JPS5914330B2 - Method and device for confirming completion of cooling in foam molding - Google Patents

Method and device for confirming completion of cooling in foam molding

Info

Publication number
JPS5914330B2
JPS5914330B2 JP53095191A JP9519178A JPS5914330B2 JP S5914330 B2 JPS5914330 B2 JP S5914330B2 JP 53095191 A JP53095191 A JP 53095191A JP 9519178 A JP9519178 A JP 9519178A JP S5914330 B2 JPS5914330 B2 JP S5914330B2
Authority
JP
Japan
Prior art keywords
pressure
cooling
air
foam molding
completion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53095191A
Other languages
Japanese (ja)
Other versions
JPS5521287A (en
Inventor
正人 八板
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP53095191A priority Critical patent/JPS5914330B2/en
Publication of JPS5521287A publication Critical patent/JPS5521287A/en
Publication of JPS5914330B2 publication Critical patent/JPS5914330B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • B29C44/3426Heating by introducing steam in the mould

Landscapes

  • Molding Of Porous Articles (AREA)

Description

【発明の詳細な説明】 この発明は発泡成形における冷却完了の確認方法および
装置に関し、簡単に冷却完了のタイミンソ0 グを確認
して離型タイミングを正確になし、成形サイクルの短縮
化ならびに成形不良率の低減をはかろうとしている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and device for confirming the completion of cooling in foam molding, which enables accurate mold release timing by easily confirming the timing of completion of cooling, thereby shortening the molding cycle and preventing molding defects. We are trying to reduce the rate.

従来における発泡成形にあつては、成形機を使用しての
冷却工程の完Υをタイマーを使用して判ソ5 断してい
るのが大部分であつた。
In conventional foam molding, in most cases a timer was used to determine the completion of the cooling process using a molding machine.

また一部のブロック成形機にはプルトン管式の圧力測定
器が使用されている実情であつた。しかしながらタイマ
ーで冷却時間を設定した場合、冷却水の水温の変動、原
料の発泡力の相異、発泡倍率の変動等のため、30設定
してある冷却時間が最適な時間とは言えなかつた。即ち
、冷却工程の完了を自動的に確認できないため、タイマ
ーで設定した冷却時間が短かつた場合には成形品の冷却
不足による製品不良が生じ、逆に、設定した冷却時間が
長過ぎた場合には35成形品の冷却が充分に行なわれる
反面、不必要な冷却水により成形サイクルが長くなり、
しかもこの過剰冷却は金型の温度低下をもたらし、次の
工〜ワー程で金型を加熱する際には余分な加熱蒸気を必
要とする等の欠点があつた。
In addition, some block molding machines were actually using Pluton tube type pressure measuring devices. However, when the cooling time was set with a timer, the cooling time set at 30 could not be said to be the optimal time due to fluctuations in the temperature of the cooling water, differences in the foaming power of the raw materials, fluctuations in the foaming ratio, etc. In other words, because it is not possible to automatically confirm the completion of the cooling process, if the cooling time set by the timer is too short, product defects will occur due to insufficient cooling of the molded product, and conversely, if the cooling time set is too long. 35 Although the molded product is sufficiently cooled, the molding cycle becomes longer due to unnecessary cooling water.
Moreover, this excessive cooling causes a drop in the temperature of the mold, which has the disadvantage of requiring extra heating steam when heating the mold in the next process.

またプルトン管式の圧力測定器は成形体に面する受圧部
が大きすぎて一般の型物成形には使用できなかつた。従
つて簡単で且つ価格的にも安価な方法にて冷却完了を自
動的に確認することが要望されていた。そこで、この発
明にあつては上記の要望を充足できるような冷却完了の
確認方法を開発したものであつて、その方法について述
べると、一対の成形型の型窩内へ発泡性熱可塑性樹脂粒
子による原料を充填し、該原料を蒸気等の加熱媒体によ
り加熱膨脹させて発泡成形を行なう方法において、加熱
膨脹後の冷却進行にて起る成形体の発泡圧の変動を受圧
して、受圧力の変動としてとらえ、該受圧力の変動を圧
縮エアーの圧力変動に変換しながら感圧して成形体の冷
却完了を自動的に確認することを特徴とするものである
In addition, the Pluton tube type pressure measuring device cannot be used for general molding because the pressure receiving part facing the molded product is too large. Therefore, it has been desired to automatically confirm the completion of cooling using a simple and inexpensive method. Therefore, in this invention, we have developed a method for confirming the completion of cooling that satisfies the above requirements. In this method, foam molding is performed by filling a raw material with a heating medium such as steam and expanding the raw material by heating and expanding it with a heating medium such as steam. Completion of cooling of the molded body is automatically confirmed by sensing the pressure while converting the received pressure fluctuation into pressure fluctuation of compressed air.

