JPS59143918A - Pulse encoder - Google Patents
Pulse encoderInfo
- Publication number
- JPS59143918A JPS59143918A JP1746883A JP1746883A JPS59143918A JP S59143918 A JPS59143918 A JP S59143918A JP 1746883 A JP1746883 A JP 1746883A JP 1746883 A JP1746883 A JP 1746883A JP S59143918 A JPS59143918 A JP S59143918A
- Authority
- JP
- Japan
- Prior art keywords
- light
- led
- phase
- receiving element
- mask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002452 interceptive effect Effects 0.000 claims description 3
- 238000009434 installation Methods 0.000 abstract description 2
- 238000009792 diffusion process Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 238000007493 shaping process Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/347—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
- G01D5/34707—Scales; Discs, e.g. fixation, fabrication, compensation
- G01D5/34715—Scale reading or illumination devices
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Linear Or Angular Velocity Measurement And Their Indicating Devices (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Optical Transform (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、回転系の位置検出または速度検出に用いられ
るノ4ルスエンコーグに関−t ル。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nozzle encoder used for detecting the position or speed of a rotating system.
従来用いられているパルスエンコーダの概略ノ構成が第
1図に示される。発光ダイオード(LED)11’、
l 2および13は回転符号円板14、固定符号板15
を通して受光素子16へ光を放射する。A schematic configuration of a conventionally used pulse encoder is shown in FIG. Light emitting diode (LED) 11',
l 2 and 13 are a rotating code disk 14 and a fixed code plate 15
The light is emitted to the light receiving element 16 through the light receiving element 16.
図においてA相LED12はB相LED13と電なるた
めLED13のみ示されている。回転符号円板14はそ
の平面図が第2図に示さ1する。回転符号円板14は材
料としてガラス等のf7.門な物質が用いられる。図に
おける回転符号円板14の斜線部分にはクローム等の不
透明な祠料が蒸着逓れる。なお放射状に配列された周辺
の斜線部分は簡略化のため一部記載が省略されているが
、全周にわたって存在する。破ルJで示された円ね1、
回転符号円板14に対するLEDの位置を示す。In the figure, only the LED 13 is shown because the A-phase LED 12 is connected to the B-phase LED 13. The rotation code disk 14 is shown in plan view in FIG. The rotation code disk 14 is made of f7. made of glass or the like. A unique substance is used. An opaque abrasive material such as chrome is deposited on the hatched portion of the rotation code disk 14 in the figure. Note that some of the shaded areas around the radially arranged areas are omitted for the sake of brevity, but they exist over the entire circumference. The circle indicated by broken J1,
The position of the LED relative to the rotation code disk 14 is shown.
第3図には固定符号板15の平面図が示される。A plan view of the fixed code plate 15 is shown in FIG.
固定符号板15も回転符号円板14と同4)J2に−i
fラス等の透明な材料が用いられ、斜線部にはクローム
等が蒸着されでいる。破勝て示されfこ円はLEDの対
応する位置を示す。The fixed code plate 15 is also the same as the rotating code disk 14 4) -i to J2
A transparent material such as f-lass is used, and chrome or the like is vapor-deposited in the shaded areas. The broken circle indicates the corresponding position of the LED.
受光素子16はZ 、Z 、A、A、 B*−j:ひB
の6個で構成される。受光素子ZはZ相LEDIIから
の光を回転符号円板14および固定符号板15の窓41
全通して受光する。受光素子ZはL E Dllからの
光を回転符号円板14#−よび固定符号板15の窓42
を通して受光する。受光素子AばLED12からの光を
回転符号円板14および固定符号板15の窓4.−3を
通して受ツCする。受光素子AはLED12からの光を
回転符号円板14および固定符号&15の窓44全通し
て受光する。The light receiving element 16 is Z, Z, A, A, B*-j: HiB
It consists of 6 pieces. The light receiving element Z receives the light from the Z-phase LED II through the window 41 of the rotating code disk 14 and the fixed code plate 15.
Receives light throughout. The light receiving element Z transmits the light from the L E Dll to the rotating code disk 14#- and the window 42 of the fixed code plate 15.
Receives light through the The light receiving element A transmits light from the LED 12 to the window 4 of the rotary code disk 14 and the fixed code plate 15. Receive C through -3. The light receiving element A receives the light from the LED 12 through the rotation code disk 14 and the window 44 with the fixed code &15.
