JPS5914555B2 - How to supply power to the electrolytic cell - Google Patents

How to supply power to the electrolytic cell

Info

Publication number
JPS5914555B2
JPS5914555B2 JP3777475A JP3777475A JPS5914555B2 JP S5914555 B2 JPS5914555 B2 JP S5914555B2 JP 3777475 A JP3777475 A JP 3777475A JP 3777475 A JP3777475 A JP 3777475A JP S5914555 B2 JPS5914555 B2 JP S5914555B2
Authority
JP
Japan
Prior art keywords
grounding
electrolytic cell
ground
electrode
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3777475A
Other languages
Japanese (ja)
Other versions
JPS51112780A (en
Inventor
晋策 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3777475A priority Critical patent/JPS5914555B2/en
Publication of JPS51112780A publication Critical patent/JPS51112780A/en
Publication of JPS5914555B2 publication Critical patent/JPS5914555B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、多数の電解槽を電気的に直列につなa電解液
を各電解槽に並列に給液するに際し、給排液配管中に接
地用電極を挿入し、接地することを特徴とする電解槽へ
の給電給液方法、に関する。
[Detailed Description of the Invention] The present invention provides a method of inserting a grounding electrode into the liquid supply and drainage piping when a large number of electrolytic cells are electrically connected in series and an electrolytic solution is supplied to each electrolytic cell in parallel. , relates to a method for supplying power and liquid to an electrolytic cell, which is characterized by being grounded.

さらには、接地電極の近く、もしくは整流器よりみて接
地電極をへだてて給排液用パルプ、ポンプを設置するこ
とを特徴とする給電給液方法、に関する。
Furthermore, the present invention relates to a power supply and liquid supply method characterized in that a pulp and a pump for supplying and discharging liquid are installed near the ground electrode or apart from the ground electrode when viewed from the rectifier.

さらには、整流器電圧の半分の所の給排液配管中に接地
用電極を挿入し接地し、接地電極の近く、もしくは整流
器よりみて接地電極をへだてて給排液用バルブ、ポンプ
を設置することを特徴とする電解槽への給電給液方法、
に関する。
Furthermore, insert a grounding electrode into the liquid supply/drainage pipe at half the rectifier voltage and ground it, and install the liquid supply/drainage valve and pump near the grounding electrode or with the grounding electrode separated from the rectifier. A method for supplying power to an electrolytic cell, characterized by
Regarding.

さらには、接地電極に流れる電流、もしくは接地電位を
監視することを特徴とする電解槽への給電給液方法、に
関する。
Furthermore, the present invention relates to a method for supplying power to an electrolytic cell, which is characterized by monitoring a current flowing through a ground electrode or a ground potential.

工業的電解槽は、一般に一槽当クの電解電圧が2乃至1
0ボルトである。
Industrial electrolytic cells generally have an electrolysis voltage of 2 to 1 per tank.
It is 0 volts.

従つて、これらの電解槽を多数直列につなa端子電圧を
100乃至1000ボルト程度にまで昇圧して、整流器
の25次電圧を上げ直流電流量を下げることにより、整
流器の価格を可及的に下げることが行なわれる。この場
合、各電解槽への給液は並列に行なわれるのが普通であ
る。従来、このような場合、給排液配管を本発明の70
ように積極的に接地せず、可及的大地に対し絶縁し、電
気的には大地に対し宙に浮かすことを常としていた。
Therefore, by connecting a large number of these electrolytic cells in series and boosting the a terminal voltage to about 100 to 1000 volts, increasing the 25th voltage of the rectifier and lowering the amount of DC current, the price of the rectifier can be reduced as much as possible. Lowering is done. In this case, liquid is normally supplied to each electrolytic cell in parallel. Conventionally, in such cases, the liquid supply and drainage piping was
Rather than actively grounding it, it was insulated from the earth as much as possible, and electrically it was kept floating in the air relative to the earth.

しかし、現実にはいづれかの点が何らかの理由によりわ
づかでも接地する。
However, in reality, one of the points may touch the ground even slightly for some reason.