次いで、この発明方法の実施態様を、その実施に使用す
る発明装置と共に図を参照しながら以下に例示する。
Next, embodiments of the method of the present invention will be illustrated below with reference to the drawings together with the inventive apparatus used for carrying out the method.

第1図には装置の概要を示してあり、一対の成形型10
,20は一方がコア一金型、他方がキヤビテイ金型であ
り、成形型10,20には各蒸気室11,21を有し、
成形型10,20間には発泡性熱可塑性樹脂粒子による
原料を充填できる型窩30を形成し、型窩30側の壁に
は蒸気孔12,22が設けられている。
FIG. 1 shows an outline of the device, in which a pair of molds 10
, 20 have one core mold and the other cavity mold, and the molds 10 and 20 have respective steam chambers 11 and 21,
A mold cavity 30 is formed between the molds 10 and 20 and can be filled with a raw material made of expandable thermoplastic resin particles, and steam holes 12 and 22 are provided in the wall on the mold cavity 30 side.

また蒸気の配管13,23、冷却水の配管14,24、
排水管15,25、原料充填器40およびパツキング4
5さらにはエジエクト構造(図示せず)等は従来の成形
装置と同様に具備されている。そしてこの発明の主要部
となる構成については、成形型10,20の一部に凹部
58を有して導入したノズル部50のほか、これに付帯
したエアー圧力調整器60、エアー流量調整弁70、圧
カスイツチ80および圧力計90と、これらの機器を連
結する配管100等である。
In addition, steam piping 13, 23, cooling water piping 14, 24,
Drain pipes 15, 25, raw material filler 40 and packing 4
5 Furthermore, an eject structure (not shown) and the like are provided in the same manner as in conventional molding equipment. The main components of the present invention include a nozzle part 50 introduced into a part of the mold 10, 20 with a recess 58, an air pressure regulator 60 attached thereto, and an air flow rate regulating valve 70. , a pressure switch 80, a pressure gauge 90, and piping 100 connecting these devices.

特に上記したノズル部50として好ましい構造を第2図
(第3図)に、また成形型の型壁26に対する取付状態
〔型壁16に対する場合もあり〕を第4図に示してある
。即ちノズル部50において、51はノズル用構成部材
、52は型窩30に面する側に設けた受圧盤、53は受
圧盤52とは反対側にてノズル用構成部材51に連結し
たエアー導入管、54,55は受圧盤52に有するエア
ーの送入路で、上記エアー導入管53からのエアーを通
過させている。56はノズル用構成部材51と受圧盤5
2間に形成されたエアー通路で、一方は上記送入路55
と通じており、他方は減圧経路となる通風孔57に通じ
て蒸気室21へ開放されている。
In particular, FIG. 2 (FIG. 3) shows a preferred structure for the nozzle portion 50 described above, and FIG. 4 shows a state in which the mold is attached to the mold wall 26 (in some cases to the mold wall 16). That is, in the nozzle part 50, 51 is a nozzle component, 52 is a pressure receiving plate provided on the side facing the mold cavity 30, and 53 is an air introduction pipe connected to the nozzle component 51 on the side opposite to the pressure receiving plate 52. , 54 and 55 are air inlet paths provided in the pressure receiving plate 52, through which air from the air inlet pipe 53 is passed. 56 is a nozzle component 51 and a pressure receiving plate 5
An air passage formed between the two, one of which is connected to the above-mentioned inlet passage 55.
The other side is open to the steam chamber 21 through a ventilation hole 57 that serves as a pressure reduction path.

