JPH0619962B2 - Charge beam device - Google Patents

Charge beam device

Info

Publication number
JPH0619962B2
JPH0619962B2 JP61140621A JP14062186A JPH0619962B2 JP H0619962 B2 JPH0619962 B2 JP H0619962B2 JP 61140621 A JP61140621 A JP 61140621A JP 14062186 A JP14062186 A JP 14062186A JP H0619962 B2 JPH0619962 B2 JP H0619962B2
Authority
JP
Japan
Prior art keywords
hole
diaphragm
charged beam
diaphragm member
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61140621A
Other languages
Japanese (ja)
Other versions
JPS62296351A (en
Inventor
好宏 田村
哲夫 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP61140621A priority Critical patent/JPH0619962B2/en
Publication of JPS62296351A publication Critical patent/JPS62296351A/en
Publication of JPH0619962B2 publication Critical patent/JPH0619962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、荷電ビームを試料等に照射する荷電ビーム
装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a charged beam apparatus for irradiating a sample or the like with a charged beam.

(従来の技術) 第3図に示した従来の装置は、荷電ビーム発生源1、開
孔径を異にした複数の絞り孔4a〜4c(その開口径は
例えば10〜100μm)を形成した絞り部材5(その厚さ
は例えば10μm)、集束レンズ6、偏向器7、二次電子
検出器9、偏向アンプ10、CRTディスプレイ11によっ
て構成されている。
(Prior Art) A conventional apparatus shown in FIG. 3 is a diaphragm member in which a charged particle beam source 1 and a plurality of diaphragm holes 4a to 4c (opening diameters are, for example, 10 to 100 μm) having different opening diameters are formed. 5 (thickness is 10 μm, for example), a focusing lens 6, a deflector 7, a secondary electron detector 9, a deflection amplifier 10, and a CRT display 11.

なお、図中符号3は光軸、8は試料である。In the figure, reference numeral 3 is an optical axis, and 8 is a sample.

そして、上記絞り部材5は水平方向に移動可能にし、上
記絞り孔のうちの一つを荷電ビーム発生源1の下方に位
置させる。
Then, the diaphragm member 5 is movable in the horizontal direction, and one of the diaphragm holes is located below the charged beam generating source 1.

しかして、荷電ビーム発生源1から出力された荷電ビー
ム2は、上記のようにして選択された所望の絞り孔を通
過し、集束レンズ6、偏向器7を経て試料8に照射され
る。そして、この偏向器7には偏向アンプ10を接続して
いるので、偏向アンプ10を制御することによって、荷電
ビーム2を試料8上に走査させることができる。また、
集束レンズ6は制御電源12の信号に基づいて集束強度が
制御される。
Then, the charged beam 2 output from the charged beam generation source 1 passes through the desired aperture hole selected as described above, passes through the focusing lens 6 and the deflector 7, and is irradiated onto the sample 8. Since the deflection amplifier 10 is connected to the deflector 7, the charged beam 2 can be scanned on the sample 8 by controlling the deflection amplifier 10. Also,
The focusing intensity of the focusing lens 6 is controlled based on the signal from the control power supply 12.

上記のように試料8に荷電ビーム2を照射すると、試料
8から二次電子が発生するが、この二次電子は二次電子
検出器9で検出される。そして、この検出信号をCRT
ディスプレイ11に送って、偏向アンプ10の走査信号と同
期させれば、上記ディスプレイ11に試料8の走査二次電
子像が写し出される。
When the sample 8 is irradiated with the charged beam 2 as described above, secondary electrons are generated from the sample 8. The secondary electrons are detected by the secondary electron detector 9. Then, this detection signal is sent to the CRT
When sent to the display 11 and synchronized with the scanning signal of the deflection amplifier 10, the scanning secondary electron image of the sample 8 is displayed on the display 11.

このときの試料8に照射される荷電ビーム2のビーム径
および電流量は、絞り部材5上の絞り孔4a〜4cの径
に依存している。
The beam diameter and the amount of current of the charged beam 2 with which the sample 8 is irradiated at this time depend on the diameters of the aperture holes 4a to 4c on the aperture member 5.