受光素子BはLED13からの元を回転符号円板142
よひ固定符号板15の窓45を通して受光する。受光素
子BはLED13からの元金回転符号円板14および固
定符号板15の窓46を通して受光する。受光素子とし
てはフォトセル等が用いられる。The light receiving element B converts the element from the LED 13 into a rotation code disk 142.
The light is received through the window 45 of the fixed code plate 15. The light receiving element B receives light from the LED 13 through the window 46 of the principal rotation code disk 14 and the fixed code plate 15. A photocell or the like is used as the light receiving element.
上述のような構成において、回転符号円′)di14が
シャフト17を介して回転すると、受光素子A。In the above-described configuration, when the rotation code circle ′) di14 rotates via the shaft 17, the light receiving element A.
A、BJ>よひBの受光タイミングは第4図の斜線部で
示されるような時間関係となる。図中矢印の方向が円板
の中心点方向に相当する。The light reception timing of A, BJ>yohiB has a time relationship as shown by the shaded area in FIG. The direction of the arrow in the figure corresponds to the direction of the center point of the disk.
第5図(1)には回転符号円板14が回転した時の受光
素子2の25図(2)には受光素子2の出力成形が示さ
れる。これら2つの出力が増幅433に印ノ用され(第
7図、;3)参照)、その差が求められ、第5図(31
に示される波形の出力が得られ2相出力イ1号となる。FIG. 5(1) shows the output shaping of the light receiving element 2 when the rotation code disk 14 rotates, and FIG. 25(2) shows the output shaping of the light receiving element 2. These two outputs are applied to the amplification 433 (see Figure 7, 3)), and the difference between them is determined.
An output with the waveform shown in is obtained, resulting in two-phase output No. 1.
第6図(11、(2)、(3)および(4)にはそれぞ
れ受光素子A、A、BおよびBの出力波形が示される。FIG. 6 (11, (2), (3) and (4)) show the output waveforms of the light receiving elements A, A, B and B, respectively.
受光素子Aの出力と受光素子Aの出力の差(A−A)と
、受光素子Bの出力と受光素子Bの出力の差(B−B)
の間の位相−詠は第6図(5)に示される。The difference between the output of light-receiving element A and the output of light-receiving element A (A-A), and the difference between the output of light-receiving element B and the output of light-receiving element B (B-B)
The phase between is shown in FIG. 6(5).
第7図には受光素子の出力を増幅する回路が示される。FIG. 7 shows a circuit for amplifying the output of the light receiving element.
受光素子Aの出力と受光素子Aの出力はその差が増l1
g器31で増幅されて人相出力信号となp(第7図(1
))、受光素子Bの出力と受光兼子Bの出力はその差が
増幅器32で増幅されてB相出力信号となる(第7図(
2))。図におけるRは抵抗を示す。。The difference between the output of light receiving element A and the output of light receiving element A increases l1
It is amplified by the g unit 31 and becomes a physiognomic output signal (Fig. 7 (1)
)), the difference between the output of light-receiving element B and the output of light-receiving element B is amplified by the amplifier 32 and becomes a B-phase output signal (Fig. 7 (
2)). R in the figure indicates resistance. .
第8図には、理想的なパルスエンコーダのA相、B相お
よびZ相の出力信号波形が示される。Z相出力信号は回
転符号円板14の1回1紙について1個の・ぐルス全出
力する。A相とB相の出力信号の間には90度の位相差
があ殴、かつ人相出力信号およびB相出力化号共対称矩
形阪でなければなら −ない。すなわち因において、L
A=LAおよびLB=LB であることが必要である。FIG. 8 shows the A-phase, B-phase, and Z-phase output signal waveforms of an ideal pulse encoder. The Z-phase output signal outputs one pulse for each sheet of rotation code disk 14 at a time. There must be a 90 degree phase difference between the A-phase and B-phase output signals, and both the human face output signal and the B-phase output signal must be symmetrical rectangular shapes. That is, in the cause, L
It is necessary that A=LA and LB=LB.