これらエアーの通過経路がノズルとして構成されている
。そして上記の受圧盤52は型窩30内における成形体
Aの発泡圧力が高い場合にノズル用構成部材51との間
のエアー通路56を閉じ、発泡圧力が冷却に伴ない変動
して低くなつた場合にはエアー通路56を開いて減圧経
路の通風孔57と通するよう移動自在に設けられている
。但し受圧盤52はノズル用構成部材51から何れの方
向へも抜脱せぬような形状に形成されている。さらにエ
アー導入管53には圧力エアーの変動に対する感圧部を
連結しているもので、感圧部としては既に述べたエアー
圧力調整器60、エアー流量調整弁70、圧カスイツチ
80および圧力計90を連結した配管100からなつて
いる。そして上記装置を使用しての作動としては、圧縮
エアーがエアー導入管53から導入される。
These air passages are configured as nozzles. The pressure receiving plate 52 closes the air passage 56 with the nozzle component 51 when the foaming pressure of the molded object A in the mold cavity 30 is high, and the foaming pressure fluctuates with cooling and becomes low. In some cases, the air passage 56 is opened and the air passage 56 is movably provided so as to pass through the ventilation hole 57 of the pressure reduction route. However, the pressure receiving plate 52 is formed in such a shape that it cannot be removed from the nozzle component 51 in any direction. Further, the air introduction pipe 53 is connected to a pressure sensing section for detecting fluctuations in the pressure air, and the pressure sensing sections include the already mentioned air pressure regulator 60, air flow rate adjustment valve 70, pressure switch 80, and pressure gauge 90. It consists of piping 100 that connects. In operation using the above device, compressed air is introduced from the air introduction pipe 53.

その時、エアーの圧力流量はエアー圧力調整器60、エ
アー流量調整弁70で制御されている。そして導入され
たエアーは型窩30内の成形体Aの発泡圧が離型できな
いはどの高い圧力の場合には受圧盤52がノズル用構成
部材51との間のエアー通路56を閉じる方向に作動し
、エアーの流れが市まり、エアーの送入路54,55は
一定のエアー圧力を保持した状態になつているが、加熱
膨脹後の成形体Aの発泡圧が冷却進行に伴ない低下変動
を来たすと、ノズル部50の受圧盤52がこれを受圧力
の変動としてとらえ、成形体Aの方向へエアー圧力で移
動し得ることになり、エアー通路56を開くことになる
。かくして圧縮エアーはエアー通路56から減圧のため
の経路となる通風孔57を経て蒸気室21へ流れ出す。
即ち、受圧力の変動にてエアーが流れ出してエアーの送
人路54,55は次第に減圧されて、その圧力の低下を
配管100側の圧力計90に指示して感圧せしめ、圧カ
スイツチ80の作動を促し、次の離型工程へと移行する
。このように成形体Aの冷却進行にて起る発泡圧の変動
を受圧盤52で受圧して受圧力の変動としてとらえ、該
受圧力の変動を圧縮エアーの圧力変動に変換しながら感
圧して成形体Aの冷却完了を知ることができる。
At that time, the air pressure flow rate is controlled by an air pressure regulator 60 and an air flow rate adjustment valve 70. The introduced air operates in a direction in which the pressure receiving plate 52 closes the air passage 56 between the nozzle component 51 and the foaming pressure of the molded article A in the mold cavity 30 is too high to release it from the mold. However, the air flow has stopped and the air inlet channels 54 and 55 maintain a constant air pressure, but the foaming pressure of the molded article A after heating and expansion decreases and fluctuates as cooling progresses. When this occurs, the pressure receiving plate 52 of the nozzle portion 50 recognizes this as a fluctuation in the receiving pressure and can move in the direction of the molded body A with air pressure, opening the air passage 56. The compressed air thus flows out from the air passage 56 to the steam chamber 21 through the ventilation hole 57 which serves as a path for reducing pressure.
That is, air flows out due to fluctuations in the received pressure, and the pressure in the air sending paths 54 and 55 is gradually reduced, and the pressure drop is indicated to the pressure gauge 90 on the piping 100 side to sense the pressure, and the pressure switch 80 is activated. It activates and moves on to the next mold release process. In this way, fluctuations in the foaming pressure that occur as the molded body A cools are received by the pressure receiving plate 52, and are treated as fluctuations in the received pressure, and the fluctuations in the received pressure are converted into pressure fluctuations of the compressed air while sensing the pressure. It is possible to know when cooling of the molded body A has been completed.

かくして成形体Aの発泡圧が成形体Aを成形型10,2
0から離型できる程度に低下した時点を自動的に検知し
て確認でき、素早く成形型10,20を開いて成形品を
取出し得るものである。なお、実施上図示するノズル部
50となる受圧盤52における成形体Aの受圧面積は3
.14(1−JモV1であつて成形型におけるノズル部用
の凹部58は直径25mmφであり、受圧盤52の可動
する距離は0.5m77!であつた。
In this way, the foaming pressure of the molded body A is applied to the molded body A into the molds 10 and 2.
It is possible to automatically detect and confirm the point in time when the temperature has decreased from 0 to a level where mold release is possible, and the molds 10 and 20 can be quickly opened to take out the molded product. In addition, the pressure receiving area of the molded body A on the pressure receiving plate 52 which becomes the nozzle part 50 shown in the drawing is 3.
.. 14 (1-J model V1), the recess 58 for the nozzle in the mold had a diameter of 25 mm, and the movable distance of the pressure receiving plate 52 was 0.5 m77!.

