JPS59143322A - Electron beam drawing device - Google Patents

Electron beam drawing device

Info

Publication number
JPS59143322A
JPS59143322A JP58016638A JP1663883A JPS59143322A JP S59143322 A JPS59143322 A JP S59143322A JP 58016638 A JP58016638 A JP 58016638A JP 1663883 A JP1663883 A JP 1663883A JP S59143322 A JPS59143322 A JP S59143322A
Authority
JP
Japan
Prior art keywords
electron
drawn
electron beam
lenses
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58016638A
Other languages
Japanese (ja)
Other versions
JPH0226371B2 (en
Inventor
Toshinori Goto
後藤 俊徳
Teruo Someya
染谷 輝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP58016638A priority Critical patent/JPS59143322A/en
Publication of JPS59143322A publication Critical patent/JPS59143322A/en
Publication of JPH0226371B2 publication Critical patent/JPH0226371B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To draw a material to be drawn which includes a part requiring highly accurate drawing with high accuracy as well as to complete the overall drawing in a short time by providing two kinds of electron lenses whose distances from the material are different mutually and by using these lenses with changing over them according to the accuracy of a pattern to be drawn. CONSTITUTION:Electron beam from an electron gun 1 is projected toward a material to be drawn 4 on a stage through an aperture plate 2. A first and a second electron lenses 5 and 6 are arranged along an optical axis of said electron beam and a third and a fourth electron lenses 7 and 8 are arranged under these lenses 5 and 6. An electrostatic deflector 9 is arranged near the lens 7 and an electrostatic deflector 10 is arranged in a lens magnetic field formed by the lens 8. Then induction current is supplied from induction power supplys 11 and 12 through switching circuits 13 and 14 to the lenses 7, 8 and a control system 15 controls the change-over of the lenses 7 and 8 according to accuracy of a pattern to be drawn thereby drawing the material to be drawn 4 with high accuracy and reducing time for the overall drawing.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子線描画装置に関し、特に、高精度で描画す
べき微細なパターンを部分的に有した被描画材料を、高
速度で描画することができる電子線描画装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electron beam lithography system, and in particular, to an electron beam lithography system for lithography at high speed on a material to be lithography which partially has a fine pattern to be lithographically drawn with high precision. The present invention relates to an electron beam lithography system that can perform

[従来技術] 近年、光通信用のための光ICのパターンを電子線で描
画することが研究されている。このICの光回路部は数
百オングストロームの微細構造となるため、この回路部
の描画に際しては、電子線の照射径を極めて小さくし得
る電子光学系を使用し、更に、偏向収差の影響を少なく
するために電子線の偏向範囲を狭くするようにしている
。このため、時間を要する被描画材料の機械的な移動の
回数が極めて多くなり、IC回路の全体の描画には、著
しく長い時間が費される。
[Prior Art] In recent years, research has been conducted into drawing patterns of optical ICs for optical communication using electron beams. The optical circuit section of this IC has a fine structure of several hundred angstroms, so when writing this circuit section, we use an electron optical system that can make the electron beam irradiation diameter extremely small, and further reduce the influence of deflection aberration. In order to do this, the deflection range of the electron beam is narrowed. Therefore, the number of time-consuming mechanical movements of the material to be drawn becomes extremely large, and it takes a very long time to write the entire IC circuit.

[発明の目的] 本発明は上述した点に鑑みてなされたもので、高精度に
描画すべき部分を有した被描画材料を高速度で描画する
ことができる電子線描画装置を提供することを目的とし
ている。
[Object of the Invention] The present invention has been made in view of the above points, and an object of the present invention is to provide an electron beam lithography apparatus that can draw at high speed a material to be drawn having a portion to be drawn with high precision. The purpose is

[発明の構成コ 本発明に基づく電子線描画装置は、被描画材料に対する
距離が夫々異なって配置され、夫々が単独で最終段集束
レンズとして動作する第1と第2の電子レンズと、該材
料上の電子線照射位置を変化させるための偏向手段と、
該材料上に描画される図形に応じて該第1と第2の電子
レンズのいずれかを選択的に動作させるための手段とを
備えている。
[Structure of the Invention] The electron beam lithography apparatus based on the present invention includes first and second electron lenses arranged at different distances from each other to the material to be drawn, each of which independently operates as a final stage focusing lens, and the material. a deflection means for changing the electron beam irradiation position on the top;
and means for selectively operating either the first or second electron lens depending on the figure drawn on the material.