上述のような理想的な波形を得るためには受光束子の出
力信号においてV、=VT(第6図(1)および(2)
参照)、およびV、=VM (第6図(31および(
4)#照)でなければならない。2相においても、安定
した出力を得るためには第5図におけるvz−■習F#
A係が成立つことが必要である。ナオ第5図および第6
図ニオケる■2、VM、V、、■ス、VBおよび7石は
各波形の変動幅の中央から基準電圧(0■)迄の′乱臣
である。しかし、実際にはLEDの発する光が第9図の
ように互いに干渉し、本来照射すべき相の符号以外の部
分をLEDの光が透過してしまうため、LEDを単純に
等しい位置(高さ、傾斜ンに設置するだけでは所望の出
力が得られないという問題点がある。従って、従来はL
EDの位置を第10図のように調整したり、互いのLE
D’を離すことにより解決しようとした。In order to obtain the ideal waveform as described above, the output signal of the light receiving bundler must be V, = VT (see (1) and (2) in Figure 6).
), and V, = VM (see Fig. 6 (31 and (
4) It must be #sho). In order to obtain stable output even in 2-phase, vz−■X F# in Fig. 5.
It is necessary that Section A be established. Nao Figures 5 and 6
In the figure, 2, VM, V, , 2, VB, and 7 stones are fluctuations from the center of the fluctuation range of each waveform to the reference voltage (0). However, in reality, the light emitted by the LEDs interferes with each other as shown in Figure 9, and the LED light passes through parts other than the sign of the phase that should be irradiated. Therefore, simply placing the LEDs at the same position (height There is a problem that the desired output cannot be obtained simply by installing the L
Adjust the position of the ED as shown in Figure 10, or
I tried to solve the problem by releasing D'.
しかし、受光素子の出力信号を観察しながらLEDの位
置調整を行うのは多大の時間を要し、互いのL E D
’k 離j’のもijルスエンコーダの太きさや部品
配置の上から制約があった。However, it takes a lot of time to adjust the position of the LED while observing the output signal of the light receiving element.
There were also restrictions on the width of the ij pulse encoder and the arrangement of parts.
本発明の目的は、前述の従来形の)+ルスエンコーダに
おける問題点にかんがみ、発光源で必るLEDにマスク
を伺加するという着想に基づき、複数個のLED相互に
おける光の干渉を防止し、それによシ主として、I、E
Dの取付位置の面単な調整でA相とB相の出力の位相差
が所定の値をとシ得るようにし、その結果LED取付時
に必要な調整時間全太幅に減少し、LEDの配置に関す
る設計を容易にすることにある。The purpose of the present invention is to prevent light interference between a plurality of LEDs based on the idea of adding a mask to the LEDs that are necessary for the light emitting source, in view of the problems with the conventional () + Lux encoder mentioned above. , and mainly I, E
By simply adjusting the mounting position of D, the phase difference between the A-phase and B-phase outputs can be maintained at a predetermined value.As a result, the adjustment time required when installing the LED is completely reduced, and the LED placement The objective is to facilitate the design of
本発明においては、複数個の発光ダイオード全光源とし
、回転符号円板および固定符号板を透過した光を受光素
子によQ受光する構造のノ(ルスエノコーダにおいて、
該発光ダイオードに互いに光が干渉しないようにマスク
全付加すること全特徴トスルパルスエンコーダが提供さ
れる。In the present invention, a plurality of light emitting diodes are used as total light sources, and a light receiving element receives Q light after passing through a rotating code disk and a fixed code plate.
A full-featured tossle pulse encoder is provided in which the light emitting diodes are fully masked to prevent light from interfering with each other.
本発明の一実施例としてのパルスエンコーダの’!’7
1成全示す図が第11図に示される。この/クルレスエ
ンコーダはZ相LEDI 1、A相LED12、B@L
ED13、回転符号円板14、固〆符号也15、受光素
子16および各LEDに伺助口さnたマスク25を具備
する。谷LEDにマスク25が付加されること以外は従
来形のパルスエンコーダと同一であジ、既(C説明され
ているので説明を省略する。マスク25はLEDの外形
に合せて作られ、その横1所面は円形であり、縦断面は
第12図に示す工うな筒形の形状である。筒形の内径は
ほぼLEDの外径に等しく、長きは、光が側方へ波数す
るのを防止するためLEDの長さよジやや長くする必要
がある。マスク25の材料には光を通さない不透明な物
質が用いられる。A pulse encoder as an embodiment of the present invention! '7
A diagram showing the complete structure is shown in FIG. This/cleless encoder has 1 Z-phase LED, 12 A-phase LEDs, and B@L
It is equipped with an ED 13, a rotation code disk 14, a fixed code 15, a light receiving element 16, and a mask 25 with openings for each LED. It is the same as a conventional pulse encoder except that a mask 25 is added to the valley LED, and the explanation is omitted as it has already been explained. The mask 25 is made to match the external shape of the LED, and the One side is circular, and the vertical cross section is a cylindrical shape as shown in Figure 12.The inner diameter of the cylindrical shape is approximately equal to the outer diameter of the LED, and the longer length is longer so that the wave number of the light changes to the side. To prevent this, it is necessary to make the length of the LED a little longer.The mask 25 is made of an opaque substance that does not transmit light.