したがって、所望のビーム径、あるいは電流量の荷電ビ
ームを得ようとする場合には、絞り部材5を水平移動さ
せて適切な開孔径を有する絞り孔4a〜4cのいずれか
一つを荷電ビーム発生源1の下方に位置させる必要があ
る。
Therefore, in order to obtain a charged beam having a desired beam diameter or current amount, the diaphragm member 5 is moved horizontally to generate one of the diaphragm holes 4a to 4c having an appropriate aperture diameter. It must be located below the source 1.

しかし、高品質の荷電ビームを得ようとする場合には絞
り孔の中心と光軸3を一致させなければならない。も
し、光軸3と絞り孔の中心が一致していないと、荷電ビ
ーム2の軌道が光軸3から外れ、収差の影響が大きくな
るが、この収差の影響が大きくなると、荷電ビームの断
面が非対称に歪んだり、ビーム径を必要以上に大きくし
たりして、荷電ビームの品質を低下させてしまう。
However, in order to obtain a charged beam of high quality, the center of the aperture and the optical axis 3 must be aligned. If the optical axis 3 does not coincide with the center of the aperture, the trajectory of the charged beam 2 deviates from the optical axis 3 and the influence of aberration increases. However, if the influence of this aberration increases, the cross section of the charged beam will change. The quality of the charged beam is deteriorated by asymmetrically distorting or increasing the beam diameter more than necessary.

そこで、従来は、絞り孔の中心と光軸を一致させる作業
(以下光軸調整と称する)を、次のようにしていた。
Therefore, conventionally, the work of aligning the optical axis with the center of the aperture hole (hereinafter referred to as optical axis adjustment) has been performed as follows.

まず、所望の絞り孔を単に荷電ビーム発生源1の下に位
置させる。このように絞り孔を荷電ビーム発生源1の下
方に位置させれば、たとえ光軸3と絞り孔中心とが一致
していなくても、当該荷電ビーム2は試料8に到達す
る。そこで、上記偏向アンプ10を動作させれば、CRT
ディスプレイ11で走査二次電子像を観察することができ
る。
First, the desired aperture is simply located below the charged beam generator 1. By thus arranging the diaphragm hole below the charged beam generating source 1, the charged beam 2 reaches the sample 8 even if the optical axis 3 and the center of the diaphragm hole do not coincide. Therefore, if the deflection amplifier 10 is operated, the CRT
The scanning secondary electron image can be observed on the display 11.

このとき集束レンズの強度を変化させると、光軸3と絞
り孔の中心とを一致させる光軸調整が正確にされていな
い状態では、走査二次電子像がCRTディスプレイ11の
画面上で流れる現象が見られる。
At this time, if the intensity of the focusing lens is changed, the scanning secondary electron image flows on the screen of the CRT display 11 when the optical axis adjustment for aligning the optical axis 3 with the center of the aperture is not accurate. Can be seen.

したがって、集束レンズの強度を変化させるとともに、
CRTディスプレイ11の画面上で走査二次電子像が流れ
なくなるまで、光軸3に対する絞り孔の相対位置を制御
すれば、光軸調整ができることになる。
Therefore, while changing the intensity of the focusing lens,
The optical axis can be adjusted by controlling the relative position of the aperture hole with respect to the optical axis 3 until the scanning secondary electron image does not flow on the screen of the CRT display 11.

(本発明が解決しようとする問題点) 選択した絞り孔の開孔径が大きければ、ビーム径もそれ
に対応して大きくなるが、このようにビーム径が大きく
なればなるほど得られた走査二次電子像の分解能は悪く
なる。走査二次電子像の分解能が悪くなると、前記の走
査二次電子像を基準にした正確な光軸調整ができなくな
る。
(Problems to be Solved by the Present Invention) If the aperture diameter of the selected aperture hole is large, the beam diameter is correspondingly large. However, the larger the beam diameter is, the obtained scanning secondary electrons are obtained. Image resolution is poor. If the resolution of the scanning secondary electron image deteriorates, it becomes impossible to accurately adjust the optical axis based on the scanning secondary electron image.

そのために従来の装置では、絞り孔の開孔径が大きくな
ればなるほど、当該光軸調整の精度が落ちてしまうとい
う問題があった。
Therefore, in the conventional apparatus, there is a problem that the accuracy of the optical axis adjustment decreases as the aperture diameter of the diaphragm hole increases.