[実施例] 以下本発明の一実施例を添付図面に基づき詳述する。[Example] An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図において、1は電子銃であり、該電子銃1から発
生した電子線はブランキング用のアパーチャ板2を通り
、ステージ3上の被描画材料4方向に照射される。該電
子線の光軸に沿って第1と第2の電子レンズ5.6が配
置されており、該電子レンズ5.6の下部には第3と第
4の電子レンズ7.8が配置されている。該第3の電子
レンズ7に接近して第1の静電偏向器9が配置され、該
第4の電子レンズ8の形成するレンズ磁場の中には、第
2の静電偏向器10が配置されているが、該両偏向器は
夫々がX、Y2方向に電子線を偏向することができる。
In FIG. 1, reference numeral 1 denotes an electron gun, and an electron beam generated from the electron gun passes through an aperture plate 2 for blanking and is irradiated in 4 directions of a material to be drawn on a stage 3. First and second electron lenses 5.6 are arranged along the optical axis of the electron beam, and third and fourth electron lenses 7.8 are arranged below the electron lens 5.6. ing. A first electrostatic deflector 9 is arranged close to the third electron lens 7, and a second electrostatic deflector 10 is arranged in the lens magnetic field formed by the fourth electron lens 8. However, both of the deflectors can deflect the electron beam in the X and Y directions, respectively.

該第1と第2の電子レンズ7゜8には、夫々励磁電源1
1.12からスイッチ回路13.14を介して所望の励
磁電流が供給されているが、該スイッチ回路は、]ンビ
ュータの如き制御システム15からの信号によってON
あるいはOFFされる。該第1と第2の静電偏向器9゜
10には、該制御システム15からの偏向信号がD−A
変換器16.17を介して供給されている。
The first and second electron lenses 7°8 are each connected to an excitation power source 1.
A desired excitation current is supplied from 1.12 through a switch circuit 13.14, which is turned on by a signal from a control system 15 such as a monitor.
Or it is turned off. A deflection signal from the control system 15 is applied to the first and second electrostatic deflectors 9 and 10.
It is fed via converters 16.17.

該ステージ3は該制御システム15によって制御される
ステージ駆動機構18によって駆動される。
The stage 3 is driven by a stage drive mechanism 18 that is controlled by the control system 15.

該被描画材料4への電子線の照射に基づいて発生した、
例えば、反射電子は検出器19によって検出され、その
検出信号はA−D変換器20を介し3− て制御システム15に供給される。尚、21はブランキ
ング用偏向器であり、該偏向器には制御システム15か
らのブランキング信号がD−A変換器22を介して供給
される。
generated based on the irradiation of the electron beam to the drawing material 4,
For example, the reflected electrons are detected by the detector 19, and the detection signal is supplied to the control system 15 via the A/D converter 20. Note that 21 is a blanking deflector, to which a blanking signal from the control system 15 is supplied via a DA converter 22.