次いで、図示した装置を使用しての実施の一例を述べる
と、発泡ポリスチレン樹脂の成形を次のごとき手順で行
なつた。
Next, to describe an example of implementation using the illustrated apparatus, foamed polystyrene resin was molded in the following procedure.

先ず原料となる発泡ポリスチレンの予備発泡粒として倍
率が50倍のものを用い、この予備発泡粒を原料充填器
40で型窩30に導入し、次に蒸気等の配管100から
蒸気を導入し、0.8kg/CT!iの圧力で40秒間
加熱した。そして冷却水導入管14,24から冷却水を
金型に吹付け、金型を冷却した。一カエア一圧力調整器
60で0.91<9/〜に調圧されたエアーはエアー流
量調整弁70で流量調整し、0.51/分のエアーを流
した。エアーは常時流したが、蒸気加熱を開始すると、
圧力は徐々に上昇し、加熱終了時には0.9k9/CT
!iであつた。原料が加熱膨脹後、冷却進行してこの発
明方法にて発泡圧の変動を受圧して圧縮エアーの圧力変
動を圧力計90が0.4k9/(−17iを指示して感
圧した時、圧カスイツチ80の作動でエアー圧を電気信
号に変換し、自動的に金型が離型された。離型によつて
取出された成形体は良質な製品であり、その厚みは40
m77!であつた。上記圧力計90で示される圧力が0
.4k9/Cr!iになつた時点の成形体の発泡圧を発
泡圧測定器(ストレンゲージ式圧力言Oで測定したとこ
ろ成形体の発泡圧は0.3kg/CTIIであつて、こ
の成形体が離型できる最も適した時点であつた。かくし
て冷却水の水温、水量が変化しても、また発泡倍率の異
なる原料を使用しても発泡圧から冷却完了を簡単に検知
して確認でき、最デも効率よく発泡成形加工を行ない、
発泡成形品の生産を高能率に続行できた。
First, the pre-expanded polystyrene grains used as the raw material have a magnification of 50 times, and the pre-expanded grains are introduced into the mold cavity 30 using the raw material filler 40, and then steam is introduced from the steam pipe 100, 0.8kg/CT! The mixture was heated for 40 seconds at a pressure of i. Cooling water was then sprayed onto the mold from the cooling water introduction pipes 14 and 24 to cool the mold. The air pressure was regulated to 0.91<9/min by the pressure regulator 60, and the flow rate was adjusted by the air flow rate regulating valve 70 to flow the air at 0.51/min. Air was constantly flowing, but when steam heating started,
The pressure gradually increases and reaches 0.9k9/CT at the end of heating.
! It was i. After the raw material is heated and expanded, it progresses to cooling and receives the fluctuations in foaming pressure using the method of this invention. The mold was automatically released by converting the air pressure into an electric signal by the operation of the switch 80.The molded product taken out by the release was a high-quality product, and its thickness was 40 mm.
m77! It was hot. The pressure indicated by the pressure gauge 90 is 0
.. 4k9/Cr! The foaming pressure of the molded product was measured with a foaming pressure measuring device (strain gauge type pressure gauge O) at the time when the molded product reached i, and the foaming pressure of the molded product was 0.3 kg/CTII. In this way, even if the temperature and amount of cooling water change, or even if raw materials with different foaming ratios are used, the completion of cooling can be easily detected and confirmed from the foaming pressure, and the process can be carried out in the most efficient manner. Perform foam molding processing,
We were able to continue producing foam molded products with high efficiency.

以上のごとくこの発明方法はその実施例からも明らかな
ごとく発泡成形における冷却完了の確認を簡単且つ確実
に行なえるものであつて、成形品の冷却不足による製品
不良はなくなり、しかも冷却過剰による無駄をも排除し
、品質の向上と同時にコストの低減をはかるのに好都合
となり、さらに次の離型タイミングをとり易くなり、成
形サイクルの短縮化にも大いに役立つことになる。
As described above, the method of this invention can easily and reliably confirm the completion of cooling in foam molding, as is clear from the examples, and eliminates product defects due to insufficient cooling of the molded product, and waste caused by excessive cooling. It is convenient to improve quality and reduce costs at the same time, and it also makes it easier to determine the timing of the next mold release, greatly contributing to shortening the molding cycle.

