出せる様に陽極室14
a又は陰極室16a内の雰囲気を反応性大気ガスで汚染
せずに陰極および(又は)陽極を取出す為の空気ロツク
38,38aおよび38bの様な気密室をつけることが
好ましい。容器12a内に反応性ガスが入わその雰囲気
を汚染するのを防ぐ為陽極室14aおよび陰極室16a
を外部大気から遮断するに適したバルブ40の様な設備
を設ける。陽極、陰極又は隔膜を容器12aから取り出
し又は容器内に入れる際にバルブ40は閉ぢて空気ロツ
ク38,38aおよび38bを遮断するに適する。この
バルブおよび空気ロツクの操作はこの分野の知識ある者
にはよく知られている。生成された塩素ガスを除去する
導管32aは少なくも一部が陽極空気ロツク38b内に
ある。Of course, operating temperatures will vary depending on the melting point or range of the particular electrolyte used. The anode chamber 14 is arranged so that the anode 18a1 deposited cathode 20a or supply cathode 22a can be removed for replacement or inspection.
It is preferred to provide an airtight chamber, such as air locks 38, 38a and 38b, for removing the cathode and/or anode without contaminating the atmosphere within the cathode chamber 16a or cathode chamber 16a with reactive atmospheric gases. In order to prevent reactive gas from entering the container 12a and contaminating the atmosphere thereof, an anode chamber 14a and a cathode chamber 16a are provided.
Equipment such as a valve 40 suitable for isolating the air from the outside atmosphere is provided. Valve 40 is adapted to close and shut off air locks 38, 38a and 38b when the anode, cathode or diaphragm is removed from or placed into container 12a. The operation of this valve and air lock is well known to those skilled in the art. Conduit 32a for removing generated chlorine gas is at least partially within anode air lock 38b.
沈着陰極空気ロツク38aは陰極室から金属チタンを取
出すのに使用出来る。原子価電極42は電解槽10aの
操業中電解液内のチタンイオンの平均原子価測定の為少
なくも一部を溶融・・ロゲン化物電解液中に浸漬してお
く。Deposition cathode air lock 38a can be used to remove titanium metal from the cathode chamber. At least a portion of the valence electrode 42 is immersed in a melted halogenide electrolyte in order to measure the average valence of titanium ions in the electrolyte during operation of the electrolytic cell 10a.
原子価電極42は陰極室16a内のチタンイオン濃度お
よびしたがつて平均チタンイオン原子価を調節又は調整
する為4塩化チタン供給源24aおよびポンプ44の様
な4塩化チタン計量設備と連絡させうる。計量ポンプ4
4は導管又はパイプ46をとおし供給陰極22aに対す
る4塩化チタン供給を調整しそれによつてチタンイオン
濃度を規定値に調節するに適している。陽極室14aお
よび陰極室16a内の電解液を規定温度に保つ為電解温
度調整設備47を設けるとよい。Valence electrode 42 may be in communication with titanium tetrachloride metering equipment, such as titanium tetrachloride source 24a and pump 44, to control or adjust the titanium ion concentration and therefore the average titanium ion valence within cathode chamber 16a. Metering pump 4
4 is suitable for regulating the titanium tetrachloride supply to the supply cathode 22a through a conduit or pipe 46, thereby adjusting the titanium ion concentration to a specified value. In order to maintain the electrolytic solution in the anode chamber 14a and the cathode chamber 16a at a specified temperature, an electrolysis temperature adjustment facility 47 may be provided.
温度調整設備47は必要に応じ例えば空気、電気的、ガ
ス又は油の様な既知手段を選んで電解液を冷却又は加熱
して調節出来る。電解槽10a操業中好ましくない酸化
物、窒化物および一般に滓としてこの分野で知られてい
る汚物の様な他の固体物質が容器12a内に累積する。The temperature regulating equipment 47 can be used to cool or heat the electrolytic solution by selecting a known means such as air, electricity, gas, or oil as required. During operation of electrolytic cell 10a, undesirable oxides, nitrides, and other solid materials such as filth, commonly known in the art as slag, accumulate within vessel 12a.
電解槽10aから電解液を余り損失せずに人力で又は機
械的に滓を除去出来る様バルブとパイプの組合せ滓除去
設備48を設けることが出来る。隔膜17aの形態は記
載装置中一番重要なものである。隔膜17a中の孔又は
開口は例えば実質的量の金属チタン粒子、酸化チタン又
は滓による閉塞を防ぐに充分大きいことが必要である。
更に孔はチタンイオンを含む溶融塩浴の実質的量が陽極
室14aから陰極室16aにとおシ抜けるのを防ぐに充
分小さい面積である必要がある。同時にまた陽極室14
a中の望む浴組成を保つ為塩化リチウム一塩化カリウム
電解液の充分の量が陰極室16aから陽極室14aに入
り得る充分の大きさのものであることが好ましい。ニツ
ケル基質上に例えば電解的に又は非電気的に着けたコバ
ルト層をもつ金属隔膜が上記要請に適合することが発見
されている。メツキした隔膜はCfが0.1乃至25の
場合0.1乃至0.5、好ましくは0.1乃至0.4の
Cdをもつ。しかし例えば0.003の様な低いCdを
もつ隔膜もチタン製造に充分使用出来るとわかつており
これも本発明の範囲内である。Cfは0.1乃至8が好
ましく0.2乃至1が更によい0上記装置、特に規定し
たCdおよびCfをもつ有孔隔膜の使用によつてチタン
の様な多価金属を電解中隔膜孔大きさを調節する必要な
く製造出来ることを発見したのである。A valve and pipe combination sludge removal facility 48 may be provided to allow sludge removal manually or mechanically from the electrolytic cell 10a without significant loss of electrolyte. The form of the diaphragm 17a is the most important thing in the writing device. The pores or openings in the diaphragm 17a need to be large enough to prevent blockage by, for example, substantial amounts of titanium metal particles, titanium oxide, or slag.
Additionally, the pores must be of a sufficiently small area to prevent a substantial amount of the molten salt bath containing titanium ions from passing through from the anode chamber 14a to the cathode chamber 16a. At the same time, the anode chamber 14
In order to maintain the desired bath composition in a, the electrolyte is preferably large enough to allow a sufficient amount of the lithium chloride monopotassium chloride electrolyte to enter the anode chamber 14a from the cathode chamber 16a. It has been found that a metal membrane with a cobalt layer deposited, for example electrolytically or non-electrolytically, on a nickel substrate meets the above requirements. The plated diaphragm has a Cd of 0.1 to 0.5, preferably 0.1 to 0.4 when the Cf is 0.1 to 25. However, it has been found that diaphragms with low Cd, such as 0.003, can be satisfactorily used in titanium production and are within the scope of the present invention. Cf is preferably from 0.1 to 8, and more preferably from 0.2 to 1.0 By using the above-mentioned apparatus, especially a perforated diaphragm with specified Cd and Cf, a polyvalent metal such as titanium can be electrolytically sized to a diaphragm pore size of 0.2 to 1. They discovered that they could be manufactured without the need to adjust the temperature.
更に隔膜はその上に金属膜をもつ網状金属基質であるの
で、それは使用前容易に貯蔵出来また陶器質隔膜よりも
機械的損傷に耐える。図3は隔膜をとおる水量速度測定
用設備の概略図を示している。Furthermore, because the membrane is a reticulated metal matrix with a metal membrane thereon, it can be easily stored before use and is more resistant to mechanical damage than porcelain membranes. FIG. 3 shows a schematic diagram of an installation for measuring the rate of water flow through a diaphragm.
温度約75℃に保つた水は水槽50から導管54をとお
して隔膜52に供給される。水流速度は上方に伸びてい
る管56中導管54のA軸から管56内の水表面迄25
.4儂の高さの水準又はヘツドとするに充分なものとす
る。管56の士端は大気中に開いている。管56内のヘ
ツドをかく保てば試験する隔膜52上の平均ヘツドを水
約25.4cTnに保つことが出来る。194?2の隔
膜をとおる水量は容器58に受けて測ることが出来る。Water maintained at a temperature of about 75° C. is supplied to the diaphragm 52 from the water tank 50 through a conduit 54. The water flow velocity is 25 from the A axis of the conduit 54 in the pipe 56 extending upward to the water surface in the pipe 56.
.. It shall be sufficient to provide a level or head 4 degrees high. The end of tube 56 is open to the atmosphere. Maintaining the head in tube 56 maintains an average head of water on the membrane 52 being tested at approximately 25.4 cTn. The amount of water passing through the diaphragm 194?2 can be measured by receiving it in the container 58.