第2図は一辺が5暉のICチップTの概念図であり、該
チップTの隅部にはマークMが予め設けられており、該
チップTの中心部分は数百オングストローム程度の高精
度で描画すべき光回路部の如き回路部分が配置され、周
辺部分は中心部程度、精度を要求されない周辺回路部が
配置される。このようなチップTを描画する場合を例に
して、第1図の装置の動作を説明する。該チップの中心
部分は仮想的に一辺が0,1uの25〜100個のフィ
ールドF+に分割され、該チップの周辺部は一辺が2祁
の4個のフィールドF2に分割される。該チップの中心
部分を描画するに際して、第1図の装置では、制御回路
15からスイッチ回路13.14に信号が供給され、該
スイッチ回路13はOFF、該スイッチ回路14はON
とされる。その結果、電子レンズ8には、励磁電源12
から励磁型4− 流が供給されて、該電子レンズ8は最終段電子レンズと
して働き、該電子レンズ7には、該励磁電源11からの
励磁電流が供給されないため、該第3の電子レンズは電
子線の集束作用には寄与しないことになる。該電子線は
該第4の電子レンズによって集束されるが、該電子レン
ズ8は被描画材料4との間の距離が極めて短くされてい
るために、該材料上の電子線の径を例えば、0.011
+穎程度と極めて小さくすることができる。この時、該
第2の静電偏向器10には、制御システム15からD−
A変換器17を介して描画すべきパターンに応じた偏向
信号が供給されるが、該偏向信号による電子線の偏向範
囲は極めて狭くされ、該フィールドF1は高精度で描画
される。該特定のフィールドF1が描画された後、高精
度に描画すべき隣のフィールドF+を描画するに際して
は、該制御システムからステージ駆動機構18に駆動信
号が供給され、該ステージ3はフィールドの一辺の長さ
だけ移動させられ、この移動の後、該フィールドの描画
が高精度で行なわれる。尚、図示はしていないが、この
ステージの移動は、この分野では周知のレーザ干渉計を
使ったシステムによって制御されており、該移動は高精
度に監視され、その移動に伴なう誤差は直ちに補正され
ている。高精痘で描画すべき各フィールドF1の所定の
描画が終了した後、周辺部分のフィールドF2の描画が
行われるが、この時、該ステージは特定のフィールドF
2の中心と電子線光軸が略一致するように移動させられ
る。該周辺部分のフィールドF2の描画に当っては、該
制御システムから各スイッチ回路13.14に信号が供
給され、該スイッチ回路14はOFFに、又、該スイッ
チ回路13はONとされる。この結果、該電子レンズ8
はその動作が休止させられ、該電子レンズ7が最終段電
子レンズとして働くことになる。この状態では、該電子
レンズと被描画材料4との間の距離が比較的長いため、
該被描画材料−にの電子線の径は0 、2 pm程疫と
なる。更に、この状態で、該制御システム15から静電
偏向器9に描画すべきパターンに応じた偏向信号が供給
され、該フィールドは描画されることになる。該特定の
フィールドの描画が終了した後、該ステージは駆動機構
18によって該フィールドF2の一辺の長さだけ移動さ
せられ、隣のフィールドの描画が行われる。この周辺部
分の描画に際しては、比較的材F314から離れた偏向
器によって電子線を偏向しており、偏向収差の少ない小
さな偏向角度であっても、材料上の比較的広い範囲の描
画を行うことができる。
Fig. 2 is a conceptual diagram of an IC chip T with a side length of 5 mm.A mark M is provided in advance at the corner of the chip T, and the center part of the chip T has a high precision of about several hundred angstroms. A circuit portion such as an optical circuit portion to be drawn is placed, a peripheral portion is placed around the center, and a peripheral circuit portion that does not require precision is placed. The operation of the apparatus shown in FIG. 1 will be explained by taking as an example the case where such a chip T is drawn. The central part of the chip is virtually divided into 25 to 100 fields F+ of 0.1 u on a side, and the peripheral part of the chip is divided into 4 fields F2 of 2 u on a side. When drawing the central part of the chip, in the apparatus shown in FIG.
It is said that As a result, the electron lens 8 has an excitation power source 12
An excitation type 4- current is supplied from the electron lens 8, and the electron lens 8 functions as a final stage electron lens.Since the excitation current from the excitation power supply 11 is not supplied to the electron lens 7, the third electron lens This means that it does not contribute to the focusing effect of the electron beam. The electron beam is focused by the fourth electron lens, but since the distance between the electron lens 8 and the material 4 to be drawn is extremely short, the diameter of the electron beam on the material is, for example, 0.011
It can be made extremely small, about the size of a glume. At this time, the second electrostatic deflector 10 is connected to the D-
A deflection signal corresponding to the pattern to be drawn is supplied via the A converter 17, but the deflection range of the electron beam by the deflection signal is extremely narrowed, and the field F1 is drawn with high precision. After the specific field F1 is drawn, when drawing the adjacent field F+ that should be drawn with high precision, a drive signal is supplied from the control system to the stage drive mechanism 18, and the stage 3 After this movement, the field is drawn with high precision. Although not shown, the movement of this stage is controlled by a system using a laser interferometer, which is well known in this field, and the movement is monitored with high precision to eliminate errors associated with the movement. Corrected immediately. After the prescribed drawing of each field F1 to be drawn in high-grade pox is completed, the surrounding field F2 is drawn, but at this time, the stage is
The electron beam is moved so that the center of the electron beam 2 and the electron beam optical axis substantially coincide with each other. When drawing the field F2 in the peripheral portion, a signal is supplied from the control system to each switch circuit 13, 14, and the switch circuit 14 is turned OFF and the switch circuit 13 is turned ON. As a result, the electronic lens 8
The operation of the electron lens 7 is stopped, and the electron lens 7 functions as the final stage electron lens. In this state, since the distance between the electron lens and the drawing material 4 is relatively long,
The diameter of the electron beam to the drawing material is about 0.2 pm. Furthermore, in this state, a deflection signal corresponding to the pattern to be drawn is supplied from the control system 15 to the electrostatic deflector 9, and the field is drawn. After the drawing of the specific field is completed, the stage is moved by the length of one side of the field F2 by the drive mechanism 18, and the drawing of the adjacent field is performed. When drawing this peripheral part, the electron beam is deflected by a deflector that is relatively far from the material F314, and even with a small deflection angle with little deflection aberration, it is possible to draw a relatively wide range on the material. I can do it.