その結果、接地した15所が大地電位と同電位となるた
めに、接地した場所により相対的に給排液配管中のパル
プ、計器、ポンプ等は大地に対し、正になつたわ負にな
つたわ大きく変動する。このために運転中に操作する必
要のあるバルブやポンプ、計器、サンプリング叩 ノズ
ル等は手にふれると感電の危険がある。またポンプやパ
ルプなどの金属部材が異常腐蝕をきたす原因となつてい
た。また、従来このような観点で注意がはられれていな
かつたので、各電解槽のそれぞれに給排液用25パルプ
などをもうけることなどが行なわれていた。
As a result, the 15 grounded locations have the same potential as the ground potential, so the pulp, meters, pumps, etc. in the fluid supply and drainage piping become positive or negative relative to the ground, depending on the grounded location. It fluctuates greatly. For this reason, there is a risk of electric shock if you touch valves, pumps, instruments, sampling nozzles, etc. that must be operated during operation. Additionally, metal parts such as pumps and pulp were subject to abnormal corrosion. Furthermore, since no attention has been paid to this point of view in the past, the practice has been to provide 25 pulps for supply and drainage in each electrolytic cell.

また、いづれの部分が接地するのかわからぬばかりでな
く、いつ接地し、どれ位接地電流が流れたかをも検出し
えなかつた。従つて、従来は帯電しているパルプやポン
プに30さわつても大丈夫な電圧、または、たとえどこ
かが接地しても危険でない電圧に整流器の端子電圧を押
える。
Furthermore, not only was it unclear which part was grounded, but it was also impossible to detect when it was grounded and how much grounding current was flowing through it. Therefore, conventionally, the terminal voltage of the rectifier is suppressed to a voltage that is safe even if the charged pulp or pump is touched, or a voltage that is not dangerous even if it is grounded somewhere.

例えば、100乃至250ボルト程度に押えるのが普通
であつた。これに対し、本発明では給排液配管の一端に
接35地用電極を挿入し、必らず接地する。
For example, it was common to keep the voltage at about 100 to 250 volts. On the other hand, in the present invention, a 35-ground electrode is inserted into one end of the liquid supply/drainage pipe to ensure that it is grounded.

本発明の原理を第1図に示す。第1図に於いて、1は多
数電気的に直列につながれた電解槽群を示す。
The principle of the present invention is shown in FIG. In FIG. 1, numeral 1 indicates a group of electrolytic cells electrically connected in series.

2は整流器、3は接.地用電極、4はバルブ、5は接地
電流計、6は接地、7はポンプ、R″は抵抗、8は電圧
計、rは各電槽に並列に給液される配管の電気抵抗、R
は各電槽に並列に給液される配管のへツダ一の電気抵抗
を示す。
2 is a rectifier, 3 is a contact. Ground electrode, 4 is the valve, 5 is the ground ammeter, 6 is the ground, 7 is the pump, R'' is the resistance, 8 is the voltmeter, r is the electrical resistance of the piping that supplies liquid to each battery tank in parallel, R
represents the electrical resistance at the head of the piping that supplies liquid to each tank in parallel.

接地用電極以外の所は可及的に大地に対し絶縁する。Places other than the grounding electrode should be insulated from the earth as much as possible.

この絶縁が完全であれば、接地電極に通じて大地に流れ
る電流も零である。しかし、現実にはいづれかの点から
れづかに接地しているので、それらの接地点と接地電極
の接地点とによジ閉ループを形成し、電解槽1及び配管
類間の電位の差異などによる循環電流が接地用電極に直
列につながれた電流計5に流れる。従つて、接地電流計
5の指示を監視していれば、他のいづれかの部分から液
の漏洩や金属部分の接触絶縁不良等により、異常に接地
電流が流れはじめたことをその電流値の変動から検知し
うる。接地電流計5、もしくは接地電圧計8の指示の変
動値が一定値以上になれば、整流器電源を自動的に遮断
、もしくは警報しうるように回路をくんでおけば、不特
定の場所の異常接地による大事故を予防しうる。
If this insulation is perfect, the current flowing through the ground electrode to the earth will also be zero. However, in reality, it is grounded from one point to the other, so a closed loop is formed between those ground points and the ground point of the ground electrode, and due to differences in potential between the electrolytic cell 1 and the piping, etc. A circulating current flows through an ammeter 5 connected in series with the grounding electrode. Therefore, if you monitor the readings from the grounding ammeter 5, you will be able to tell if the grounding current has started flowing abnormally due to leakage of liquid from some other part, poor contact insulation of a metal part, etc., and a change in the current value. It can be detected from If the fluctuation value of the grounding ammeter 5 or grounding voltmeter 8 exceeds a certain value, the rectifier power supply can be automatically cut off or a warning can be created by installing a circuit to detect abnormalities in unspecified locations. Major accidents due to grounding can be prevented.