測定流速t/分は流量係数Cf決定に使用出来る。さて
図4の試験装置又はセルについては従来特定隔膜が電解
槽使用に適しているかどうか予め決定することは困難で
あつたし時には不可能であつた。The measured flow rate t/min can be used to determine the flow coefficient Cf. Now, with respect to the test apparatus or cell of FIG. 4, it has heretofore been difficult, and sometimes impossible, to determine in advance whether a particular diaphragm is suitable for use in an electrolytic cell.
隔膜構成材質が実質的に非反応性、即ち電解槽内の電解
液と物理的にも化学的にも不活性でなければならないこ
とは知られている。しかし特定有孔隔膜の構造および表
面特性の槽効率に及ぼす影響を正確に予測する手段は一
般に知られていない。したがつて隔膜を電解装置に挿入
する以前に隔膜が槽に有効であるかどうか決定する手段
があることは非常に望ましい。本発明に関連して、心解
槽使用における隔膜の適応性測定方法が開発された。It is known that the membrane material must be substantially non-reactive, ie, physically and chemically inert with the electrolyte in the electrolytic cell. However, there is generally no known means of accurately predicting the influence of the structure and surface properties of a particular porous membrane on tank efficiency. It is therefore highly desirable to have a means of determining whether a diaphragm is valid for the cell prior to inserting the diaphragm into the electrolyzer. In connection with the present invention, a method has been developed to measure the suitability of the diaphragm in the use of cardiotomy baths.
その方法は電解液を入れた試験セル中に漬けた一次陽極
と一次陰極の間に分つている直流起電力を印加すること
より成る。電解液の規定部分をとおる電気特性は二次陽
極と陰極の間にあり規定距離離れた第1塩ブリツジと第
2塩ブリツジによつて電解液の規定部分と連絡している
2測定電極を使つて測定する。測定しようとする隔膜を
測定電極間に挿入し電解液の規定部分をとおる電気特性
を測定する。隔膜挿入によつて起る電解液をとおる特性
変化が測定出来る。上記測定法でいう隔膜とは電解槽中
の陽極と陰極の間にある多孔性障壁と定義される。The method consists of applying a divided direct current electromotive force between a primary anode and a primary cathode immersed in a test cell containing an electrolyte. The electrical properties of the electrolyte through a defined portion of the electrolyte are measured using two measuring electrodes located between the secondary anode and the cathode and connected to the defined portion of the electrolyte by a first salt bridge and a second salt bridge separated by a specified distance. and measure. The diaphragm to be measured is inserted between the measurement electrodes, and the electrical characteristics of the electrolyte passing through a specified portion are measured. Changes in the properties of the electrolyte caused by inserting the diaphragm can be measured. The diaphragm in the above measurement method is defined as a porous barrier between the anode and cathode in the electrolytic cell.
この隔膜は例えばアスベスト、伝導性多孔質板又は網、
焼結多孔性材料等である。隔膜の効率は少なくも一部は
その多孔性および粗さの様な表面特性に依るので、多孔
性を検べる流量試験(一定時間に隔膜の既知面積をとお
る液量測定)のみが一般的に電解槽操業時におけるこれ
からの隔膜効率の正確な測定ではない。This diaphragm can be made of, for example, asbestos, a conductive porous plate or mesh,
Such as sintered porous material. Because the efficiency of a diaphragm depends, at least in part, on its surface properties such as porosity and roughness, only flow tests (measuring the amount of liquid through a known area of a diaphragm in a given time) that can test for porosity are common. However, this is not an accurate measurement of the diaphragm efficiency during electrolyzer operation.
例えば隔膜中の孔をとおる電流の本測定法は隔膜の物理
的多孔性と表面特性の双方に依るとわかつている。上記
方法により得られた電圧、抵抗および(又は)電流測定
は驚く程正確に隔膜効率を表わすことが今や発見された
。上記方法は例えば電解用隔膜の適応性試験用又はこの
隔膜の製造又は操業における品質管理の定期的又ぱ連続
的監視用に使用出来る。図4における一次陽極60およ
び一次陰極61の様な一次電極は電解液62中に浸漬さ
れ電源64に接続される。For example, this method of measuring current through pores in a diaphragm has been found to depend on both the physical porosity and surface properties of the diaphragm. It has now been discovered that voltage, resistance and/or current measurements obtained by the above method represent membrane efficiency with surprising accuracy. The above method can be used, for example, for suitability testing of electrolytic membranes or for periodic or continuous monitoring of quality control in the manufacture or operation of such membranes. Primary electrodes, such as primary anode 60 and primary cathode 61 in FIG. 4, are immersed in electrolyte 62 and connected to a power source 64.
適当する電解液が一次電極60と61および隔膜66と
適合し隔膜66を電解液62中に挿入の電気的影響を正
確に測定レうるに充分な電気伝導度をもつ。一次電極6
0と61および電解液62は可逆電解反応をなしうる電
池を形成する様選ぶ。更に金属性隔膜を試験する場合電
解液62の電導度は隔膜66の電解液62への挿入が金
属性隔膜が中間電極となるに不充分な一次電極60と6
1間の電圧変化を生ずる様なものでなければならない。
一般に適当する電解液の例としては金属の塩素酸塩、塩
化物、硝酸塩および硫酸塩の様な無機塩水溶液又は酸電
解溶液がある。適当する金属は例えばアルカリ金属、ア
ルカリ土金属および遷移金属であり、Li,Na,K,
Rb,Cs,Be,Mg,Ca,SrおよびBaの様な
アルカリおよびアルカリ土金属が好ましい。次電極材料
として使う物質は一般にこの分野で電極用と知られたも
の、例えばグラフアイト、Ru,Rh,Pd,Ag,O
s,Ir,PtおよびAuである。銀一塩化銀電極は一
次電極として使用に特に適しているとわかつており好ま
しい。一次電極60と61は実質的に非電導性支持物6
8と69内にあり電極60の表面65は規定距離、例え
ば2.54CTfL電極61の表面67から離れている
。A suitable electrolyte is compatible with primary electrodes 60 and 61 and diaphragm 66 and has sufficient electrical conductivity to permit accurate measurement of the electrical effects of inserting diaphragm 66 into electrolyte 62. Primary electrode 6
0 and 61 and electrolyte 62 are selected to form a battery capable of performing reversible electrolytic reactions. Furthermore, when testing a metallic diaphragm, the electrical conductivity of the electrolyte 62 may be such that the insertion of the diaphragm 66 into the electrolyte 62 is insufficient for the primary electrodes 60 and 6 to be such that the metallic diaphragm becomes an intermediate electrode.
It must be such that it causes a voltage change between 1 and 1.
Examples of generally suitable electrolytes include aqueous solutions of inorganic salts such as metal chlorates, chlorides, nitrates and sulfates or acid electrolytes. Suitable metals are, for example, alkali metals, alkaline earth metals and transition metals, such as Li, Na, K,
Alkali and alkaline earth metals such as Rb, Cs, Be, Mg, Ca, Sr and Ba are preferred. The materials used as electrode materials are generally those known in this field for electrodes, such as graphite, Ru, Rh, Pd, Ag, O.
s, Ir, Pt and Au. Silver monochloride electrodes are preferred as they are particularly suitable for use as primary electrodes. The primary electrodes 60 and 61 are substantially non-conductive supports 6
8 and 69 and the surface 65 of the electrode 60 is separated from the surface 67 of the electrode 61 by a defined distance, for example 2.54 CTfL.
支持物68と69は例えばメチルアクリレート可塑物質
でできており1隔膜を支持物に接触して取付けた場合実
質的にすべての電流を隔膜66をとおして電極60と6
1の間に通じさせるに適している。付属カロメル測定用
2電極70と72は第1塩ブリツジおよび第2塩ブリツ
ジにより電解液62に接続している。Supports 68 and 69 are made of, for example, methyl acrylate plastic and, when one membrane is mounted in contact with the supports, substantially all of the current is passed through membrane 66 to electrodes 60 and 6.
Suitable for passing between 1 and 2. Two attached calomel measuring electrodes 70 and 72 are connected to the electrolyte 62 by a first salt bridge and a second salt bridge.