このように、上述した構成では、チップ内の比較的高精
度で描画すべき部分は材料との距離が短い電子レンズを
用いて電子線を極めて細く絞るようにすると共に、電子
線の偏向範囲を狭くし、チップ内の比較的高い精度が要
求されない部分については、材料との距離が長い電子レ
ンズを用いて比較的径の大きな電子線によって材料上の
描画を行うと共に、偏向による該電子線の材料上の移動
範囲を大きくし、もってステージの移動に賀す時間を減
少させるようにしているため、必要な高精度の描画を行
っているにも拘わらず、早い速度で材料全体の描画を行
うことができる。
In this way, in the above-mentioned configuration, the electron beam is focused extremely narrowly by using an electron lens with a short distance to the material for the part of the chip that should be drawn with relatively high precision, and the deflection range of the electron beam is narrowed. For parts of the chip that do not require relatively high precision, an electron lens with a long distance to the material is used to draw on the material with a relatively large diameter electron beam, and the electron beam is deflected by deflection. By increasing the movement range on the material and thereby reducing the time it takes to move the stage, it is possible to draw the entire material at a fast speed even though it is drawing with the necessary high precision. I can do it.

7− 上述した如く、第1図に示した実施例においては、単一
のチップ内の描画を行う過程において、2組用意された
電子線の集束偏向系のいずれかを切換えて使用している
ことから、該2組の集束偏向系の光軸が一致していな奄
・1と、フィールド間のパターンの接続を精度良く行う
ことができないため、該両光軸を精確に一致させる必要
がある。該第1図の実施例においては、そのため、各フ
ィールドの描画を行うに先立って、チップTの隅部の2
本の直線状のマーク要素よりなるマークMの部分に光軸
が位置するようにステージが移動させられる。この状態
において、まず、第3の電子レンズ7のみを励磁し、第
1の静電偏向器9に該2本のマーク要素を横切って電子
線を走査するような偏向信号が印加される。該電子線の
走査に応じて発生した反射電子は検出器17によって検
出され、その検出信号は制御システムに供給される。該
制御システム15は該検出信号に基づいて、既知のマー
ク要素間隔と該マーク要素間隔に対応する偏向信号量と
から、所定の偏向信号によって所定量8− 電子線が移動されるように該第1の偏向器に供給される
偏向信号の増幅系の調整を行う。この時、電子線の走査
開始点から第1のマーク要素位置までの距Iff D 
1が測定され、記憶される。次に、該第3の電子レンズ
7の励磁を休止させ、第4の電子レンズ8を励磁した状
態で、第2の静電偏向器に該2本のマーク要素を横切っ
て電子線を走査するような偏向信号が供給される。該電
子線の走査に応じて発生した反射電子は検出器19によ
って検出され、その検出信号は制御システムに供給され
る。該制御システム15は該検出信号に基づいて、既知
のマーク要素間隔と該マーク要素間隔に対応する偏向信
号量とから、所定の偏向信号によって所定量電子線が移
動されるように該第2の偏向器に供給される偏向信号の
増幅系の調整を行う。
7- As mentioned above, in the embodiment shown in FIG. 1, in the process of drawing in a single chip, one of two sets of electron beam focusing and deflecting systems is used by switching. Therefore, since the optical axes of the two sets of focusing/deflecting systems do not match, it is not possible to connect the patterns between the fields with high precision, so it is necessary to make the two optical axes match precisely. . In the embodiment shown in FIG. 1, therefore, two corners of the chip T are drawn before each field is drawn.
The stage is moved so that the optical axis is located at a mark M formed by a linear mark element on the book. In this state, first, only the third electron lens 7 is excited, and a deflection signal is applied to the first electrostatic deflector 9 to scan the electron beam across the two mark elements. The reflected electrons generated in response to the scanning of the electron beam are detected by the detector 17, and the detection signal is supplied to the control system. Based on the detection signal, the control system 15 determines, based on the known mark element spacing and the deflection signal amount corresponding to the mark element spacing, such that the electron beam is moved by a predetermined amount 8- by a predetermined deflection signal. The amplification system for the deflection signal supplied to the first deflector is adjusted. At this time, the distance If D from the scanning start point of the electron beam to the first mark element position
