JPS59145438A - Control system of heating furnace - Google Patents

Control system of heating furnace

Info

Publication number
JPS59145438A
JPS59145438A JP1850083A JP1850083A JPS59145438A JP S59145438 A JPS59145438 A JP S59145438A JP 1850083 A JP1850083 A JP 1850083A JP 1850083 A JP1850083 A JP 1850083A JP S59145438 A JPS59145438 A JP S59145438A
Authority
JP
Japan
Prior art keywords
flow rate
control unit
channel
arithmetic
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1850083A
Other languages
Japanese (ja)
Other versions
JPH0243981B2 (en
Inventor
Toyofumi Usu
薄 豊文
Norio Zenitani
銭谷 典男
Katsumi Takahashi
勝美 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Yokogawa Hokushin Electric Corp filed Critical Nippon Mining Co Ltd
Priority to JP1850083A priority Critical patent/JPS59145438A/en
Publication of JPS59145438A publication Critical patent/JPS59145438A/en
Publication of JPH0243981B2 publication Critical patent/JPH0243981B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Flow Control (AREA)

Abstract

PURPOSE:To improve the heat efficiency of entire system for thereby realizing a systematic relationship between the heat efficiency and a total flow rate, by increasing the flow rate passing through a channel having the greatest heat efficiency and by controlling the flow rate of respective main channel before branched off by the adjustment of pump r.p.m. CONSTITUTION:An arithmetic and control unit 6 continuously monitors the temperature of respective channel of outlet side heating furnace 4 by the signal of temperature detecting devices T1-T4. The final temperature of fluid after heating is detected by a temperature detector T5 provided at a main channel downstream of confluences. An arithmetic and control unit 5 is adapted to calculate the difference DELTAFV in the opening amount of control valves V1-V4 to verify whether the difference falls within a prescribed allowance. In an event of the difference being smaller than the prescribed allowance, a channel Tmax is selected to take a remedial action. The remedial action is to further increase the opening amount of the control valve of channel Tmax for thereby increasing the flow rate of fluid passing therethrough. Since the opening amount of respective control valves is continuously monitored by the arithmetic and control unit 5 even while the remedial action of valve opening amount is being taken, a control unit C1 can be fed with such a preset value as to keep a consistent total flow rate. In consequence, a control unit C2 receiving the input from the control unit C1 functions to maintain the consistent total flow rate by adjusting the r.p.m. of pump 2.

Description

【発明の詳細な説明】 本発明は、より熱効率の高い流路の流量を他の流路のそ
れよシも増やすようにして全体としての熱効率を向上さ
せた加熱炉制御システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating furnace control system that improves overall thermal efficiency by increasing the flow rate of a channel with higher thermal efficiency than that of other channels.

流体を複数個の流路に分岐させて加熱炉を通して加熱す
る加熱炉制御システムにおいては、それぞれの流路に流
量調節計が設置されており、各調節計はそれぞれの熱効
率により目標値が設定され運転されている。
In a heating furnace control system that divides fluid into multiple channels and heats the fluid through a heating furnace, a flow rate controller is installed in each channel, and each controller has a target value set based on its thermal efficiency. being driven.

ところで加熱炉の運転が長期にわたると、各流路のチュ
ーブ内の汚れ等に差異が生じ、初期設定に用いられた熱
効率とは異なったものとなる。従って往々にして熱効率
の悪い流路に多くの流体を通すことが起り、燃焼エネル
ギーの有効利用上、好ましくなかった。
By the way, if the heating furnace is operated for a long period of time, there will be differences in dirt etc. inside the tubes of each flow path, and the thermal efficiency will differ from the initial setting. Therefore, a large amount of fluid often passes through channels with poor thermal efficiency, which is not desirable in terms of effective use of combustion energy.