本実施例においては、LEDの位置m=に多くの時間を
必要としないで、A相出力とB相出カ間の位相差を90
度にすることができ、従来行っていた位相合せが不必要
となる。′またA相出力およびB相出力における出力波
形の対称性も調整が容易となる。In this embodiment, the phase difference between the A-phase output and the B-phase output can be adjusted to 90° without requiring much time to adjust the LED position m=.
This eliminates the need for conventional phase matching. 'Also, the symmetry of the output waveforms in the A-phase output and the B-phase output can be easily adjusted.
本発明によれば、鎮敢例のLED相互に2ける光の干渉
を防止し、それにょシ主として、LEDの取付位置の簡
単なA整でA ;I目とB相の出方の位相差が所定の値
をと役得るようにし、その結果LED取付時に必要な調
整時間全大幅に減少し、LEDOf)配置4に関する設
計金谷筋にすることができる。According to the present invention, it is possible to prevent light from interfering with each other in the two LEDs, and to do so, the phase difference between the output of A; can serve as a predetermined value, so that the total adjustment time required during LED installation is significantly reduced and the design for the LED arrangement 4 can be made more flexible.
第1図は従来形のパルスエンコーダの概略の構成を示す
図、第2図は第1図のパルスエンコーダにおける回転符
号円板の平面図、第:3図は′f、1図のiRパルスエ
ンコーダおける固定符号板の平m1図、第4図は第1図
のノぐルスエンコーダにおける受光素子の受光タイミン
グを示す図、第5図はZ相の信号波形を示す波形図、第
6図は人相およびB相の信号成形を示す波形図、第7図
はA相、B相および2相の各信号の増幅回路の回路図、
第8図はA相、B相および2相出力の理想的な位相IA
係を示す波形図、第9図は従来形ノ々ルスエンコーダに
おけるL E DO元の相互干渉を説明する図、第10
図ハ従来形・千ルスエンコーダにおけるLEDの位置の
調整を説明する図、第11図は本発明の一実施例として
のパルスエンコーダの構成を示す図、および第12図は
第11図のパルスエンコーダのLEDのマスクの縦断面
図である。
11・・・Z相LED、12・・・A相LED、13・
・B相LED、14・・・回転符号円板、15・・・固
定符号板、16 ・受光素子、17・・・シャフト、2
1・・・2相党光素子、22・・・A相受光素子、23
・・・B相愛光素子、25・・・マスク、31,32.
33・・・増幅器。
特許出願人
ファナソク株式会社
特許出願代理人
弁理士 青 木 朗
弁理士 西 舘 和 之
弁理士 山 口 昭 之
第1図
第2図
第3図
迅
+’3゛12
第4図
第5図
第7図
河18図
第9図
21 23 ンノ
第10図
¥、 コ1111
〉>12図Fig. 1 is a diagram showing the general configuration of a conventional pulse encoder, Fig. 2 is a plan view of the rotation code disk in the pulse encoder of Fig. 1, Fig. 3 is 'f, and iR pulse encoder of Fig. 1. Fig. 4 is a diagram showing the light reception timing of the light receiving element in the Nogle encoder of Fig. 1, Fig. 5 is a waveform diagram showing the Z-phase signal waveform, and Fig. 6 is a diagram showing the signal waveform of the Z phase. A waveform diagram showing phase and B phase signal shaping, FIG.
Figure 8 shows the ideal phase IA of A phase, B phase and 2-phase output.
FIG. 9 is a diagram illustrating the mutual interference of the L E DO source in a conventional Nords encoder, and FIG.