1 is measured and stored. Next, with the third electron lens 7 de-energized and the fourth electron lens 8 excited, an electron beam is scanned across the two mark elements on the second electrostatic deflector. Such a deflection signal is supplied. The reflected electrons generated in response to the scanning of the electron beam are detected by the detector 19, and the detection signal is supplied to the control system. Based on the detection signal, the control system 15 adjusts the second electron beam so that the electron beam is moved by a predetermined amount by a predetermined deflection signal based on the known mark element spacing and the deflection signal amount corresponding to the mark element spacing. Adjusts the amplification system for the deflection signal supplied to the deflector.

この時、電子線の走査開始点から第1のマーク要素位置
までの距離D2が測定され、記憶される。
At this time, the distance D2 from the scanning start point of the electron beam to the first mark element position is measured and stored.

該制御システム15は、該測定された距111f D 
1 と02との差へ〇を求めるが、この差ΔDは、該2
組の集束偏向系の光軸のずれ量である。従って、例えば
、チップTの中央部分のフィールドF1を第4の電子レ
ンズ8と第2の偏向器10より成る集束偏向系を使用し
て高精度で描画した後、該デツプTの周辺部のフィール
ド「2内のパターンを第3の電子レンズと第1の偏向器
とにり成る集束偏向系を使用して描画するに際しては、
該フィールドF2内のパターンの位置信号を前記光軸の
ずれ量ΔDだけ修正して行われる。その結果、中央部分
の微細パターンと周辺部のパターンとを高精度につなぎ
合せてチップ全体を高速度で描画することができる。尚
、上記ずれ量ΔDは1方向の光軸のずれを表しているが
、実際には、他のマーク部を使って該方向とは垂直な方
向のずれ量も求められている。
The control system 15 controls the measured distance 111f D
1 is calculated as the difference between 02 and 02, but this difference ΔD is
This is the amount of deviation of the optical axis of the set of focusing/deflecting systems. Therefore, for example, after drawing the field F1 in the central part of the chip T with high precision using a focusing deflection system consisting of the fourth electron lens 8 and the second deflector 10, the field F1 in the peripheral part of the depth T is drawn with high precision. ``When drawing the pattern in 2 using a focusing deflection system consisting of a third electron lens and a first deflector,
This is performed by correcting the position signal of the pattern in the field F2 by the amount of deviation ΔD of the optical axis. As a result, the entire chip can be drawn at high speed by connecting the fine patterns in the central part and the patterns in the peripheral part with high precision. Although the above deviation amount ΔD represents the deviation of the optical axis in one direction, in reality, the deviation amount in a direction perpendicular to this direction is also determined using other mark parts.