また、第1図に示すごとく接地電極の近く、もしくは整
流器よりみて接地電極をへだてて給排液バルブ、ポンプ
、計器、サンプリングノズル等運転中手で触れて感電の
恐れのあるものや、感電の恐れのある金属部品を、大地
電位とほぼ同電位とすることにより感電もしくは電蝕の
危険をいちじるしく防止しうる。
In addition, as shown in Figure 1, close to the ground electrode or away from the ground electrode when viewed from the rectifier, place items such as liquid supply/drain valves, pumps, meters, sampling nozzles, etc. that may cause an electric shock if touched during operation. The risk of electric shock or electrolytic corrosion can be significantly prevented by bringing potentially dangerous metal parts to approximately the same potential as the ground potential.

第1図の如く、整流器の正の端子附近で接地する場合は
、反対方向の整流器の負の端子附近の対大地電位差が大
きくなるので、負の端子附近が万−接地した時の危険度
が高い。
As shown in Figure 1, when grounding near the positive terminal of the rectifier, the potential difference to ground near the negative terminal of the rectifier in the opposite direction increases, so the danger level when the negative terminal is grounded increases. expensive.

従つて、第2図に示すごとく整流器電圧の約半分の所の
給排液配管中に接地用電極を挿入し接地し、さらに接地
電極の近くもしくは整流器よりみて接地電極をへだてて
給配液バルブ、ポンプ、計器、サンプリングノズル等を
もうければ先述の効果をうるとともに、整流器のいづれ
かの端子の対大地電位差を半減しうるので、万一接地し
た時の危険度も低くなる。
Therefore, as shown in Figure 2, a grounding electrode is inserted into the liquid supply and drainage piping at about half of the rectifier voltage and grounded, and then the liquid supply and distribution valve is connected near the grounding electrode or separated from the grounding electrode when viewed from the rectifier. , a pump, a meter, a sampling nozzle, etc., will not only provide the above-mentioned effects, but also reduce the potential difference between any terminal of the rectifier to the ground by half, thereby reducing the risk in the event of grounding.

本発明を適用しうる電解槽の例としては、イオン交換K
よる食塩水溶液電解槽、隔膜法による食塩水溶液の電解
槽、水銀法による食塩水溶液の電解槽、水電解槽、アジ
ポニトリルの製造用電解槽、銅、ニツケル等の精練用電
解槽等多数ある。
Examples of electrolytic cells to which the present invention can be applied include ion exchange K
There are many electrolytic cells for saline solution using the diaphragm method, electrolytic cells for saline solution using the mercury method, water electrolytic cells, electrolytic cells for producing adiponitrile, electrolytic cells for refining copper, nickel, etc.

また、電槽の型式としては単極式電解槽を多数直列につ
ないだものでも複極式電解槽でもよい。また、電気透析
槽等でもよい。並列に給液する配管を通じての漏洩電流
は可及的に小さくすることが望ましいので、並列に給液
する配管の電気抵抗rを可及的に大きくするために配管
を細く長くすることが望ましい。
Further, the type of the battery may be one in which a large number of unipolar electrolytic cells are connected in series, or a bipolar electrolytic cell. Alternatively, an electrodialyzer or the like may be used. Since it is desirable to reduce the leakage current through the parallel liquid supply pipes as much as possible, it is desirable to make the pipes thin and long in order to increase the electrical resistance r of the parallel liquid supply pipes as much as possible.