オリフイス78と80および塩ブリツジ74と76はそ
れぞれ一次電極60と61の間の定めた位置において支
持物68と6′9を抜けて電解液62と連絡している。
オリフイス78と80は電解液62中オリフイスの中心
線BとCで表わしてオリフイスの中心間定めた距離、例
ぇば1.9(177!はなれた位置にある。本発明に用
いるに適した測定用又は補助電極70および72はよく
知られたものである。例えばカロメル、カドミウム、水
素、水銀電極等が測定用電極として使用出来る。本発明
の実施に当り直流起電力を一次電極間に一定電流を流す
為一次陽極60と一次陰極61間に印加する。Orifices 78 and 80 and salt bridges 74 and 76 communicate with electrolyte 62 through supports 68 and 6'9 at defined locations between primary electrodes 60 and 61, respectively.
The orifices 78 and 80 are separated by a distance defined between the centers of the orifices, represented by center lines B and C of the orifices in the electrolyte 62, e.g. The secondary or auxiliary electrodes 70 and 72 are well known. For example, calomel, cadmium, hydrogen, mercury electrodes, etc. can be used as measuring electrodes. In practicing the present invention, the DC electromotive force is replaced by a constant current between the primary electrodes. is applied between the primary anode 60 and the primary cathode 61 to flow.
一次電極間60と61に印加する起電力は電解液62を
分解するに要する電位より小さな電圧を電解液をとおし
生ずる必要がある。The electromotive force applied between the primary electrodes 60 and 61 must produce a voltage across the electrolyte that is less than the potential required to decompose the electrolyte 62.
例えばNaCl水溶液が電解液である場合電解液をとお
しての電圧は少なくも水の分解電位より小さくなければ
ならない。電気特性、塩ブリツジオリフイス78と80
間の定めた距離をとおしての電圧は測定電極70と72
によつて測定する。For example, when the electrolyte is an aqueous NaCl solution, the voltage across the electrolyte must be at least lower than the decomposition potential of water. Electrical characteristics, salt bridges 78 and 80
The voltage across a defined distance between measuring electrodes 70 and 72
Measured by
電解液62の抵抗は測定電極70と72間の測定電圧を
既知電流で除して決定される。隔膜66ぱ電解液62中
一次電極60と61および塩ブリツジオリフイス78と
80間におきそれによつて塩ブリツジオリフイス78と
80間の定めた距離をとおしての測定電極間の電気抵抗
が変る。The resistance of electrolyte 62 is determined by dividing the measured voltage between measurement electrodes 70 and 72 by the known current. A diaphragm 66 is placed in the electrolyte 62 between the primary electrodes 60 and 61 and the salt bath fixtures 78 and 80, thereby changing the electrical resistance between the measuring electrodes through a defined distance between the salt bath fixtures 78 and 80. .
前述のとおり隔膜66は支持物68によつて定められた
隔膜面積をとおして電流が最大に流れる様かつ支持物6
8の表面および隔膜66又は隔膜66の周囲端の間の界
面におけるすき間を流れる電流を最小とする様な方法で
支持物68と接触させておく。隔膜66は電解液62中
一次電極60と61および測定電極70と72に通する
塩ブリツジオリフイス78と82の間に位置しそれによ
つて測定電極間の電気抵抗が変る。As mentioned above, the diaphragm 66 is designed to maximize current flow through the diaphragm area defined by the supports 68 and
8 and the diaphragm 66 or the peripheral edge of the diaphragm 66 in a manner that minimizes current flowing through the gap at the interface. Diaphragm 66 is located between salt bridge fittings 78 and 82 which pass primary electrodes 60 and 61 and measurement electrodes 70 and 72 in electrolyte 62, thereby varying the electrical resistance between the measurement electrodes.
既知一定電流において、電解液62(7)規定部分にお
ける測定電極によつて測つた電圧変化は電解隔膜槽中の
隔膜の多孔性の量的特性および表面特性又は効果性であ
る。この隔膜槽は塩化ナトリウム塩水からの塩素又は4
塩化チタンからのチタンの様な金属の電解製造用に適し
ている。この方法は隔膜の間に生じた直流が隔膜の既知
面積のみをとおる様な大きさと形をもつ一次電極を使つ
て隔膜の均質性を検査するのに使用出来る。At a known constant current, the voltage change measured by the measuring electrode in a defined portion of the electrolyte 62(7) is a quantitative characteristic of the porosity and surface properties or effectiveness of the diaphragm in the electrolytic diaphragm cell. This diaphragm tank uses chlorine from sodium chloride brine or
Suitable for electrolytic production of metals such as titanium from titanium chloride. This method can be used to test the homogeneity of a diaphragm using a primary electrode sized and shaped such that the direct current generated between the diaphragms passes only over a known area of the diaphragm.
一次電極間の電気特性、電圧、抵抗又は電流は一次電極
間に隔膜を入れる前後に電極間の規定部分をとおし測定
出来る。各測定後次の測定が隔膜の異なる部分について
行なわれる様隔膜を一次電極に対して移動する。2又は
3以上の測定結果を比較すれば隔膜の透過性および表面
特性における均質性又は欠陥がわかる。The electrical properties, voltage, resistance or current between the primary electrodes can be measured through the defined area between the electrodes before and after inserting the diaphragm between the primary electrodes. The septum is moved relative to the primary electrode such that after each measurement the next measurement is taken on a different part of the septum. Comparing the results of two or more measurements reveals homogeneity or defects in the permeability and surface properties of the membrane.
この試験はどんな温度又は圧力においてもそれらが一定
に保たれる限b行なうことが出来る。前記の方法は多孔
性金属性網、板又はグリツド隔膜、特に金属メツキした
多孔性金属織網に使用出来るとわかつている。This test can be performed at any temperature or pressure as long as they are kept constant. It has been found that the above method can be used with porous metal meshes, plates or grid diaphragms, especially metal-plated porous woven metal meshes.
次に示す実施例は本発明を例証するものである。The following examples illustrate the invention.
実施例 1実質的に図1に示した装置を用いて0.1モ
ル塩化ナトリウム水性電解液(純度99.5重量%の試
薬級塩化ナトリウムを蒸留水に溶解)、2.54C!T
L間隔の2個の4.2CT!L×1.3?×厚さ0.1
6?角形銀一塩化銀一次電極および塩化ナトリムウ1.
9C!!l距離の間の電圧を測定する様塩ブリツジによ
り一次電極間に物理的に接続された2個の標準カロメル
電極を使つて電解槽隔膜として使用する直径5.1?長
さ25.4(177!円筒形ニツケルメツキしたニツケ
ル織網の適応性を検べた。Example 1 Using an apparatus substantially as shown in FIG. 1, a 0.1 molar sodium chloride aqueous electrolyte (reagent grade sodium chloride of 99.5% purity by weight dissolved in distilled water), 2.54C! T
Two 4.2 CTs with L spacing! L×1.3? ×Thickness 0.1
6? Square silver silver monochloride primary electrode and sodium chloride 1.
9C! ! 5.1 mm diameter used as an electrolytic cell diaphragm using two standard calomel electrodes physically connected between the primary electrodes by a salt bridge to measure the voltage across a distance of 5.1 mm. The adaptability of the nickel woven net with a cylindrical nickel plating of length 25.4 (177!) was tested.
銀一塩化銀電極は電極間に網隔膜を挿入出来るメチルア
クリレート可塑物枠内に入れた。充分な電圧の直流起電
力を一次電極間に2ミリアンペア(Ma)電流の流れる
様一次電極に印加した。The silver monochloride electrodes were placed within a methyl acrylate plastic frame in which a reticular diaphragm could be inserted between the electrodes. A DC electromotive force of sufficient voltage was applied to the primary electrodes such that a 2 milliampere (Ma) current flowed between the primary electrodes.
電極間に網隔膜を入れる前後の測定電極間の電圧および
直流電流を測定した。試験は一定室 二温(約20℃)
1気圧において行なつた。塩化ナトリウム電解液電圧は
68ミリボルト(Mv)と測定されまた隔膜挿入前の電
流は2maと実証された。The voltage and direct current between the measurement electrodes were measured before and after inserting the retinal diaphragm between the electrodes. The test was conducted in a fixed room at two temperatures (approximately 20°C).
The test was carried out at 1 atm. The sodium chloride electrolyte voltage was measured to be 68 millivolts (Mv) and the current prior to septum insertion was demonstrated to be 2 ma.
隔膜を試験セルに挿入後の測定電極間の電圧は93mv
に増加し電流は一定2ma二に保たれた。25mvの電
圧増加は試験セル抵抗12,5オームの増加又は電極間
の塩化ナトリウム電解液0.7に相当すると規準方法に
よつて計算された。The voltage between the measuring electrodes after inserting the diaphragm into the test cell is 93 mv.