上)ホした実施例では、描画すべきフィールドに応じて
、第1と第2の偏向器9,1oを切換えて使用するJ:
うに構成したが、第4の電子レンズ8を励磁して高精度
の描画を行う場合に、第1と第2の偏向器を2段偏向系
として用いるようにしても良い。又、第2偏向器10は
第4の電子レンズ8の11場内に配置されたが、この磁
場の外側であっても良い。更に、偏向器は単一であって
も良い。
In the above embodiment, the first and second deflectors 9 and 1o are switched and used depending on the field to be drawn.
However, when the fourth electron lens 8 is excited to perform highly accurate drawing, the first and second deflectors may be used as a two-stage deflection system. Further, although the second deflector 10 is placed within the field 11 of the fourth electron lens 8, it may be placed outside this magnetic field. Furthermore, a single deflector may be used.

更に又、中央部に微細構造を有し、この部分を高精度で
描画するチップを例に本発明を説明したが、高精度で描
画する部分が周辺部に存在するようなチップを描画する
場合にも本発明を適用することができる。
Furthermore, although the present invention has been explained using an example of a chip that has a fine structure in the center and draws this part with high precision, when drawing a chip where the part to be drawn with high precision exists in the periphery. The present invention can also be applied to.

[効果] 以上詳述した如く、本発明は被描画材料との距離が夫々
異った2種の電子レンズを設け、描画すべきパターンの
精度に応じて該電子レンズを切換えて使用するように構
成したため、高精度で描画すべき部分を有した材料であ
っても、短時間で全体の描画を行うことが可能となる。
[Effect] As detailed above, the present invention provides two types of electron lenses, each having a different distance from the material to be drawn, and switches the electron lenses for use depending on the accuracy of the pattern to be drawn. Because of this structure, even if the material has a part that needs to be drawn with high precision, it is possible to draw the entire part in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である電子線描画装置を示す
図、第2図は第1図に示し1=装置によって描画される
チップの一例を示す図である。 11− 1・・・・・・・・・電子銃 3・・・・・・・・・ステージ 4・・・・・・・・・被描画材料 7.8・・・・・・・・・電子レンズ 9.10・・・・・・・・・静電偏向器11.12・・
・・・・・・・励磁電源13.14・・・・・・・・・
スイッチ回路15・・・・・・・・・制御システム 16.17・・・・・・・・・D−A変換器16・・・
・・・・・・ステージ駆動機構17・・・・・・・・・
反射電子検出器特許出願人 日本電子株式会社 代表者 伊藤 −夫 12− 第2図
FIG. 1 is a diagram showing an electron beam lithography apparatus which is an embodiment of the present invention, and FIG. 2 is a diagram illustrating an example of a chip drawn by the apparatus shown in FIG. 1. 11- 1... Electron gun 3... Stage 4... Material to be drawn 7.8... Electronic lens 9.10... Electrostatic deflector 11.12...
・・・・・・Excitation power supply 13.14・・・・・・・・・
Switch circuit 15... Control system 16.17... D-A converter 16...
... Stage drive mechanism 17 ......
Backscattered electron detector patent applicant JEOL Ltd. representative Ito -husband 12- Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)被描画材料に対する距離が夫々異なって配置され
、夫々が単独で最終段集束レンズとして動作する第1と
第2の電子レンズと、該材料上の電子線照射位置を変化
させるための偏向手段と、該材料上に描画される図形に
応じて該第1と第2の電子レンズのいずれかを選択的に
動作させるための手段とを備えた電子線描画装置。
(1) First and second electron lenses arranged at different distances from the material to be imaged, each acting independently as a final stage focusing lens, and a deflection device for changing the electron beam irradiation position on the material. An electron beam lithography apparatus comprising: means for selectively operating either the first or second electron lens according to a figure to be drawn on the material.
(2)該偏向手段は第1と第2の偏向手段より成り、該
第1と第2の電子レンズの選択に応じてそのいずれかが
使用される特許請求の範囲第1項記載の電子線描画装置
(2) The electron beam according to claim 1, wherein the deflection means comprises first and second deflection means, and either one of them is used depending on the selection of the first and second electron lenses. drawing device.
(3)該偏向手段は第1と第2の偏向手段より成り、該
材料から離れた第1の電子レンズが動作させられている
時、該第1の偏向手段のみが使用され、該材料により接
近して配置された該第2の電子レンズが動作させられて
いる時、該第1と第2の偏向手段によって2段偏向系が
構成される特許請求の範囲第1項記載の電子線描画装置
(3) The deflection means comprises first and second deflection means, and when the first electron lens remote from the material is operated, only the first deflection means is used; Electron beam lithography according to claim 1, in which a two-stage deflection system is constituted by the first and second deflection means when the second electron lens arranged close to each other is operated. Device.
JP58016638A 1983-02-03 1983-02-03 Electron beam drawing device Granted JPS59143322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58016638A JPS59143322A (en) 1983-02-03 1983-02-03 Electron beam drawing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58016638A JPS59143322A (en) 1983-02-03 1983-02-03 Electron beam drawing device