この発明は、絞り部材と荷電ビーム発生源との間に、小
径の補助絞り孔を有する補助絞り部材を設けて、絞り部
材に形成した絞り孔の開孔径にかかわらず一定の精度で
前記絞り孔の光軸を合わせを正確に行なうことのできる
荷電ビーム装置を提供することを目的とする。
According to the present invention, an auxiliary diaphragm member having a small diameter auxiliary diaphragm hole is provided between a diaphragm member and a charged beam generating source, and the diaphragm hole is formed with a constant accuracy regardless of the aperture diameter of the diaphragm hole formed in the diaphragm member. It is an object of the present invention to provide a charged particle beam system capable of accurately aligning the optical axes of the above.

(問題点を解決するための手段) 上記の目的を達成するために、この発明は、絞り部材に
形成した絞り孔と荷電ビームの光軸との相対位置を制御
する手段を有し、その絞り部材に設けたそれぞれ開孔形
状と開孔寸法、もしくはどちらか一方が異なる複数の絞
り孔の内の一つを選定し、該絞り孔で荷電ビーム発生源
から発生する荷電ビームを絞り、この絞られた荷電ビー
ムを試料に照射する荷電ビーム装置において、前記荷電
ビーム発生源と前記絞り部材との間に補助絞り部材を設
け、この補助絞り部材には円形孔で、その寸法が、前記
絞り孔の一番小さいものと同径かあるいはそれよりも小
径である補助絞り孔を形成し、かつ、この補助絞り部材
は作用位置と不作用位置の切り換えが可能であり、その
作用位置では前記補助絞り孔の中心が荷電ビームの光軸
と一致し、不作用位置では前記荷電ビームの照射部分よ
り外れて該荷電ビームに作用をもたらさない構成にして
いる。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention has means for controlling the relative position between the diaphragm hole formed in the diaphragm member and the optical axis of the charged beam, and the diaphragm One of a plurality of aperture holes having different aperture shapes and aperture dimensions or one of them provided on the member is selected, and the aperture is used to aperture the charged beam generated from the charged beam source. In a charged beam apparatus for irradiating a sample with the charged beam thus generated, an auxiliary diaphragm member is provided between the charged beam source and the diaphragm member, and the auxiliary diaphragm member has a circular hole whose size is the diaphragm hole. Of the auxiliary throttle having the same diameter as or smaller than the smallest diameter of the auxiliary throttle, and this auxiliary throttle member is capable of switching between an operating position and an inactive position, and in the operating position, the auxiliary throttle is provided. The center of the hole is the load The configuration is such that it coincides with the optical axis of the electric beam and deviates from the irradiation portion of the charged beam at the non-acting position so as not to act on the charged beam.

(本発明の作用) この発明は上記のように構成したので、補助絞り部材を
作用位置にして、荷電ビーム発生源からのビームを照射
する。補助絞り部材が作用位置にあり、絞り孔径よりも
小さい補助絞り部材の絞り孔の光軸合わせが完了してい
る状態では、絞り部材の絞り孔の開孔径にかかわらない
一定精度の光軸合わせが達成される。
(Operation of the present invention) Since the present invention is configured as described above, the beam from the charged beam generating source is irradiated with the auxiliary diaphragm member in the operating position. When the auxiliary diaphragm member is in the operating position and the optical axis alignment of the diaphragm hole of the auxiliary diaphragm member smaller than the diaphragm hole diameter has been completed, the optical axis alignment of a constant accuracy is achieved regardless of the aperture diameter of the diaphragm hole of the diaphragm member. To be achieved.

そして、補助絞り部材の絞り孔を通過した荷電ビームで
光軸合わせをする。
Then, the optical axis is aligned with the charged beam that has passed through the aperture of the auxiliary aperture member.

(本発明の目的) この発明の荷電ビーム装置によれば、補助絞り部材の補
助絞り孔の光軸合わせの精度が向上するので、補助絞り
部材の補助絞り孔を通過した荷電ビームによって、その
光軸合わせをする絞り部材の絞り孔の光軸合わせが正確
にできる。
(Object of the Invention) According to the charged beam apparatus of the present invention, the accuracy of the optical axis alignment of the auxiliary diaphragm hole of the auxiliary diaphragm member is improved. The optical axis of the diaphragm hole of the diaphragm member for axis alignment can be accurately aligned.

(本発明の実施例) 本発明の実施例を第1〜2図に示す。(Example of the present invention) An example of the present invention is shown in Figs.