The current was kept constant at 2 ma2. A voltage increase of 25 mv was calculated by the standard method to correspond to an increase in test cell resistance of 12.5 ohms or 0.7 of the sodium chloride electrolyte between the electrodes.
同じ材料の種々の隔膜を上記のとおり試験しま こた4
塩化チタンからガタ)徊造電解槽に使用した。隔膜係数
(CdY又は隔膜電解液当量(インチ)を次式によつて
計算し満足なおよび不満足な隔膜について比較した。そ
れにより満足な隔膜係数(Cd)を決定した。
5隔膜係数は次式により表わされ
る:土式中Vd+8は規定間隔D丈けはなれたオリフイ
スをもつ塩ブリツジにより電解液と連絡している測定電
極によつて測定し隔膜が操作中上記塩ブリツジオリフイ
ス間に入つている場合の電解液の規定部分をとおして測
定した電圧(Mv)とする。Various diaphragms of the same material were tested as described above.
From titanium chloride to Gata) used in the electrolytic cell. The diaphragm coefficient (CdY or diaphragm electrolyte equivalent in inches) was calculated and compared for satisfactory and unsatisfactory diaphragms according to the following formula. The satisfactory diaphragm coefficient (Cd) was thereby determined.
5 The diaphragm coefficient is expressed by the following formula: where Vd+8 is measured by a measuring electrode communicating with the electrolyte by means of a salt bridge with orifices separated by a specified distance D; This is the voltage (Mv) measured through a defined portion of the electrolyte when it is between the orifices.
d+sはVd+sにおけるとおり隔膜が入つている電解
液中の一次電極間の測定電流(Ma)である。VsはV
d+sと同一条件であるが隔膜のない場合の測定電圧(
Mv)である。IsはId+sを測定した条件である力
扁膜のない場合の電解液中の一次電極間の測定電流(M
a)である。d+s is the measured current (Ma) between the primary electrodes in the electrolyte containing the diaphragm as in Vd+s. Vs is V
Measured voltage under the same conditions as d+s but without a diaphragm (
Mv). Is is the measured current (M
a).
Dは塩ブリツジオリフイス間の規定間隔である。D is the prescribed spacing between salt bridges.
実施例 2−4実施例1に記載の方法により他の金属網
隔膜の係数(Cd)を測定した。Examples 2-4 The coefficients (Cd) of other metal mesh diaphragms were measured by the method described in Example 1.
試験条件および結果を表…に示している。(a)電解液
に0.01モルH2SO4および一次電極にグラフアイ
トおよび(b)電解液に0.01モルNaClおよび一
次電極に銀一塩化銀をそれぞれ用いて本方法によジ更に
金属網隔膜を試験した処満足な結果が得られた。Test conditions and results are shown in Table... (a) 0.01 mol H2SO4 in the electrolyte and graphite as the primary electrode; and (b) 0.01 mol NaCl in the electrolyte and silver monochloride as the primary electrode. Satisfactory results were obtained when tested.
実施例 5−42
付図2に示したと同じ電解様中で4塩化チタン(TiC
l4)から純度999重量%の金属チタンを生成した。Example 5-42 Titanium tetrachloride (TiC
14) to produce metallic titanium with a purity of 999% by weight.
電解装置は外径45.6?、高さ56?の実質的に円筒
形低炭素鋼容器に入つていた。直径4.8CTL1長さ
16,5C7TLの実質的に円筒形で下端の閉じた隔膜
を直径1.9CTrL1長さ約45.6?の固体グラフ
アイト陽極を中心として周囲においた。約55重量%の
LiClと約45重量%のKClより成るほぼ共融点組
成をもつ溶融塩化リチウム一塩化カリウム浴中に陽極の
長さ15.2cmが浸漬していた。隔膜は望むCdとC
fになるに充分な量のコバルト又はニツケルを電解的に
又は非電気的にメツキした工業用純ニツケル網であつた
。(表および参照)メツキは粗いにぶい又は光反射の小
さい面となる様なメツキ液中で行なつた。隔膜の使用寿
命をのばす為隔膜と陽極の間隔は陽極直径の1/4乃至
11/′2倍の範囲の寸法に選んだ。沈着陰極は直径2
.54C7TL1長さ19(1−JモV1の工業用軟鋼棒
であつた。供給設備又は供給陰極は溶融電解液中にTi
Cl4ガスを送るものとした。供給陰極はステインレス
鋼管でその周囲にはなれて環状に円筒形コバルト、鉄又
はニツケルを電解的に又は非電気的にメツキした100
メツシユの鉄又はニツケル網があるものであつた。網の
下端は閉じていた。メツキした供給陰極網のCdは0.
1乃至0.6でCfは0.2乃至30であつた。操作は
液体TiCl4をポンプで供給陰極に送つた。The outer diameter of the electrolyzer is 45.6? , height 56? contained in a substantially cylindrical low carbon steel container. A substantially cylindrical diaphragm with a closed lower end of diameter 4.8CTL1 length 16.5C7TL and a diameter of 1.9CTL1 length approximately 45.6? A solid graphite anode was placed around the center. A 15.2 cm length of the anode was immersed in a molten lithium potassium monochloride bath having a near eutectic composition of about 55% by weight LiCl and about 45% by weight KCl. The diaphragm is the desired Cd and C
It was an industrial pure nickel mesh plated electrolytically or non-electrolytically with a sufficient amount of cobalt or nickel to give f. (Table and reference) Plating was carried out in a plating solution that resulted in a rough surface or a surface with low light reflection. In order to extend the service life of the diaphragm, the distance between the diaphragm and the anode was selected to be in the range of 1/4 to 11/'2 times the anode diameter. The deposited cathode has a diameter of 2
.. 54C7TL1 was an industrial mild steel bar with a length of 19 (1-JMoV1).The feeding equipment or feeding cathode was
It was assumed that Cl4 gas was sent. The supply cathode is a stainless steel tube with a ring-shaped cylindrical cobalt, iron or nickel plated electrolytically or non-electrolytically.
It had mesh iron or nickel mesh. The lower end of the net was closed. The Cd of the plated supply cathode network is 0.
1 to 0.6, and Cf was 0.2 to 30. The operation involved pumping liquid TiCl4 to the feed cathode.
それが供給陰極の孔から溶融陰極液中に入ると気化して
TiCl3およびTiCl2に還元された。陽極で塩素
が発生し沈着陰極上に金属チタンが着くに充分な負荷を
供給陰極および陽極と陰極に与えた。塩素は陽極室から
電解槽のカバーからのびたパイプによつて絶えず除去し
た。チタンは定期的に先ず沈着陰極を装置から取りはず
し陰極から固体沈着チタンスポンジをはがして回収し次
いで陰極を槽に取つけた。陽極室および陰極室内の雰囲
気は槽周囲の大気圧に対し正圧を保つに充分なアルゴン
ガスを絶えず各室に送つて実質的に不活性状態に保つた
。実施例5−42により得たチタン電流効率およびチタ
ン硬度ならびにこれらの方法のパラメーターを表とに示
している。When it entered the molten catholyte through the pores of the feed cathode, it was vaporized and reduced to TiCl3 and TiCl2. Sufficient loading was applied to the supply cathode and to the anode and cathode such that chlorine was generated at the anode and titanium metal was deposited on the deposited cathode. Chlorine was continuously removed from the anode chamber by a pipe extending from the cover of the electrolyzer. The titanium was periodically recovered by first removing the deposited cathode from the apparatus, peeling off the solid deposited titanium sponge from the cathode, and then attaching the cathode to the bath. The atmosphere within the anode and cathode chambers was kept substantially inert by constantly passing sufficient argon gas into each chamber to maintain a positive pressure relative to the atmospheric pressure surrounding the chamber. The titanium current efficiency and titanium hardness obtained in Example 5-42 and the parameters of these methods are shown in the table.
表とから上記方法法によつて低硬度、即ち高純度金属チ
タンが効率的に生成出来ることが明らかである。It is clear from the table that low hardness, ie high purity metallic titanium can be efficiently produced by the above method.
実施例5−42に記載したと同様の方法でCdO.OO
3およびCfl.lの隔膜を用いて満足にチタンが製造
出来た。CdO. in a manner similar to that described in Example 5-42. OO
3 and Cfl. Titanium could be produced satisfactorily using a diaphragm of 1.