給排液配管中の接地用電極は可及的表面積広く、液抵抗
少いのが望ましい。
It is desirable that the grounding electrode in the liquid supply/drainage piping has as large a surface area as possible and has low liquid resistance.

例えば金網状電極などが好ましい。材質は市解液に充分
耐蝕性があり、かつ電極に耐えるものがよい。例えば、
白金や白金属酸化物を被覆した電極、黒鉛、ステンレス
、ニツケル等がよい。次に本発明の効果を実証するため
に行なつた例を説明する。
For example, a wire mesh electrode is preferred. The material should be sufficiently corrosion resistant to commercial solution and resistant to electrodes. for example,
Electrodes coated with platinum or platinum metal oxide, graphite, stainless steel, nickel, etc. are preferable. Next, an example carried out to demonstrate the effects of the present invention will be described.

実施例 1 陽イオン交換膜により、陽極室と陰極室とに分割された
電解槽を90槽直列につないで構成されている複極式電
解槽に於いて、各電解槽の通電面積は1.2m×2.4
mであつた。
Example 1 In a bipolar electrolytic cell configured by connecting 90 electrolytic cells in series that are divided into an anode chamber and a cathode chamber by a cation exchange membrane, the energized area of each electrolytic cell is 1. 2m x 2.4
It was m.

陽極液タンクよりポンプ、バルブ、流量計をへて、接地
用金網電極をへて、第1図と類似のシステムにより6イ
ンチのヘツダ一より、内径15mmの長さ1mのホース
でもつて並列に各電解槽の陽極室に給液した。
A 1 m long hose with an internal diameter of 15 mm was connected in parallel from the anolyte tank through the pump, valve, and flow meter, through the ground wire mesh electrode, and through a 6 inch header using a system similar to that shown in Figure 1. The liquid was supplied to the anode chamber of the electrolytic cell.

陽極液は食塩水であつた。各陽極室に給液された陽極液
は電解によジ生成した塩素ガスと共に、やはり内径20
mmの長さの1mのホースでもつて並列に各電解槽の陽
極室から排液され、6インチのヘッダ一に集合され、接
地用金網電極をへて、バルブ、さらに陽極液タンクへと
循環される。陽極液配管中にもうけられる接地用金網電
極はチタニウム板にきざみを入れ、エキスパンドしてえ
た開孔率60%のものに酸化ルテニウム、酸化チタニウ
ムの固溶体を被覆したものを用いた。
The anolyte was saline. The anolyte supplied to each anode chamber, together with chlorine gas generated by electrolysis, is also
The liquid was drained from the anode chamber of each electrolytic cell in parallel using a 1 m hose with a length of 1 m, collected in a 6 inch header, passed through a ground wire mesh electrode, and circulated to the valve and then to the anolyte tank. Ru. The grounding wire mesh electrode provided in the anolyte pipe was made by cutting a titanium plate with notches and expanding it to have a porosity of 60%, which was then coated with a solid solution of ruthenium oxide and titanium oxide.

上記の陽極液系の循環システムとほぼ同一の陰極液系の
循環システムによジ、各電解槽の陰極室に並列に給排液
された。但し、接地用金網電極としてはニツケル板にき
ざみを入れエキスパンドしてえた開孔率60%のものを
用いた。
A catholyte circulation system, which is almost the same as the anolyte circulation system described above, was used to supply and drain the cathode chamber of each electrolytic cell in parallel. However, as the grounding wire mesh electrode, a nickel plate with a hole area ratio of 60% was used, which was obtained by cutting and expanding a nickel plate.

又、陰極液は苛性ソーダであ抵電解により水素ガスが生
成する。このような90槽よりなる複極式電解槽の両端
に、整流器より360ボルト13KAの直流を流した。
Further, the catholyte is caustic soda, and hydrogen gas is generated by resistive electrolysis. A direct current of 360 volts and 13 KA was applied from a rectifier to both ends of such a bipolar electrolytic cell consisting of 90 cells.

この際、陽極液配管中にもうけられた接地用電極及び陰
極液配管中にもうけられた接地用電極はいづれも第1図
のごとく、整流器の正の端子の側にもうけられた。
At this time, the grounding electrode provided in the anolyte pipe and the grounding electrode provided in the catholyte pipe were both provided on the positive terminal side of the rectifier, as shown in FIG.