第1図において、51は荷電ビーム発生源1と絞り部材5
との間に設けた補助絞り部材で、この補助絞り部材51に
は、絞り部材5の最小径の絞り孔4aと同径かあるいは
それよりも小径(例えば9μm)にした補助絞り孔41を
形成している。もし、補助絞り孔41の孔径が、絞り部材
5の絞り孔径よりも大きければ、補助絞り孔41の光軸合
わせの精度が絞り孔部材5の光軸合わせの精度よりも低
下することが起こる。
In FIG. 1, 51 is a charged beam generating source 1 and a diaphragm member 5.
An auxiliary diaphragm member 41 provided between the auxiliary diaphragm member 51 and the auxiliary diaphragm member 51 is formed with an auxiliary diaphragm hole 41 having the same diameter as the diaphragm hole 4a having the smallest diameter of the diaphragm member 5 or a diameter smaller than that (for example, 9 μm). is doing. If the diameter of the auxiliary aperture hole 41 is larger than the diameter of the aperture hole of the aperture member 5, the accuracy of the optical axis alignment of the auxiliary aperture hole 41 may be lower than the accuracy of the optical axis alignment of the aperture hole member 5.

上記の補助絞り部材51は駆動装置13によって水平移動さ
せて、補助絞り孔41の中心が光軸3と一致する作用位置
aと荷電ビーム2の照射位置より外れる不作用位置bと
の2位置に切り換え可能としている。そして、その駆動
装置13は中央制御装置17の出力信号によって制御され
る。
The auxiliary diaphragm member 51 is horizontally moved by the driving device 13 to be located at two positions, that is, the working position a where the center of the auxiliary diaphragm hole 41 coincides with the optical axis 3 and the non-working position b where the charging beam 2 is not irradiated. It can be switched. The driving device 13 is controlled by the output signal of the central controller 17.

また、絞り部材5は、それに接続し駆動装置14の駆動力
で、少なくとも2方向に水平移動可能にしている。そし
て、この駆動装置14も上記駆動装置13と同様に、中央制
御装置17の出力信号によって制御される。
The diaphragm member 5 is connected to the diaphragm member 5 and can be horizontally moved in at least two directions by the driving force of the driving device 14. The drive unit 14 is also controlled by the output signal of the central control unit 17, like the drive unit 13.

さらに、絞り部材5には電流計15、試料8には電流計16
が電気的に接続され、これら二つの電流計15、16の信号
は中央制御装置17に送られる。
Further, the diaphragm member 5 has an ammeter 15 and the sample 8 has an ammeter 16
Are electrically connected, and the signals of these two ammeters 15, 16 are sent to the central controller 17.

上記以外の構成については、従来装置の説明とほぼ同様
である。
The configuration other than the above is almost the same as the description of the conventional device.

しかして、絞り部材5上の絞り孔4a〜4cのいずれか
一つ、例えば絞り孔4aを選択し、それを荷電ビーム発
生源1の下方に位置させる。これとともに補助絞り部材
51を作用位置aにセットして、荷電ビーム発生源1より
荷電ビーム2を照射する。
Then, any one of the diaphragm holes 4a to 4c on the diaphragm member 5, for example, the diaphragm hole 4a is selected and positioned below the charged particle beam generation source 1. Along with this, the auxiliary throttle member
51 is set to the action position a and the charged particle beam source 1 irradiates the charged particle beam 2.

この状態で駆動装置14を駆動して絞り部材5を水平移動
させ、荷電ビーム2と絞り部材5とを相対移動させる。
このようにすれば、当該荷電ビーム2を絞り孔4aのあ
る直径方向に走査したのと同様の結果が得られる。そし
て、この荷電ビーム2が絞り孔4a内を照射していると
きには、絞り部材5に当該荷電ビーム2の照射による電
流が流れないが、当該荷電ビーム2が絞り孔4aから外
れ、絞り部材5を直接照射しているときには、絞り部材
5に電流が流れる。
In this state, the driving device 14 is driven to horizontally move the diaphragm member 5 and relatively move the charged beam 2 and the diaphragm member 5.
By doing so, the same result as when the charged beam 2 is scanned in the diametrical direction having the aperture 4a is obtained. Then, while the charged beam 2 is irradiating the inside of the aperture 4a, the current due to the irradiation of the charged beam 2 does not flow through the aperture member 5, but the charged beam 2 comes out of the aperture 4a and the aperture member 5 is opened. During direct irradiation, current flows through the diaphragm member 5.