ノ
図5は負にチヤージされた陰極上に金属を電着させる為
電解液内におくに適した金属化合物供給陰極である。Figure 5 is a metal compound delivery cathode suitable for placement in an electrolyte for electrodeposition of metal onto a negatively charged cathode.
供給陰極は管又はパイプ80の様な供給管より成りイオ
ン化性多価金属化合物がそれをとおるのである。塩化カ
リウムと塩化リチウムの溶融混合物の様な電解液中にパ
イプ80から4塩化チタン(TiCl4)の様な金属化
合物の出るパイプ80の開口82をかこみ一般に包囲し
ているのが包囲部品84である。The feed cathode comprises a feed conduit, such as tube or pipe 80, through which the ionizable polyvalent metal compound passes. Enclosing and generally surrounding the opening 82 of the pipe 80 where a metal compound such as titanium tetrachloride (TiCl4) exits the pipe 80 in an electrolyte such as a molten mixture of potassium chloride and lithium chloride is an enclosure component 84. .
包囲部品84の少なくも一部は電導性有孔部品86を成
し、パイプ80の外部と包囲部品84の内部によつて形
成された環状室88の様な供給電極室内から溶融電解浴
中の金属化合物からのイオンを隣わの沈着陰極室(図に
示していない)にある陰極液に送るに適している。実質
的にガスをとおさない部品90が有孔部品86の上下端
を物理的に閉じている。包囲部品84はパイプ80の周
囲に同軸的に既知の方法で固定されている。At least a portion of the enclosure 84 constitutes an electrically conductive perforated element 86 that allows the flow of fluid in the molten electrolytic bath from a supply electrode chamber, such as an annular chamber 88, formed by the exterior of the pipe 80 and the interior of the enclosure 84. It is suitable for delivering ions from the metal compound to the catholyte in an adjacent deposition cathode chamber (not shown). Substantially gas-tight components 90 physically close the upper and lower ends of perforated component 86. A surrounding part 84 is fixed coaxially around the pipe 80 in a known manner.
電気的に接続された負電源94によつて負のチヤージが
有孔部品に与えられた場合有孔部品84からパイプ80
を電気絶縁する為に包囲部品84からパイプ80をはな
しておく様任意に電気絶縁部品92を入れる。図5の実
施態様操作中供給陰極を電気的にチヤジされた部分の少
なくも一部、好ましくは実質的に全部が溶融・・ロゲン
化物電解浴の表面下に入る様電解槽内におく。4塩化チ
タンの様なイオン化性金属化合物は図1に示すとおり源
泉24から流れ又はポンプで送られ導管80をとおり開
口82から供給電解液室88に入る。When a negative charge is applied to the perforated part by the electrically connected negative power supply 94, the pipe 80 from the perforated part 84
Optionally, an electrically insulating component 92 is inserted to leave the pipe 80 open from the surrounding component 84 in order to electrically insulate the pipe 80 . During operation of the embodiment of FIG. 5, the feed cathode is placed in an electrolytic cell such that at least a portion, and preferably substantially all, of the electrically charged portion is below the surface of the molten halide electrolytic bath. An ionizable metal compound, such as titanium tetrachloride, flows or is pumped from a source 24 through a conduit 80 and into a supply electrolyte chamber 88 through an opening 82, as shown in FIG.
負電源94を働らかせると有孔部品86が陰極となる。
電気的に負の有孔部品86は少なくもある程度供給陰極
丙および周囲のチタンイオンを高原子価から低原子価に
還元する。溶融電解液を環状室88内からの実質的量の
物理的攬流(例えば室にガス状TiCl4の入る為生ず
る)の伝達もなく供給陰極周囲の陰極室中に送るに充分
な大きさの孔をもつ有孔部品86を用いることによつて
従来法にまさる改善されたTiCl4の利用が実現され
たのである。When the negative power source 94 is activated, the perforated component 86 becomes a cathode.
The electrically negative perforated component 86 reduces at least some of the titanium ions in and around the supply cathode from high valence to low valence. Apertures of sufficient size to convey molten electrolyte from within the annular chamber 88 into the cathode chamber around the feed cathode without transmission of substantial amounts of physical drainage (e.g., caused by the entry of gaseous TiCl4 into the chamber). By using the perforated component 86, improved utilization of TiCl4 over conventional methods was achieved.
図6は本発明の他の実施態様の容器102とカバー10
4をもつ電解槽100の図である。FIG. 6 shows a container 102 and cover 10 of another embodiment of the invention.
FIG. 4 is a diagram of an electrolytic cell 100 with a
金属沈着陰極106は陰極室108にあジ陽極室112
内にある正負荷陽極110と多孔性隔膜114により隔
離されている。供給陰極116は電解槽100内にあり
陰極室108内にある陰極液中に少なくも一部浸漬され
ている。供給陰極116は溶融塩電解液中に浸漬しまた
TiCl4を通すに適した材質の供給パイプ80aをも
つ。陰極液は溶融一・ロゲン化物混合物、例えばリチウ
ムとカリウムの塩化物が好ましい。4塩化チタンはパイ
プ80a中をアルゴンの様な不活性ガスと共に同時に流
してもよい。The metal deposited cathode 106 is placed in the cathode chamber 108 and in the anode chamber 112.
It is separated by a porous diaphragm 114 from a positively loaded anode 110 located within. Feed cathode 116 is located within electrolytic cell 100 and is at least partially immersed in catholyte within cathode chamber 108 . The supply cathode 116 is immersed in the molten salt electrolyte and has a supply pipe 80a of a material suitable for passing TiCl4. Preferably, the catholyte is a molten monologenide mixture, such as lithium and potassium chlorides. Titanium tetrachloride may be co-flown with an inert gas such as argon through pipe 80a.
不活性ガスは電解液中のTiCl4又は固体金属化合物
の混合を促進する。有孔部品86aはパイプ80aの下
端82aを実質的に完全に包囲している。部品86aは
パイプ80aと一般に共軸で任意に離れている支持物1
18に物理的に支持され電気的に接続している。支持物
118又はパイプ80a内をとおるガスを加熱しまた近
くの電解液の固化を最小とする為電気加熱器の様な加熱
設備120を任意にパイプ80aおよび支持物118の
間に隣接しておいてもよい。The inert gas promotes mixing of TiCl4 or solid metal compounds in the electrolyte. Perforated component 86a substantially completely surrounds lower end 82a of pipe 80a. Part 86a is generally coaxial with pipe 80a and optionally spaced support 1
It is physically supported and electrically connected to 18. Heating equipment 120, such as an electric heater, is optionally placed adjacent between pipe 80a and support 118 to heat the gas passing through support 118 or pipe 80a and to minimize solidification of nearby electrolyte. You can stay there.
支持物118中に電解液に溶解又は解離しないアルゴン
の様な過剰ガスを環状部124をとおわ適当な容器(図
に示していない)に排出するガス排出口122を設ける
。支持物118に任意に少なくも電解液に一部浸漬出来
る実質的な気密部品90aをつけ電解槽内の雰囲気に過
剰ガスの進入を防ぐ。実質的に部品86a全部を電解液
中に浸漬するのがよい。有孔部品86aは流量係数Cf
が0.1乃至300の範囲内である場合電気的係数Cd
がOより大きく約1迄、好ましくは0.1乃至1の範囲
である特徴をもつ。A gas outlet 122 is provided in the support 118 to vent excess gas, such as argon, which is not dissolved or dissociated in the electrolyte through the annulus 124 into a suitable container (not shown). The support 118 is optionally provided with a substantially gas-tight component 90a which can be at least partially immersed in the electrolyte to prevent the ingress of excess gas into the atmosphere within the electrolytic cell. Substantially the entire part 86a may be immersed in the electrolyte. The perforated part 86a has a flow coefficient Cf
is within the range of 0.1 to 300, the electrical coefficient Cd
is greater than O up to about 1, preferably in the range of 0.1 to 1.
有孔部品の係数は隔膜係数測定について記載したと同じ
方法で測定出来る。有孔部品86aは例えば実質的に均
一な穴又は孔が全面にある焼結板、網、板又は薄膜でよ
い。The modulus of the perforated part can be measured in the same manner as described for measuring the diaphragm modulus. The perforated component 86a may be, for example, a sintered plate, a mesh, a plate, or a thin film having substantially uniform holes or perforations all over its surface.