Figure C is a diagram illustrating the adjustment of the position of the LED in a conventional thousand pulse encoder, Figure 11 is a diagram showing the configuration of a pulse encoder as an embodiment of the present invention, and Figure 12 is the pulse encoder of Figure 11. FIG. 11...Z-phase LED, 12...A-phase LED, 13.
・B phase LED, 14... Rotation code disk, 15... Fixed code plate, 16 ・Light receiving element, 17... Shaft, 2
DESCRIPTION OF SYMBOLS 1... 2-phase optical element, 22... A-phase light receiving element, 23
. . . B soai optical element, 25 . . . Mask, 31, 32.
33...Amplifier. Patent applicant Fanasoku Co., Ltd. Patent application agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Akira Yamaguchi Figure 1 Figure 2 Figure 3 Jin+'3゛12 Figure 4 Figure 5 Figure 7 Figure 18 Figure 9 21 23 Figure 10 ¥, Ko1111 〉>Figure 12
Claims (1)
び固定符号板を透過した元を受光素子により受光する構
泣のノやルスエンコーグにおいて、該発光ダイオードに
互いに光が干渉しないようにマスクを付加することを特
徴とする・ぐルスエンコーダ。In a light-emitting encoder that uses a plurality of light-emitting diodes as a light source and receives the light transmitted through a rotating code disk and a fixed code plate by a light-receiving element, a mask is added to the light-emitting diodes to prevent the light from interfering with each other. The Gurus encoder is characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1746883A JPS59143918A (en) | 1983-02-07 | 1983-02-07 | Pulse encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1746883A JPS59143918A (en) | 1983-02-07 | 1983-02-07 | Pulse encoder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59143918A true JPS59143918A (en) | 1984-08-17 |
Family
ID=11944847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1746883A Pending JPS59143918A (en) | 1983-02-07 | 1983-02-07 | Pulse encoder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59143918A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01131299U (en) * | 1988-03-01 | 1989-09-06 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57120815A (en) * | 1980-12-19 | 1982-07-28 | Ibm | Sequential rotary encoder |
-
1983
- 1983-02-07 JP JP1746883A patent/JPS59143918A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57120815A (en) * | 1980-12-19 | 1982-07-28 | Ibm | Sequential rotary encoder |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01131299U (en) * | 1988-03-01 | 1989-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6653619B2 (en) | Optical motion encoder with a reflective member allowing the light source and sensor to be on the same side | |
JP2008170436A (en) | Photosensor array for optical encoder | |
EP0357396A3 (en) | Microlens arrays and methods of producing the same | |
EP0838859A3 (en) | Photoelectric conversion apparatus with signal correction capability | |
EP0386929A3 (en) | Reflective shaft angle encoder | |
CA2106984A1 (en) | Lamp and reflector assembly | |
DE68914307D1 (en) | High intensity x-ray source using a bellows. | |
JPS59143918A (en) | Pulse encoder | |
DE3888026D1 (en) | Organic pigments coated with cross-linked ethyl cellulose. | |
EP0387799A3 (en) | Radiation measurement system | |
FI870003A (en) | OPTICAL RING FOERENING OCH FOERFARANDE FOER FRAMSTAELLNING DAERAV. | |
WO1986001289A1 (en) | Optical rotary encoder and a method of assembling the same | |
ITTO910715A1 (en) | HIGH EFFICIENCY ABSORBER, PROCEDURE TO REDUCE THE PUMP LIGHT OF A WIDE BAND OPTICAL FIBER LIGHT SOURCE AND OPTICAL FIBER ROTATION SENSOR. | |
CN106525090B (en) | A kind of band individual pen absolute value forces torque motor increment type coding disk | |
TR199902190T2 (en) | Reticle used in guide seeker for a spinning projectile | |
JPS6449019A (en) | Optical switch array | |
DE59506770D1 (en) | Signal light | |
CN1058571C (en) | Device for optically measuring the angular velocity of an object | |
SU5857A1 (en) | Fixture for periodic lighting of photocells | |
SU886028A1 (en) | Converter of shaft rotation angle to code | |
JPS5946813A (en) | Rotary encoder | |
SU1315804A1 (en) | Microwave interferometer | |
JPH0361517U (en) | ||
RU2003109892A (en) | METHOD FOR MEASURING ACCURACY ACCURACY OF CARBON STRUCTURES APPLICABLE TO TRANSPARENT CARRIER | |
SU767872A1 (en) | Photoelectric pulse sensor |