したがって、当該荷電ビーム2を絞り孔4aのある一つ
の直径方向に走査させれば第2図に示すように、当該絞
り孔4aの直径線の一端X位置から電流が減少してゼロ
となり、直線線の他端Yから再び電流が増加する。この
電流変化を電流計15で検出し、中央制御装置17へその信
号を送る。
Therefore, if the charged beam 2 is scanned in one diametrical direction of the diaphragm hole 4a, the current decreases from one end X position of the diameter line of the diaphragm hole 4a to zero as shown in FIG. The current increases again from the other end Y of the line. The current change is detected by the ammeter 15 and the signal is sent to the central controller 17.

このように電流計15からの信号を受ける中央制御装置17
では上記の電流が変化する位置X、Yを記憶するととも
に、この位置X、Y間の距離を2で割り、絞り孔4aの
ある一つの直径方向の中心を求め、それを記憶する。そ
して、この走査を複数方向について行なえば絞り孔4a
の開孔径に関係なく、その中心位置を精度よく特定する
とともに、その精度よく特定した当該絞り孔4aの中心
位置を、中央制御装置17に記憶させることができる。
In this way, the central controller 17 that receives the signal from the ammeter 15
Then, the positions X and Y at which the current changes are stored, the distance between the positions X and Y is divided by 2, and one diametrical center of the throttle hole 4a is obtained and stored. If this scanning is performed in a plurality of directions, the aperture 4a
It is possible to accurately specify the center position of the aperture hole 4a regardless of the diameter of the aperture, and to store the accurately specified center position of the diaphragm hole 4a in the central controller 17.

このようにして、絞り部材5の他の絞り孔についても、
この孔の中心位置を特定しておき、中央制御装置に接続
された記憶装置18に記憶しておくことも可能である。各
絞り孔の中心位置を全て中央制御装置17に記憶させてお
けば、例えば、荷電ビームで試料を加工している途中
で、絞り孔を替えて別のビーム径で加工を続けるような
場合、加工途中で絞り孔を替えても、あらかじめ絞り孔
の中心位置を特定してあるので、その都度光軸調整をし
なくてもよくなるという利点がある。
In this way, with respect to the other diaphragm holes of the diaphragm member 5,
It is also possible to specify the center position of this hole and store it in the storage device 18 connected to the central controller. If all the central positions of the respective aperture holes are stored in the central controller 17, for example, when the sample is being processed by the charged beam and the aperture holes are changed to continue processing with another beam diameter, Even if the aperture hole is changed during processing, the center position of the aperture hole is specified in advance, so there is an advantage that the optical axis need not be adjusted each time.

以上の説明は、絞り部材5に流れる電流を電流計15によ
って検出しながら、当該絞り孔の中心を求めるようにし
たが、試料8に接続した電流計16を用いて、当該絞り孔
の中心を求めるようにしてもよい。
In the above description, the center of the diaphragm hole is obtained while the current flowing through the diaphragm member 5 is detected by the ammeter 15, but the center of the diaphragm hole is determined by using the ammeter 16 connected to the sample 8. You may ask.

そして、電流計16を用いて光軸調整を行なう場合には次
のようになる。すなわち、補助絞り孔41を通過した小径
の荷電ビームが絞り孔4aの孔内にあるときは、その荷
電ビームが試料8に照射されるので、当該試料8に電流
が流れる。逆に、上記荷電ビームが絞り孔から外れてい
るときは、絞り部材5によりこの荷電ビームは遮断され
るので、試料8には電流は流れない。したがって、電流
計16の出力信号は前記第2図に示した特性に対して、電
流の高低が逆の特性となる。
Then, when the optical axis is adjusted using the ammeter 16, it is as follows. That is, when the small-diameter charged beam that has passed through the auxiliary aperture hole 41 is inside the aperture hole 4a, the sample 8 is irradiated with the charged beam, so that a current flows through the sample 8. On the contrary, when the charged beam is out of the aperture, the charged beam is blocked by the aperture member 5, so that no current flows in the sample 8. Therefore, the output signal of the ammeter 16 has a characteristic that the level of the current is opposite to the characteristic shown in FIG.