この孔は例えば旋孔、打抜き、編織等によつて形成出来
る。有孔部品86aは望むCdとCfをもつ様電解的又
は非電気的方法で充分の量のコバルト、鉄又はニツケル
の様な物質を着けた米国標準ふるい50乃至250メツ
シユ、好ましくは100乃至200メツシユの織網ふる
いが好ましい。適当する沈着法は例えばメツキ液中光沢
剤量を減少して見た目ににぶい又は粗い表面とするに適
した既知の方法である。例えば次の溶液を使用して10
0又は200メツシユの炭素鋼又は工業用純ニツケル網
の満足なメツキを行なつたのである:有孔部品の基質は
電解槽100内の環境に耐え槽内の操業温度に望む物理
的強度をもつ鋼およびステインレス鋼を含む鉄、コバル
ト又はニツケル又は少なくも50重量%のコバルト又は
ニツケルを含むそれらの合金の様な材質でよい。有孔部
品86aの形態は上記装置において重要である。This hole can be formed, for example, by turning, punching, knitting, or the like. The perforated part 86a is made of a 50 to 250 mesh US standard sieve, preferably 100 to 200 mesh, coated with a sufficient amount of material such as cobalt, iron or nickel by electrolytic or non-electrolytic methods to provide the desired Cd and Cf content. A woven mesh sieve is preferred. Suitable deposition methods are, for example, known methods suitable for reducing the amount of brightener in the plating solution resulting in a visually dull or rough surface. For example, using the following solution:
Satisfactory plating of 0 or 200 mesh carbon steel or industrial pure nickel mesh has been achieved; the matrix of the perforated component can withstand the environment within the electrolytic cell 100 and has the desired physical strength at the operating temperatures within the cell. Materials such as iron, including steel and stainless steel, cobalt or nickel or alloys thereof containing at least 50% by weight cobalt or nickel may be used. The configuration of the perforated component 86a is important in the device described above.
有孔部品86aの孔又は開口は金属チタン粒子、他の多
価金属、酸化チタン又は滓の実質的量hζ詰らない程度
に充分大きい必要がある。更にこの孔は供給陰極116
内の攬流が陰極室内に入ることを最小とし、出来れば実
質的に完全に防ぐに充分な面積をもつものでなければな
らない。同時に多数の孔は陰極室108から塩化リチウ
ム塩化カリウム電解液の望む浴濃度を保つに充分な量が
供給陰極室に入るに充分な大きさのものが好ましい。メ
ツキした有孔部品はCfが0.1乃至300の場合0.
1乃至0.6のCdをもつものがよい。Cfは0.2乃
至30が好ましく0.2乃至8が最もよい。供給陰極1
16(図6)の操作は図5に記載したとおりで更に電源
は沈着陰極106に規定した負のチヤージを与え陽極1
10に規定した正のチャージを与える様接続する。The pores or openings in the perforated component 86a must be large enough so that they do not become clogged with a substantial amount hζ of metallic titanium particles, other polyvalent metals, titanium oxide, or slag. Furthermore, this hole is connected to the supply cathode 116.
The area shall be sufficient to minimize, and if possible substantially completely prevent, the flow of water into the cathode chamber. At the same time, the number of holes is preferably large enough to allow a sufficient amount of lithium chloride potassium chloride electrolyte to enter from the cathode chamber 108 to maintain the desired bath concentration. Plated perforated parts have a Cf of 0.1 to 300.
It is preferable to have a Cd of 1 to 0.6. Cf is preferably 0.2 to 30, and most preferably 0.2 to 8. Supply cathode 1
16 (FIG. 6) is as described in FIG.
Connect to give a positive charge as specified in 10.
4塩化チタンを供給陰極に送つた場合沈着陰極103に
おいて金属チタンが電着しまた陽極10において塩素元
素が発生し上方へ塩素貯槽(図示されていない)に流れ
る。When titanium tetrachloride is delivered to the supply cathode, metallic titanium is electrodeposited at the deposition cathode 103 and elemental chlorine is generated at the anode 10 and flows upward to a chlorine reservoir (not shown).
実質的に有孔部品86a上には金属チタンは沈着してい
ない。次の実施例は更に本発明を例証するものである。Substantially no titanium metal is deposited on the perforated component 86a. The following examples further illustrate the invention.
実施例 43−49図5に示したと同じ供給陰極をもち
陽極と陰極が隔膜で隔離されている低炭素鋼電解槽にお
いて純度約99.9重量%の金属チタンをTiCl4か
ら生成した。Examples 43-49 Titanium metal of approximately 99.9% purity by weight was produced from TiCl4 in a low carbon steel electrolyzer with the same feed cathode as shown in Figure 5, with the anode and cathode separated by a diaphragm.
電解装置は外径45.6cTn1高さ56cmの実質的
円筒形容器内にあつた。直径4.8?、長さ16.5C
T1Lで下端が閉じている実質的に円筒形の隔膜を直径
1.9(7rL1長さ約45.6CTrL固体グラフア
イト陽極の周囲に実質的に平行しておいた。陽極の長さ
15.2CTI1をほぼ共融点組成をもつ塩化リチウム
一塩化カリウム溶融浴中に浸漬した。有孔部品は表に示
したCdおよびCfとするに充分な量のコバルト、鉄又
はニツケルで電解的に又は非電気的に着けた鉄合金又は
市販純ニツケルいずれかの100メツシユ織網であつた
。表に示した特性をもつ有孔織網部品をもつ供給陰極を
用い陽極と陰極に電位を印加して実施例43−49の電
解槽操業によつて満足な金属チタンを生成した。The electrolyzer was housed in a substantially cylindrical vessel with an outer diameter of 45.6 cTn and a height of 56 cm. Diameter 4.8? , length 16.5C
A substantially cylindrical diaphragm closed at the lower end at T1L was placed substantially parallel to the circumference of a solid graphite anode of diameter 1.9 (7rL1) approximately 45.6CTrL long.Anode length 15.2CTI1 was immersed in a molten bath of lithium chloride and potassium monochloride having approximately the eutectic point composition.The perforated parts were electrolytically or non-electrolytically coated with sufficient amounts of cobalt, iron or nickel to form the Cd and Cf listed in the table. Example 43 was prepared by applying a potential to the anode and cathode using a feed cathode with a perforated mesh component having the properties shown in the table. -49 electrolyzer operations produced satisfactory titanium metal.
4塩化チタンを連続的にポンプで供給陰極に送るとチタ
ンはイオン化された後供給陰極の織網有孔部品の多数の
孔をとおつて陰極室に人つた。Titanium tetrachloride was continuously pumped to the feed cathode, and the titanium was ionized and then passed into the cathode chamber through the numerous holes in the woven perforated part of the feed cathode.
TiCl4の電解液に入る際おこつた供給陰極内の攬流
は供給陰極内に充分留まつた。陽極発生塩素と陰極にお
けるチタンは適当に槽から取り出した。上記明細書から
明らかなとおり本発明は上に記載した処と異なる種々の
別法および修正法も実施出来る。この理由から上記明細
書はすべて例証したものであつて本発明を限定するもの
と解釈されるべきでないことは十分子解されるであろう
。The water flow within the feed cathode that occurred upon entry into the TiCl4 electrolyte was sufficiently retained within the feed cathode. The chlorine generated at the anode and the titanium at the cathode were appropriately removed from the tank. As will be apparent from the above specification, the present invention may be practiced in various ways and modifications other than those described above. For this reason, it will be appreciated that the above specification is to be interpreted as illustrative only and not as limiting the invention.