また上記発明方法の実施に使用する発明装置としては、
構造簡単でコンパクトなもので、しかも確実に検知作用
を行なえるよう配慮したものであるから、種々の発泡成
形装置の成形型に装備し易く優れた使用効果を発揮し、
上記発明方法の実施を容易にすることができる。
In addition, the inventive device used to carry out the above-mentioned inventive method is as follows:
It has a simple and compact structure, and is designed to ensure reliable detection, so it is easy to install in the molds of various foam molding machines and has excellent usability.
The method of the invention described above can be easily implemented.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の実施態様を例示するものであり、第1図
はこの発明装置を装備した成形装置の概要断面図、第2
図はエアー通路を閉じた状態の要部の断面図、第3図は
エアー通路を開いた状態の要部の断面図、第4図は型窩
内より見た状態の要部の斜視図である。 10,20・・・・・・成形型、11,21・・・・・
・蒸気室、50・・・・・・ノズル部、51・・・・・
・ノズル用構成部材、52・・・・・・受圧盤、53・
・・・・・エアー導入管、54,55・・・・・・エア
ー送入路、56・・・・・・エアー通路、57・・・・
・・減圧経路となる通風孔、60・・・・・・エアー圧
力調整器、70・・・・・・エアー流量調整弁、80・
・・・・・圧カスイツチ、90・・・・・・圧力計、1
00・・・・・・配管。
The figures illustrate embodiments of the present invention, and Figure 1 is a schematic cross-sectional view of a molding device equipped with the device of this invention, and Figure 2
The figure is a sectional view of the main part with the air passage closed, Figure 3 is a sectional view of the main part with the air passage open, and Figure 4 is a perspective view of the main part as seen from inside the mold cavity. be. 10,20...Mold, 11,21...
・Steam room, 50...Nozzle part, 51...
・Nozzle component, 52... Pressure receiving plate, 53.
... Air introduction pipe, 54, 55 ... Air feed path, 56 ... Air passage, 57 ...
...Ventilation hole serving as a pressure reduction path, 60...Air pressure regulator, 70...Air flow rate adjustment valve, 80...
...Pressure switch, 90...Pressure gauge, 1
00...Piping.

Claims (1)