上記のようにした電流計16に替えて二次電子検出器9あ
るいは二次イオン検出器19を用いてもよいし、これら電
流計16、二次電子検出器9あるいは二次イオン検出器19
を組み合わせて用いてもよい。
A secondary electron detector 9 or a secondary ion detector 19 may be used in place of the ammeter 16 as described above, or the ammeter 16, the secondary electron detector 9 or the secondary ion detector 19 may be used.
You may use in combination.

さらに、絞り部材5の駆動装置14、補助絞り部材51の駆
動装置13を少なくとも2方向の微動を可能にした周知の
圧電素子利用装置(J.J.APPL.PHYS.24(1985)P152〜P155
参照)をもって構成すれば、その絞り部材、あるいは補
助絞り部材と光軸との相対位置の制御を高精度で行なう
ことができるし、レーザー測長器を併用するものでは、
更に絞り部材位置の測長の精度は向上する。
Further, a well-known piezoelectric element utilizing device (JJAPPL.PHYS.24 (1985) P152 to P155) which enables fine movement in at least two directions, the driving device 14 of the diaphragm member 5 and the driving device 13 of the auxiliary diaphragm member 51.
(See), the relative position of the diaphragm member or the auxiliary diaphragm member and the optical axis can be controlled with high accuracy, and in the case of using a laser length measuring device together,
Further, the accuracy of measuring the position of the diaphragm member is improved.

なお、前記補助絞り孔41および絞り孔4a〜4cの形状
は円形に限らず四角形等のような他の形状でもよい。
The shapes of the auxiliary throttle hole 41 and the throttle holes 4a to 4c are not limited to circular shapes, and may be other shapes such as a quadrangle.

また、本発明は絞り部材を有する全ての荷電ビーム装置
に対して有効である。
Further, the present invention is effective for all charged beam devices having a diaphragm member.

【図面の簡単な説明】[Brief description of drawings]

図面第1、2図はこの発明の実施例を示すもので、第1
図は概略図、第2図は絞り部材の移動量に対する電流変
化の状況を示すグラフ、第3図は従来の装置の概略図で
ある。 1……荷電ビーム発生源、2……荷電ビーム、3……光
軸、4a〜4c……絞り孔、5……絞り部材、13、14…
…駆動装置、17……制御装置、41……補助孔、51……補
助絞り部材。
1 and 2 show an embodiment of the present invention.
FIG. 3 is a schematic diagram, FIG. 2 is a graph showing the state of current change with respect to the movement amount of the diaphragm member, and FIG. 1 ... Charged beam generation source, 2 ... Charged beam, 3 ... Optical axis, 4a-4c ... Aperture hole, 5 ... Aperture member, 13, 14 ...
… Drive device, 17 …… Control device, 41 …… Auxiliary hole, 51 …… Auxiliary diaphragm member.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】絞り部材に形成した絞り孔と荷電ビームの
光軸との相対位置を制御する手段を有し、その絞り部材
に設けたそれぞれ開孔形状と開孔寸法、もしくはどちら
か一方が異なる複数の絞り孔の内の一つを選定し、該絞
り孔で荷電ビーム発生源から発生する荷電ビームを絞
り、この絞られた荷電ビームを試料に照射する荷電ビー
ム装置において、前記荷電ビーム発生源と前記絞り部材
との間に補助絞り部材を設け、この補助絞り部材には円
形孔で、その寸法が、前記絞り孔の一番小さいものと同
径かあるいはそれよりも小径である補助絞り孔を形成
し、かつ、この補助絞り部材は作用位置と不作用位置の
切り換えが可能であり、その作用位置では前記補助絞り
孔の中心が荷電ビームの光軸と一致し、不作用位置では
前記荷電ビームの照射部分より外れて該荷電ビームに作
用をもたらさない構成にしたことを特徴とした荷電ビー
ム装置。
1. A means for controlling a relative position between a diaphragm hole formed in a diaphragm member and an optical axis of a charged beam, wherein the shape of the hole and / or the size of the hole provided in the diaphragm member, respectively. In one of a plurality of different aperture holes, a charged beam device for irradiating a sample with the focused beam emitted from a charged beam generating source and irradiating the focused beam to the sample An auxiliary diaphragm member is provided between the source and the diaphragm member, and the auxiliary diaphragm member has a circular hole whose diameter is the same as or smaller than the smallest of the diaphragm holes. A hole is formed, and this auxiliary diaphragm member can switch between an operating position and a non-operating position. In the operating position, the center of the auxiliary diaphragm hole coincides with the optical axis of the charged beam, and in the non-operating position, Irradiation of charged beam Charged beam apparatus wherein deviates from minute the charged beam that has a configuration that does not result in action.
【請求項2】特許請求の範囲第1項に記載の荷電ビーム
装置において、絞り部材の位置の切り変え、および絞り
孔と荷電ビーム光軸の相対位置の制御が駆動機構により
行なわれることを特徴とした荷電ビーム装置。
2. The charged particle beam apparatus according to claim 1, wherein the position of the diaphragm member is changed and the relative position of the diaphragm hole and the charged beam optical axis is controlled by a driving mechanism. Charged beam device.
【請求項3】特許請求の範囲第1項記載の荷電ビーム装
置において、駆動機構が少なくとも2方向以上の微動を
可能とする圧電素子によって構成されていることを特徴
とした荷電ビーム装置。
3. The charged particle beam apparatus according to claim 1, wherein the driving mechanism is composed of a piezoelectric element capable of fine movement in at least two directions.
【請求項4】特許請求の範囲第1項又は第2項の荷電ビ
ーム装置において、駆動機構を制御する制御装置を設け
たことを特徴とした荷電ビーム装置。
4. A charged particle beam apparatus according to claim 1 or 2, further comprising a controller for controlling a drive mechanism.
JP61140621A 1986-06-17 1986-06-17 Charge beam device Expired - Lifetime JPH0619962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61140621A JPH0619962B2 (en) 1986-06-17 1986-06-17 Charge beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61140621A JPH0619962B2 (en) 1986-06-17 1986-06-17 Charge beam device