付図1は本発明のチタン製造電解槽の断面図である。
付図2は本発明の他の電解槽の断面図である。付図3は
本発明の隔膜をとおる水の流速測定設備の概略図である
。付図4は本発明の隔膜の隔膜係数測定設備の概略図で
ある。付図5は本発明の電解槽に使用する供給陰極の概
略図である。付図6は本発明の隔膜を組合せた電解装置
の他の実施例の図である。各図中番号:10,10a,
100・・・電解槽、12,12a,102・・・容器
、14,14a,112・・・陽極室、16,16a,
108・・・陰極室、18,18a,110・・・陽極
、20,20a,106・・・陰極、17,17a,5
2,66,114・・・隔膜、22,22a,80,8
0a・・・TiCl4供給設備、24・・・TiCl4
源泉、38,38a,38b・・・空気ロツク、42・
・・原子価電極、60・・・一次陽極、61・・・一次
陰極、74・・・第1塩ブリツジ、70,71・・・カ
ロメル測定電極、76・・・第2塩ブリツジ、78,8
0・・・オリフイス、68,69・・・支持物、80,
80a・・・パイプ、82,82a・・・開口、84・
・・包囲部品、86,86a・・・有孔部品、116・
・・供給陰極、118・・・支持物。FIG. 1 is a sectional view of an electrolytic cell for producing titanium according to the present invention. FIG. 2 is a sectional view of another electrolytic cell of the present invention. FIG. 3 is a schematic diagram of the equipment for measuring the flow velocity of water passing through a diaphragm according to the present invention. FIG. 4 is a schematic diagram of the diaphragm coefficient measurement equipment of the diaphragm of the present invention. FIG. 5 is a schematic diagram of the supply cathode used in the electrolytic cell of the present invention. FIG. 6 is a diagram of another embodiment of an electrolytic device in which the diaphragm of the present invention is combined. Numbers in each figure: 10, 10a,
100... Electrolytic cell, 12, 12a, 102... Container, 14, 14a, 112... Anode chamber, 16, 16a,
108... Cathode chamber, 18, 18a, 110... Anode, 20, 20a, 106... Cathode, 17, 17a, 5
2,66,114...Diaphragm, 22,22a,80,8
0a...TiCl4 supply equipment, 24...TiCl4
Source, 38, 38a, 38b... Air lock, 42.
... Valence electrode, 60... Primary anode, 61... Primary cathode, 74... First salt bridge, 70, 71... Calomel measurement electrode, 76... Second salt bridge, 78, 8
0... Orifice, 68, 69... Support, 80,
80a...pipe, 82, 82a...opening, 84.
... Surrounding parts, 86, 86a... Perforated parts, 116.
...supply cathode, 118... support.
Claims (1)
の流量係数をもちかつ少なくもその表面が電解槽内の腐
蝕環境に耐える金属より成る有孔物体より成ることを特
徴とするチタン電解製造用溶融塩浴を入れている電解槽
中の陽極室を陰極室から隔離するに適した金属性隔膜。 2 隔膜係数が0.1乃至0.5でありかつ流量係数が
0.1乃至8の範囲内である特許請求の範囲第1項に記
載の隔膜。 3 隔膜係数が0.1乃至0.4でありかつ流量係数が
0.2乃至1の範囲内である特許請求の範囲第1項又は
2項に記載の隔膜。 4 隔膜表面が本質的にコバルトより成る特許請求の範
囲第1項、2項又は3項のいずれかに記載の隔膜。 5 隔膜が表面に金属被覆をもつた多孔性金属基質であ
る特許請求の範囲第1項、2項又は3項のいずれかに記
載の隔膜。 6 基質が工業用純ニッケルである特許請求の範囲第5
項に記載の隔膜。 7 基質が本質的にコバルト又はニッケル又はそれらの
合金より成る特許請求の範囲第5項に記載の隔膜。 8 金属被覆が本質的にコバルト又はニッケル又はコバ
ルトもしくはニッケルの合金より成る特許請求の範囲第
5項、6項又は7項のいずれかに記載の隔膜。 9 金属被覆が基質上に電解的に又は化学的に着けられ
ている特許請求の範囲第5項又は8項に記載の隔膜。 10 基質が鉄、コバルト、ニッケル、又は少なくも5
0重量%の上記金属を含む合金より選ばれた金属である
特許請求の範囲第5項に記載の隔膜。 11 基質が本質的にコバルトより成る被覆層をもつ5
0乃至250メッシュのニッケル網より成る特許請求の
範囲第5項から10項迄のいずれかに記載の隔膜。 12 溶融塩浴を入れるに適した本体:浴を大気から隔
離する設備:本体内にある陽極室:陽極室からのガス除
去設備:本体内にある沈着陰極室:陽極室内にあり少な
くも一部を浴に浸漬するに適する陽極少なくも1個:上
記陰極室内にあり少なくも一部を浴に浸漬するに適する
沈着陰極少なくも1個:上記の陽極および陰極に接続す
る電気エネルギー源:浴にチタンイオンを供給するに適
する少なくも1つの供給設備:および陽極室を陰極室か
ら分離する為少なくも一部を浴に浸漬するに適した少な
くも1つの有孔金属性隔膜:より成る溶融塩浴における
チタン製造用電解槽において:該隔膜が容器内の腐蝕的
環境に耐えかつ0より大きく0.5迄の隔膜係数と0.
1乃至25の流量係数をもつことを特徴とする電解槽。 13 隔膜を陽極、陰極、電解槽本体から及び電解槽外
の電源から絶縁される部材を含む特許請求の範囲第12
項記載の電解槽。 14 隔膜係数が0.1乃至0.4でありかつ流量係数
が0.1乃至8の範囲内である特許請求の範囲第12項
記載の電解槽。 15 隔膜が表面に金属被覆をもつた多孔性金属基質で
ある特許請求の範囲第12項又は13項に記載の電解槽
。 16 基質が工業用純ニッケルである特許請求の範囲第
15項記載の電解槽。 17 金属被覆が無電解的に着けられたニッケル又はコ
バルトである特許請求の範囲第15項又は16項に記載
の電解槽。 18 基質が50乃至250(US標準)メッシュの金
属網である特許請求の範囲第15項又は16項に記載の
電解槽。 19 金属被覆が電解的に着けられたニッケル又はコバ
ルトである特許請求の範囲第15項又は16項に記載の
電解槽。 20 隔膜が本質的に鉄、ニッケル、コバルト又は少な
くとも50重量%の上記金属を含む合金より成る多孔性
金属基質と本質的にコバルト又はニッケルあるいはコバ
ルト又はニッケルの合金から成る金属被膜とから成る特
許請求の範囲第12項又は13項に記載の電解槽。 21 電解槽の高温操業中階膜の物理的強度を補なう為
隔膜が多孔質物体によつて支持されている特許請求の範
囲第12項〜20項のいずれかに記載の電解槽。 22 陽極と隔膜との間隔が陽極直径の1/4乃至1.
1/2倍の範囲内である特許請求の範囲第12項〜21
項のいずれかに記載の電解槽。 23 チタンの製造が溶融塩浴中の4塩化チタンからの
金属チタン製造を含む特許請求の範囲第12項〜22項
のいずれかに記載の電解槽。 24 電解液と接触する電解槽部分がNaCl、LiC
l−KCl、LiCl−KCl−NaCl、およびLi
Cl−KCl−CaCl_2から成る群から選らばれた
溶融塩および溶融塩混合物に対し耐性がある特許請求の
範囲第23項記載の電解槽。 25 隔膜が金属被覆をもつ織つた金属基質から成り、
該基質がニッケルであり、該被覆がコバルト又はニッケ
ルあるいはコバルト又はニッケルの合金であり、そして
該隔膜が0.1乃至0.4の隔膜係数と0.1乃至1の
流量係数をもつ特許請求の範囲第12項〜24項のいず
れかに記載の電解槽。 26 陽極室にある少なくも1つの陽極、陰極室にある
少なくも1つの陰極および電解槽中にある溶融塩浴にチ
タン化合物を供給する供給設備をもつ電解槽においてチ
タンを製造する方法であつて:槽内の環境に耐える少な
くとも1つの表面をもち0より大きく0.5迄の隔膜係
数と0.1乃至25の流量係数をもつ有孔隔膜を電解槽
中に挿入して陽極室を陰極室から分離する工程、上記陽
極室および陰極室の外部の電源から上記隔膜を電気的に
絶縁する工程:および陽極陰極間に起電力を印加する工
程:より成ることを特徴とする電解槽中におけるチタン
製造法。[Claims] 1 Diaphragm coefficient greater than 0 and up to 0.5 and 0.1 to 25
An anode chamber in an electrolytic cell containing a molten salt bath for electrolytic production of titanium, characterized in that the anode chamber is made of a perforated body having a flow coefficient of A metal diaphragm suitable for isolation from the cathode chamber. 2. The diaphragm according to claim 1, which has a diaphragm coefficient of 0.1 to 0.5 and a flow coefficient of 0.1 to 8. 3. The diaphragm according to claim 1 or 2, which has a diaphragm coefficient of 0.1 to 0.4 and a flow coefficient of 0.2 to 1. 4. A diaphragm according to claim 1, 2 or 3, wherein the diaphragm surface consists essentially of cobalt. 5. The diaphragm according to claim 1, 2 or 3, wherein the diaphragm is a porous metal substrate having a metal coating on its surface. 6 Claim 5 in which the substrate is industrially pure nickel
The diaphragm described in section. 7. A diaphragm according to claim 5, wherein the matrix consists essentially of cobalt or nickel or an alloy thereof. 8. A diaphragm according to claim 5, 6 or 7, wherein the metal coating consists essentially of cobalt or nickel or an alloy of cobalt or nickel. 9. Diaphragm according to claim 5 or 8, in which the metal coating is applied electrolytically or chemically to the substrate. 10 The substrate is iron, cobalt, nickel, or at least 5
A diaphragm according to claim 5, which is a metal selected from an alloy containing 0% by weight of said metal. 11 The substrate has a coating layer consisting essentially of cobalt 5
A diaphragm according to any one of claims 5 to 10, comprising a nickel mesh of 0 to 250 mesh. 12 A body suitable for containing a molten salt bath: Equipment for isolating the bath from the atmosphere: An anode chamber located within the body: Equipment for removing gas from the anode chamber: A deposition cathode chamber located within the body: At least partially located within the anode chamber. at least one anode suitable for being immersed in the bath; at least one deposited cathode located within said cathode chamber and suitable for being at least partially immersed in the bath; a source of electrical energy connected to said anode and cathode; a molten salt comprising: at least one supply facility suitable for supplying titanium ions; and at least one perforated metallic diaphragm suitable for at least a portion of the bath to separate the anode chamber from the cathode chamber. In an electrolytic cell for the production of titanium in a bath: the diaphragm withstands the corrosive environment in the vessel and has a diaphragm coefficient of greater than 0 up to 0.5 and 0.