陽極液系の接地用電極と陰極液系の接地用電極とは結線
し、その中点よジ電流計、炭素棒電極をへて大地に接地
した。
The grounding electrode of the anolyte system and the grounding electrode of the catholyte system were connected, and the midpoint of the current meter was connected to the earth through the carbon rod electrode.

この結果、陽極液系接地用電極と陰極液系接地用電極と
の間は約4Vの電位差をもち、常に電流が流れていて、
正常時は陽極液系接地用電極は陽極液に対し正の極とし
て作用し、逆に陰極液系接地用電極は陰極液に対し負の
極として作用している。
As a result, there is a potential difference of about 4V between the anolyte grounding electrode and the catholyte grounding electrode, and a current always flows.
Under normal conditions, the anolyte grounding electrode acts as a positive electrode with respect to the anolyte, and conversely, the catholyte grounding electrode acts as a negative electrode with respect to the catholyte.

しかし、電解槽、ヘツダ一、バルブ、配管、計器、ポン
プ、タンクは大地に対し可及的絶縁した結果、大地に接
地した炭素電極へ流れる電流は正常時には約100ミリ
アンペアにすぎなかつた。
However, as a result of insulating the electrolytic cell, headers, valves, piping, meters, pumps, and tanks from the ground as much as possible, the current flowing to the grounded carbon electrode was only about 100 milliamperes under normal conditions.

しかし、電槽より液の漏洩があれば接地電流計の指示は
ふれるので、この電流計の過大な変動に対し、整流器電
源を遮断するような回路をくんでおくことにより安全に
運転をなしえた。実施例 2 実施例1とほぼ同じであるが、90槽直列につないで構
成されている複極式電解槽、2基を第2図に示すように
電気的に直列につなぎ、整流器の端子電圧差は920ボ
ルトであり、13KAの電流を流した。
However, if liquid leaks from the battery container, the reading on the grounded ammeter will fluctuate, so safe operation was possible by installing a circuit that shuts off the rectifier power supply in case of excessive fluctuations in the ammeter. . Example 2 Almost the same as Example 1, but two bipolar electrolytic cells were constructed by connecting 90 cells in series, two of which were electrically connected in series as shown in Figure 2, and the terminal voltage of the rectifier was The difference was 920 volts and carried a current of 13 KA.

又、陽極液系、陰極液系とも第2図に示すごとく、2基
の複極式電解槽の間に接地用電極を循環配管中にもうけ
た。
In addition, as shown in Figure 2 for both the anolyte and catholyte systems, a grounding electrode was provided in the circulation piping between the two bipolar electrolytic cells.

接地用電極及び接地の方法は実施例1と同じである。The grounding electrode and the grounding method are the same as in the first embodiment.

このような電解槽を運転したが整流器電圧は倍になつて
いるにもかかわらず、接地電流は正常時は約100mA
であつて、実施例1と同様に安全に運転しえた。以上説
明したように本発明によれば、接地による配管類の電圧
変動を抑えることが出来、安全度の高い電解槽の操業が
可能となる。
When operating such an electrolytic cell, although the rectifier voltage has doubled, the ground current is approximately 100 mA under normal conditions.
As in Example 1, the vehicle could be operated safely. As explained above, according to the present invention, it is possible to suppress voltage fluctuations in piping due to grounding, and it is possible to operate an electrolytic cell with a high degree of safety.

又接地電流を監視することによつて、接地事故に対する
迅速な対策をすることが出来る。
Furthermore, by monitoring the grounding current, prompt measures can be taken against grounding accidents.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の原理を示す配管図である。 1・・・電解槽群、2・・・整流器、3・・・接地用電
極、4・・・バルブ、5・・・接地電流計、6・・・接
地、7・・・ポンプ、8・・・電流計。
1 and 2 are piping diagrams showing the principle of the present invention. DESCRIPTION OF SYMBOLS 1... Electrolytic cell group, 2... Rectifier, 3... Grounding electrode, 4... Valve, 5... Grounding ammeter, 6... Grounding, 7... Pump, 8... ...Ammeter.