Publications (2)

Publication Number Publication Date
JPS59143322A true JPS59143322A (en) 1984-08-16
JPH0226371B2 JPH0226371B2 (en) 1990-06-08

Family

ID=11921898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58016638A Granted JPS59143322A (en) 1983-02-03 1983-02-03 Electron beam drawing device

Country Status (1)

Country Link
JP (1) JPS59143322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143217A (en) * 1987-11-27 1989-06-05 Jeol Ltd Electron beam lithography equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143217A (en) * 1987-11-27 1989-06-05 Jeol Ltd Electron beam lithography equipment

Also Published As

Publication number Publication date
JPH0226371B2 (en) 1990-06-08

Similar Documents

Publication Publication Date Title
US4455485A (en) Laser beam scanning system
US6121625A (en) Charged particle beam lithography apparatus for forming pattern on semi-conductor
US4393312A (en) Variable-spot scanning in an electron beam exposure system
US5444257A (en) Electron-beam exposure system for reduced distortion of electron beam spot
US5153441A (en) Electron-beam exposure apparatus
US4167676A (en) Variable-spot scanning in an electron beam exposure system
JPH047087B2 (en)
JP2000173529A (en) Electron beam plotting method and device therefor
US4530064A (en) Exposure method utilizing an energy beam
JPS59143322A (en) Electron beam drawing device
JPH0414490B2 (en)
JPS6231488B2 (en)
JP2000357647A (en) Charged particle beam exposure system
JPH03222320A (en) Electron beam exposing device
JP3366182B2 (en) Charged particle beam exposure apparatus and its exposure method
JPH10284394A (en) Method and system for charged particle beam exposure
JPH10289860A (en) Method for adjusting beam of projection optical system and projection optical system
JPS62272527A (en) Lithography equipment with radiation beam
JPS61294750A (en) Charged beam lithography equipment
JPH0619962B2 (en) Charge beam device
JPH1079346A (en) Charged particle beam transfer apparatus
JPS6055621A (en) Device for exposing to electronic beam
JPH03201526A (en) Alignment device and method of multiple-charged particle beam exposure system
JPH11224636A (en) Electron beam drawing device
JPS61174629A (en) Electron beam image drawing apparatus