Publications (2)

Publication Number Publication Date
JPS62296351A JPS62296351A (en) 1987-12-23
JPH0619962B2 true JPH0619962B2 (en) 1994-03-16

Family

ID=15272963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61140621A Expired - Lifetime JPH0619962B2 (en) 1986-06-17 1986-06-17 Charge beam device

Country Status (1)

Country Link
JP (1) JPH0619962B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134746A (en) * 1996-10-29 1998-05-22 Seiko Instr Inc Optical axis adjustment method for focused ion beam and focused ion beam device
CN114975048B (en) * 2021-02-19 2024-10-01 中国科学院微电子研究所 Diaphragm assembly and scanning electron microscope with same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54170767U (en) * 1978-05-22 1979-12-03
JPS5856950B2 (en) * 1978-12-06 1983-12-17 日本電子株式会社 Aperture device for electron microscopes, etc.

Also Published As

Publication number Publication date
JPS62296351A (en) 1987-12-23

Similar Documents

Publication Publication Date Title
JP3323021B2 (en) Scanning electron microscope and sample image observation method using the same
DE2335304A1 (en) SCANNING ELECTRON MICROSCOPE
US8421028B2 (en) Device for deflecting or guiding in a particle beam
JPS6180744A (en) Ion micro-beam apparatus
US4044254A (en) Scanning corpuscular-beam transmission type microscope including a beam energy analyzer
GB1567021A (en) Scanning transmission microscopes
CN111971774B (en) charged particle beam device
JP2000133183A (en) Charged-particle beam device
JP2714009B2 (en) Charged beam device
JPH0619962B2 (en) Charge beam device
JPH03134944A (en) Electron beam device
JPH04297051A (en) Method and apparatus for testing and repairing integrated circuit
JP3649008B2 (en) Electron beam equipment
CN111971775B (en) charged particle beam device
JPH0712755A (en) Adjustment method and device for electron beam device
JPH11135052A (en) Scanning electron microscope
JPH10134746A (en) Optical axis adjustment method for focused ion beam and focused ion beam device
JPS63216256A (en) Charged particle beam device
JP3915812B2 (en) Electron beam equipment
JPH01295419A (en) Method and apparatus for electron beam lithography
JPS62133656A (en) Electron ray device
JPH1196954A (en) Scanning electron microscope
JPH11250843A (en) Focusing ion beam device
JPH10269975A (en) Axis aligning device for charged particle
JPH06290726A (en) Charged particle beam converging apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term