本発明は、このような点に鑑みてなされたものであって
、各流路のうち熱効率の最大のものの流量を増やしてシ
ステム全体の熱効率を向上させると共に、トータル流量
を分岐前の幹流路に設置された流量調節計によって制御
されカスケードされたポンプの回転数で制御して、熱効
率とトータル流量の有機的な連携を図った加熱炉制御シ
ステムを実現したものである。
The present invention has been made in view of the above points, and improves the thermal efficiency of the entire system by increasing the flow rate of the channel with the highest thermal efficiency among the flow channels, and also increases the total flow rate to the main flow channel before branching. This system realizes a heating furnace control system that organically links thermal efficiency and total flow rate by controlling the rotation speed of cascaded pumps controlled by an installed flow rate controller.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例を示す構成図である。図に
おいて、1は流体が貯蔵されたタンクである。2はスチ
ームタービンポンプ、3はガバナ、R□はポンプ2の回
転数を検出する回転数検出器、Flは流体流量を検出す
る流量検出器、clは該流量検出器の出力を受ける流量
指示調節計、C2は回転数検出器R□の出力を受はガバ
ナ3に駆動信号を与える回転数調節計である。ポンプ2
の出口は4系統に分岐され、各流路ごとに流量調節計が
設置されている。C3乃至C6は各流路ごとに設けられ
た流量調節計、F2乃至F5は各流路ごとに設けられた
流量検出器でその出力はそれぞれ調節計03〜C6に入
っている。■□乃至F4は調節計03〜C6で駆動され
るil1節弁である。該調節弁の弁開度信号は演算制御
装置(後述)に入力されている。
FIG. 1 is a configuration diagram showing an embodiment of the present invention. In the figure, 1 is a tank in which fluid is stored. 2 is a steam turbine pump, 3 is a governor, R□ is a rotation speed detector that detects the rotation speed of pump 2, Fl is a flow rate detector that detects the fluid flow rate, and cl is a flow rate indication adjustment that receives the output of the flow rate detector. C2 is a rotational speed controller which receives the output of the rotational speed detector R□ and provides a drive signal to the governor 3. pump 2
The outlet is branched into four channels, and a flow rate controller is installed for each channel. C3 to C6 are flow rate controllers provided for each flow path, and F2 to F5 are flow rate detectors provided for each flow path, the outputs of which are entered into controllers 03 to C6, respectively. ■□ to F4 are il1 control valves driven by controllers 03 to C6. A valve opening signal of the control valve is input to an arithmetic and control device (described later).

4は加熱炉で、流体は該加熱炉を通過する間に加熱され
る。図では、加熱炉の燃焼系については省略しである。
4 is a heating furnace, and the fluid is heated while passing through the heating furnace. In the figure, the combustion system of the heating furnace is omitted.

T1乃至T4は加熱炉4の出口側の各流路ごとに設けら
れた温度検出器、T5は4流路が合流して1つの幹流路
となった流路の温度を検出する温度検出器、Ml乃至M
5は各温度検出器の出力を指示する温度指示計である。
T1 to T4 are temperature detectors provided for each flow path on the exit side of the heating furnace 4, T5 is a temperature detector that detects the temperature of the flow path where the four flow paths merge to form one main flow path; Ml to M
5 is a temperature indicator that indicates the output of each temperature sensor.

5は、流量検出器F2〜F5の出力を受けて各種演算及
び制御を行うとともに流量指示調節計Cに設定値を与え
る第1の演算制御装置、6は温度検出器T −Tの出力
を受5 けて各種演算及び制御を行う第2の演算制御装置である
。これら演算制御装置としては、例えばマイクロコンビ
ーータが用いられる。演算制御装置5と6は相互に接続
され、信号の授受を行っている。
5 is a first arithmetic and control device which performs various calculations and controls in response to the outputs of the flow rate detectors F2 to F5 and also provides a set value to the flow rate indicating controller C; 6 which receives the outputs of the temperature detectors T-T; 5 is a second arithmetic and control device that performs various calculations and controls. As these arithmetic and control devices, for example, microcombeaters are used. The arithmetic and control units 5 and 6 are connected to each other and exchange signals.

このように構成された装置の動作を説明すれば、以下の
とおりである。
The operation of the device configured as described above will be explained as follows.

演算制御装置6はT1乃至T4の温度検出器の信号によ
シ常時加熱炉出ロ側の各流路の温度を監視している。加
熱後の流体の最終的な温度は、合流後の幹流路に設けら
れた温度検出器T5で検出される、5流体の最終温度が
一定になるような制御信号は、演算制御装置6から加熱
炉燃焼制御系(図示せず)に与えられる。演算制御装H
6は、各流路の加熱炉出口温度のうち最大のものTma
xと最小のものTm1nを選定する。しかる後、Tma
xとTm1nの差ΔTを算出する。この差ΔTが予め定
められた許容偏差ΔTs内に入っているときには、その
ままの運転状態を続ける。
The arithmetic and control device 6 constantly monitors the temperature of each flow path on the outlet side of the heating furnace based on signals from temperature detectors T1 to T4. The final temperature of the fluid after heating is detected by a temperature sensor T5 installed in the main flow path after the merging, and a control signal that keeps the final temperature of the five fluids constant is sent from the arithmetic and control unit 6 to the heating to the furnace combustion control system (not shown). Arithmetic control unit H
6 is the maximum temperature Tma of the heating furnace outlet temperature of each flow path
Select x and the smallest one Tm1n. After that, Tma
Calculate the difference ΔT between x and Tm1n. When this difference ΔT is within the predetermined tolerance ΔTs, the current operating state is continued.