Claims (1)

【特許請求の範囲】[Claims] 1 多数の電解槽を電気的に直列につなぎ、電解液を各
電解槽に並列に給液するに際し、給排液配管中に接地用
電極を挿入し、接地し、接地用電極と接地との間に電流
計を直列に接続するか又は/および抵抗体と電圧計を並
列に接続することを特徴とする電解槽への給電給液方法
1. When connecting a large number of electrolytic cells electrically in series and supplying electrolyte to each electrolytic cell in parallel, insert a grounding electrode into the liquid supply/drainage piping, ground it, and connect the grounding electrode to the ground. 1. A method for supplying power to an electrolytic cell, characterized by connecting an ammeter in series between the two or/and connecting a resistor and a voltmeter in parallel.
JP3777475A 1975-03-31 1975-03-31 How to supply power to the electrolytic cell Expired JPS5914555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3777475A JPS5914555B2 (en) 1975-03-31 1975-03-31 How to supply power to the electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3777475A JPS5914555B2 (en) 1975-03-31 1975-03-31 How to supply power to the electrolytic cell

Publications (2)

Publication Number Publication Date
JPS51112780A JPS51112780A (en) 1976-10-05
JPS5914555B2 true JPS5914555B2 (en) 1984-04-05

Family

ID=12506813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3777475A Expired JPS5914555B2 (en) 1975-03-31 1975-03-31 How to supply power to the electrolytic cell

Country Status (1)

Country Link
JP (1) JPS5914555B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348458U (en) * 1986-09-13 1988-04-01
JP2015537116A (en) * 2012-10-05 2015-12-24 ミオックス コーポレーション On-site generation without transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348458U (en) * 1986-09-13 1988-04-01
JP2015537116A (en) * 2012-10-05 2015-12-24 ミオックス コーポレーション On-site generation without transformer

Also Published As

Publication number Publication date
JPS51112780A (en) 1976-10-05

Similar Documents

Publication Publication Date Title
JP5876811B2 (en) Method for preventing reverse current of ion exchange membrane electrolytic cell
KR101782638B1 (en) Electrochemical cells using electrode assemblies visualizing internal electric currents in bipolar electrodes and electrochemical cell management system
US4369102A (en) Electrolysis apparatus for decomposing water into hydrogen gas and oxygen gas
KR890002061B1 (en) A monopolar electrochemical cell,cell unit and process for conducting electrolysis in monopolar cell series
JP5877125B2 (en) Corrosion suppression device, seawater desalination device and pump device provided with the same
US3972796A (en) Electrolytic apparatus
US4203818A (en) Electrolyzers
JPS5914555B2 (en) How to supply power to the electrolytic cell
NO793965L (en) PROCEDURE FOR ELECTROLYSIS OF SODIUM CHLORIDE
CA1082124A (en) Maintaining trough electrolyte anodic with auxiliary electrode
CA2079019A1 (en) Electrolytic apparatus comprising protective electrodes
US4623440A (en) Electrode for use in electrolytic cell
WO1994004719A1 (en) Target electrode for preventing corrosion in electrochemical cells
EP0118973A1 (en) Electrolytic cell
EP0187001B1 (en) Current leakage in electrolytic cell
JPS6246638B2 (en)
US5015345A (en) Method for detecting defective ion exchange membranes in monopolar and bipolar electrolyzers
JP3408462B2 (en) Method for protecting gas diffusion cathode in alkaline chloride electrolytic cell
CN104532259A (en) Compound electrochemical device for condenser cathode protection
CN215000092U (en) Four-way structure for preventing leakage current corrosion of ion-exchange membrane electrolytic cell
CN214881860U (en) Uhde electrolysis trough metal feed liquor dispersion pipe protection architecture
CN218210071U (en) Electric water heater inner container and electric water heater
CN214881861U (en) Metal liquid inlet pipeline protection structure of Uhde electrolytic cell
JPS5929114B2 (en) Corrosion prevention method for nozzles
JPH05140784A (en) Electrolytic cell