An electrolytic cell characterized by having a flow coefficient of 1 to 25. 13 Claim 12 includes a member that insulates the diaphragm from the anode, the cathode, the electrolytic cell body, and from the power source outside the electrolytic cell.
Electrolytic cell described in section. 14. The electrolytic cell according to claim 12, which has a diaphragm coefficient of 0.1 to 0.4 and a flow coefficient of 0.1 to 8. 15. The electrolytic cell according to claim 12 or 13, wherein the diaphragm is a porous metal substrate with a metal coating on the surface. 16. The electrolytic cell according to claim 15, wherein the substrate is industrial pure nickel. 17. The electrolytic cell according to claim 15 or 16, wherein the metal coating is electrolessly applied nickel or cobalt. 18. The electrolytic cell according to claim 15 or 16, wherein the substrate is a metal mesh of 50 to 250 (US standard) mesh. 19. An electrolytic cell according to claim 15 or 16, wherein the metal coating is electrolytically applied nickel or cobalt. 20 Claims in which the diaphragm consists of a porous metal matrix consisting essentially of iron, nickel, cobalt or an alloy containing at least 50% by weight of said metals and a metal coating consisting essentially of cobalt or nickel or an alloy of cobalt or nickel. The electrolytic cell according to item 12 or 13. 21. High-temperature operation of electrolytic cell The electrolytic cell according to any one of claims 12 to 20, wherein the diaphragm is supported by a porous body to supplement the physical strength of the intermediate membrane. 22 The distance between the anode and the diaphragm is 1/4 to 1.
Claims 12 to 21 within the range of 1/2
The electrolytic cell described in any of paragraphs. 23. An electrolytic cell according to any of claims 12 to 22, wherein the production of titanium comprises the production of metallic titanium from titanium tetrachloride in a molten salt bath. 24 The part of the electrolytic tank that comes into contact with the electrolyte is NaCl, LiC
l-KCl, LiCl-KCl-NaCl, and Li
24. The electrolytic cell of claim 23, resistant to molten salts and molten salt mixtures selected from the group consisting of Cl--KCl--CaCl_2. 25 The diaphragm consists of a woven metal matrix with a metal coating,
The substrate is nickel, the coating is cobalt or nickel or an alloy of cobalt or nickel, and the diaphragm has a diaphragm coefficient of 0.1 to 0.4 and a flow coefficient of 0.1 to 1. The electrolytic cell according to any one of the ranges 12 to 24. 26. A method for producing titanium in an electrolytic cell having at least one anode in the anode chamber, at least one cathode in the cathode chamber, and supply equipment for supplying a titanium compound to a molten salt bath in the electrolytic cell, comprising: : A perforated diaphragm with at least one surface that can withstand the environment inside the tank, a diaphragm coefficient of greater than 0 up to 0.5, and a flow coefficient of 0.1 to 25 is inserted into the electrolytic cell to transform the anode chamber into a cathode chamber. a step of electrically insulating the diaphragm from an external power source of the anode chamber and the cathode chamber; and a step of applying an electromotive force between the anode and the cathode. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53050162A JPS5914556B2 (en) | 1978-04-28 | 1978-04-28 | Metallic diaphragm for electrolytic production of titanium, electrolytic cell using the diaphragm, and method for producing titanium in the electrolytic cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53050162A JPS5914556B2 (en) | 1978-04-28 | 1978-04-28 | Metallic diaphragm for electrolytic production of titanium, electrolytic cell using the diaphragm, and method for producing titanium in the electrolytic cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54143702A JPS54143702A (en) | 1979-11-09 |
JPS5914556B2 true JPS5914556B2 (en) | 1984-04-05 |
Family
ID=12851492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53050162A Expired JPS5914556B2 (en) | 1978-04-28 | 1978-04-28 | Metallic diaphragm for electrolytic production of titanium, electrolytic cell using the diaphragm, and method for producing titanium in the electrolytic cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5914556B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2494727A1 (en) * | 1980-11-27 | 1982-05-28 | Armand Marcel | CELL FOR THE PREPARATION OF VERSATILE METALS SUCH AS ZR OR HF BY FOLLOID HALIDE ELECTROLYSIS AND METHOD FOR CARRYING OUT SAID CELL |
FR2494728A1 (en) * | 1980-11-27 | 1982-05-28 | Armand Marcel | METHOD FOR CONTROLLING THE PERMEABILITY OF DIAPHRAGMES IN THE PREPARATION OF MULTIPURPOSE METALS BY ELECTROLYSIS AND ELECTROLYSIS CELL FOR CARRYING OUT SAID METHOD |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB910573A (en) * | 1960-03-29 | 1962-11-14 | New Jersey Zinc Co | Improvements in production of titanium |
-
1978
- 1978-04-28 JP JP53050162A patent/JPS5914556B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB910573A (en) * | 1960-03-29 | 1962-11-14 | New Jersey Zinc Co | Improvements in production of titanium |
Also Published As
Publication number | Publication date |
---|---|
JPS54143702A (en) | 1979-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4521281A (en) | Process and apparatus for continuously producing multivalent metals | |
US8460535B2 (en) | Primary production of elements | |
US4468305A (en) | Method for the electrolytic regeneration of etchants for metals | |
CA1060844A (en) | Ruthenium coated cathodes | |
US3617462A (en) | Platinum titanium hydride bipolar electrodes | |
US2789943A (en) | Production of titanium | |
JPS59166689A (en) | Cathode for electrolytic production of hydrogen | |
US4670114A (en) | Fine, uniform particles, and precipitation or depositing of particles from a solution | |
US2848397A (en) | Electrolytic production of metallic titanium | |
US4219401A (en) | Metal electrowinning feed cathode | |
US4285784A (en) | Process of electroplating a platinum-rhodium alloy coating | |
US4113584A (en) | Method to produce multivalent metals from fused bath and metal electrowinning feed cathode apparatus | |
CA1076061A (en) | Electrowinning method | |
JPS5914556B2 (en) | Metallic diaphragm for electrolytic production of titanium, electrolytic cell using the diaphragm, and method for producing titanium in the electrolytic cell | |
CA1214427A (en) | Controlling ph in electro deposition of particles from solution | |
US4116801A (en) | Apparatus for electrowinning multivalent metals | |
US4118291A (en) | Method of electrowinning titanium | |
US3945907A (en) | Electrolytic cell having rhenium coated cathodes | |
US4165262A (en) | Method of electrowinning titanium | |
US3082159A (en) | Production of titanium | |
JPS5873855A (en) | Method of inspecting adaptability of diaphragm used for electrolytic cell | |
US2920027A (en) | Electrical circuits for metal refining cells | |
US2944949A (en) | Process for the electrolytic separation of titanium from titanium scrap | |
JPH0375395A (en) | Method and electrolytic cell for electrolytically plating metal surface | |
JPH059799A (en) | Method and device for supplying metal ion in sulfuric acid-bath zn-ni plating |