一方、TmaxとTm1nの差ΔTが許容偏差ΔTsよ
シ(3) 大になったとき、演算制御装置5は調節弁v1〜v4の
開度差ΔFVを計算する。ΔFVは最高開度FVmax
と最低開度FVminとの差として求まる。このように
して求めた開度差ΔFVが、予め定められた許容差より
小さいかどうかを確認し、小さいときにはTmaxO流
路を選択する。そして、Tmaxの流路の調節弁の操作
出力MVに修正のための単位開度α%を加算したときに
、それが許容操作量(許容開度)MVmax  よりも
小さいかどうかを確認し、小さいときにはじめて修正動
作を行う。修正動作は、Tmax流路の調節弁の弁開度
を更に開いて通過する液体流量を増やすことである。こ
のため、演算制御装置5はTmax l路の調節計に修
正値αを与える。この結果、TmaX流路の液体流量が
増えて効率のよい加熱炉の運転が行われる。
On the other hand, when the difference ΔT between Tmax and Tm1n becomes larger than the allowable deviation ΔTs by (3), the arithmetic and control unit 5 calculates the opening difference ΔFV of the control valves v1 to v4. ΔFV is the maximum opening FVmax
It is determined as the difference between FVmin and the minimum opening degree FVmin. It is checked whether the opening degree difference ΔFV obtained in this way is smaller than a predetermined tolerance, and if it is smaller, the TmaxO flow path is selected. Then, when the unit opening degree α% for correction is added to the operation output MV of the control valve of the flow path at Tmax, it is checked whether it is smaller than the allowable operation amount (allowable opening degree) MVmax. Take corrective action for the first time. The corrective action is to further open the control valve of the Tmax flow path to increase the flow rate of liquid passing through it. Therefore, the arithmetic and control device 5 gives a correction value α to the controller of the Tmax l path. As a result, the liquid flow rate in the TmaX channel increases, and the heating furnace is operated efficiently.

なお、(Mv+α)が許容開度MVmax よシ大きく
なったものとすると、それ以上弁を開くことができない
。そこで今度はTm1nO流路を選び、当該流路の弁開
度MVからαを減算したものが下限の許容差MVm1n
より大きいかどうかを判断する。大きい(4) と判断したときにはその流路の調節弁を閉じる。
Note that if (Mv+α) becomes larger than the allowable opening degree MVmax, the valve cannot be opened any further. Therefore, this time, the Tm1nO flow path is selected, and the lower limit tolerance MVm1n is obtained by subtracting α from the valve opening degree MV of the flow path.
Determine whether it is greater than When it is determined that the flow rate is large (4), the control valve for that flow path is closed.

これにより調節弁が閉じられるので、残りの流路の流量
が増える。従って、’rmax流路の弁開度はほぼ全開
状態で流量が増えるため、弁を開いて流量を増やす場合
と同様の効果が得られる。このような、弁開度修正動作
中においても、演算制御装置5は各調節弁の弁開度を常
時監視しているのでトータル流量が一定になるような設
定値を調節計C□に与えることができる。従って、C1
の出力を受ける調節計02はポンプ2の回転数を制御し
てトータル流量一定の制御を行う。即ち、熱効率とトー
タル流量とが有機的に連携された制御を行うことができ
る。第2図は、制御シーケンスを示すフローチャートで
ある。このようなシーケンスが常時くシ返される。
This closes the control valve, thereby increasing the flow rate in the remaining channels. Therefore, since the flow rate increases when the valve opening degree of the 'rmax flow path is almost fully open, the same effect as when opening the valve to increase the flow rate can be obtained. Even during such a valve opening correction operation, the arithmetic and control unit 5 constantly monitors the valve opening of each control valve, so it is necessary to give a set value to the controller C□ that will keep the total flow rate constant. I can do it. Therefore, C1
The controller 02 receiving the output controls the rotation speed of the pump 2 to maintain a constant total flow rate. That is, it is possible to perform control in which thermal efficiency and total flow rate are organically linked. FIG. 2 is a flowchart showing the control sequence. Such a sequence is constantly returned.

上述の説明では、4流路の場合を例にとって説明したが
、流路の数はこれに限る必要はなく複数個であれば任意
の数であってよい。
In the above description, the case of four channels was explained as an example, but the number of channels does not need to be limited to this and may be any number as long as it is plural.

以上、詳細に説明したように、本発明によれは各流路の
うち熱効率の最大のものの流量を増やしてシステム全体
の熱効率を向上させると共に、トータル流量は各流路ご
との流量を求めて分岐前の幹流路ごとの流量を求めて分
岐前の幹流路に設置されたポンプの回転数制御で行うよ
うにして、熱効率とトータル流量の有機的な連携を図っ
た加熱炉制御システムを実現することができる。
As described in detail above, according to the present invention, the flow rate of the channel with the highest thermal efficiency is increased to improve the thermal efficiency of the entire system, and the total flow rate is divided by calculating the flow rate for each channel. To realize a heating furnace control system that organically links thermal efficiency and total flow rate by determining the flow rate for each previous main flow path and controlling the rotation speed of a pump installed in the main flow path before branching. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は動作
シーケンスを示すフローチャートである。 1・・・タンク、2・・・ポンプ、3・・・ガバナ、4
・・・加熱炉、5,6・・・演算制御装置、R□・・・
回転数検出器、F□〜F5・・・流量検出器、01〜C
6・・・調節針、M1〜M5・・・温度指示計、T1〜
T5・・・温度検出器。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a flowchart showing an operation sequence. 1...Tank, 2...Pump, 3...Governor, 4
...Heating furnace, 5,6...Arithmetic control unit, R□...
Rotation speed detector, F□~F5...Flow rate detector, 01~C
6...Adjusting needle, M1~M5...Temperature indicator, T1~
T5...Temperature detector.

Claims (1)

【特許請求の範囲】[Claims] 流体を複数個の流路に分岐せしめて加熱炉で加熱する方
法において、加熱炉出口の温度を各流路ごとに検出して
熱効率最大の流路を選び出し、該流路に流れる流量を増
大させるように調節弁を調節すると共に、分岐前の幹流
路の流量をポンプの回転数で制御することを特徴とする
加熱炉制御システム。
In a method of dividing fluid into multiple flow paths and heating them in a heating furnace, the temperature at the outlet of the heating furnace is detected for each flow path, the flow path with the maximum thermal efficiency is selected, and the flow rate flowing through that flow path is increased. A heating furnace control system characterized by adjusting a control valve and controlling the flow rate of a main channel before branching by the rotational speed of a pump.
JP1850083A 1983-02-07 1983-02-07 Control system of heating furnace Granted JPS59145438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1850083A JPS59145438A (en) 1983-02-07 1983-02-07 Control system of heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1850083A JPS59145438A (en) 1983-02-07 1983-02-07 Control system of heating furnace

Publications (2)

Publication Number Publication Date
JPS59145438A true JPS59145438A (en) 1984-08-20
JPH0243981B2 JPH0243981B2 (en) 1990-10-02

Family

ID=11973341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1850083A Granted JPS59145438A (en) 1983-02-07 1983-02-07 Control system of heating furnace

Country Status (1)

Country Link
JP (1) JPS59145438A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56172762U (en) * 1980-04-30 1981-12-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56172762U (en) * 1980-04-30 1981-12-19

Also Published As

Publication number Publication date
JPH0243981B2 (en) 1990-10-02

Similar Documents

Publication Publication Date Title
KR100826889B1 (en) Constant temperature liquid circulating device and method of controlling temperature in the device
US3729051A (en) Process fluid flow regulation systems
US5335708A (en) Cooling apparatus and temperature control method therefor
EP3073205B1 (en) Method for operating a hydronic heating and/or cooling system, control valve and hydronic heating and/or cooling system
JPS59145438A (en) Control system of heating furnace
KR930003986B1 (en) Water rate control device in hot water boiler
JPH01144101A (en) Fuel cost minimum operation controller for co-generation plant
JPH04339218A (en) Thermal flowmeter
JPH07174436A (en) River water utilizing heat recovery system
RU2796734C1 (en) Heat supply system
JP2560578B2 (en) Bypass mixing type water heater
JP2704549B2 (en) Automatic number control of hot water boilers
JPS6131397B2 (en)
JPS6132403Y2 (en)
JP2004069169A (en) Gas combustion device
JPS6176843A (en) Automatically temperature-controlled hot water supply system
JPH04115195A (en) Fuzzy method for controlling water level of steam drum
JPS60207847A (en) Instantaneous water heater
JPS58219982A (en) Connecting plant of nuclear power installation and sea water desalting apparatus
JPS6269035A (en) Heating medium supply device
JPS60240948A (en) Hot water supplier
JPS5912573A (en) Supply gas temperature control method of fuel cell and its apparatus
JPS58156198A (en) Control of heat exchanger
JPS5974425A (en) Hot water supply control device
JPS58103157A (en) Cooler