【特許請求の範囲】 1 一対の成形型の型窩内へ発泡性熱可塑性樹脂粒子に
よる原料を充填し、該原料を蒸気等の加熱媒体により加
熱膨脹させて発泡成形を行なう方法において、加熱膨脹
後の冷却進行にて起る成形体の発泡圧の変動を受圧して
、受圧力の変動としてとらえ、該受圧力の変動を圧縮エ
アーの圧力変動に変換しながら感圧して成形体の冷却完
了を自動的に確認することを特徴とする発泡成形におけ
る冷却完了の確認方法。 2 加熱膨脹された成形体の一部から受圧し、受圧部分
には受圧面と反対側から所定圧の圧縮エアーをかけてお
き、成形体の冷却進行に伴なう受圧力の減圧時に圧力エ
アーも減圧変動を生じるようにして感圧する上記特許請
求の範囲第1項記載の発泡成形における冷却完了の確認
方法。 3 一対の成形型の型窩内へ発泡性熱可塑性樹脂粒子に
よる原料を充填し、該原料を蒸気等の加熱媒体により加
熱膨脹させて発泡成形を行なう装置において、成形型の
一部にノズル用構成部材を装備し、該ノズル用構成部材
には型窩に面する側に受圧盤を備えると共にこれとは反
対側にエアー導入管を連結し、上記受圧盤にはエアー導
入管からのエアーを通過させる送入路を設けると共に送
入路と通ずるエアー通路をノズル用構成部材との間に形
成し、またエアー通路を減圧経路と通ずるようなし、上
記受圧盤は型窩内における成形体の発泡圧力が高い場合
にエアー通路を閉じ、発泡圧力が冷却に伴ない低くなつ
た場合にはエアー通路を開いて減圧経路と通ずるよう移
動自在に設けられ、さらにエアー導入管には圧力エアー
の変動に対する感圧部を連結してなることを特徴とする
発泡成形における冷却完了の確認装置。 4 減圧経路が成形型の蒸気室へ開放されてなる上記特
許請求の範囲第3項記載の発泡成形における冷却完了の
確認装置。 5 感圧部がエアー圧力調整器、エアー流量調整弁、圧
力スイッチおよび圧力計を連結した配管からなる上記特
許請求の範囲第3項記載の発泡成形における冷却完了の
確認装置。
[Scope of Claims] 1. A method of performing foam molding by filling a raw material made of expandable thermoplastic resin particles into the cavities of a pair of molds and heating and expanding the raw material with a heating medium such as steam. The fluctuations in the foaming pressure of the molded body that occur during the subsequent cooling process are received and treated as fluctuations in the received pressure, and the fluctuations in the received pressure are converted into pressure fluctuations of compressed air while being sensed and the cooling of the molded body is completed. A method for confirming completion of cooling in foam molding, characterized by automatically confirming the completion of cooling. 2 Pressure is received from a part of the heated and expanded molded body, and compressed air of a predetermined pressure is applied to the pressure-receiving part from the side opposite to the pressure-receiving surface, and when the pressure is reduced as the molded body cools, the compressed air is applied. A method for confirming completion of cooling in foam molding according to claim 1, wherein pressure is sensed so as to cause fluctuations in pressure reduction. 3. In an apparatus that performs foam molding by filling the cavities of a pair of molds with a raw material made of expandable thermoplastic resin particles and heating and expanding the raw material with a heating medium such as steam, a part of the mold is equipped with a nozzle. The nozzle component is equipped with a pressure receiving plate on the side facing the mold cavity, and an air introduction pipe is connected to the opposite side thereof, and the pressure receiving plate receives air from the air introduction pipe. An inlet passage is provided, an air passage communicating with the inlet passage is formed between the nozzle component, and the air passage is communicated with a decompression route, and the pressure receiving plate is used to control the foaming of the molded product in the mold cavity. The air passage is movably provided so that it closes when the pressure is high and opens the air passage when the foaming pressure decreases due to cooling and communicates with the decompression route. A device for confirming completion of cooling in foam molding, characterized by connecting pressure sensitive parts. 4. The device for confirming the completion of cooling in foam molding according to claim 3, wherein the depressurization path is open to the steam chamber of the mold. 5. The device for confirming the completion of cooling in foam molding according to claim 3, wherein the pressure sensitive part comprises a pipe connecting an air pressure regulator, an air flow rate regulating valve, a pressure switch, and a pressure gauge.
JP53095191A 1978-08-03 1978-08-03 Method and device for confirming completion of cooling in foam molding Expired JPS5914330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53095191A JPS5914330B2 (en) 1978-08-03 1978-08-03 Method and device for confirming completion of cooling in foam molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53095191A JPS5914330B2 (en) 1978-08-03 1978-08-03 Method and device for confirming completion of cooling in foam molding

Publications (2)

Publication Number Publication Date
JPS5521287A JPS5521287A (en) 1980-02-15
JPS5914330B2 true JPS5914330B2 (en) 1984-04-04

Family

ID=14130853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53095191A Expired JPS5914330B2 (en) 1978-08-03 1978-08-03 Method and device for confirming completion of cooling in foam molding

Country Status (1)

Country Link
JP (1) JPS5914330B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815022U (en) * 1981-07-21 1983-01-29 株式会社ダイセン工業 Synthetic resin foam molding equipment
JPS6056528U (en) * 1983-09-26 1985-04-20 積水化成品工業株式会社 Foam pressure detection device in foam molding
JPS6268730A (en) * 1985-09-20 1987-03-28 Toyo Kikai Kinzoku Kk Pressure controlling of molding machine for foamed styrol

Also Published As

Publication number Publication date
JPS5521287A (en) 1980-02-15

Similar Documents

Publication Publication Date Title
CA2105295C (en) Method for tempering a moulding tool
JP4332217B2 (en) Injection molding method and apparatus
CN107000272B (en) Method for controlling process steps carried out automatically using a machine and method for producing a particle foam component
JP2860007B2 (en) Molding method of foam with skin
JPS5914330B2 (en) Method and device for confirming completion of cooling in foam molding
GB2052358A (en) Producing mouldings from foamable thermoplastics
JP2008542061A (en) Process control system and mold assembly for expandable plastic containers
JP2500125B2 (en) Foam molding method
JPH0313972B2 (en)
JPH04251728A (en) Foam molding of synthetic resin
JP3102992B2 (en) Expansion molding method using expandable resin particles
JPS5928169B2 (en) Foam molding method
JPH0948037A (en) Manufacture of molding in mold using polyolefin resin foamed particle
JP2557681B2 (en) Manufacturing method of foamed resin molded product with skin
JP3080602B2 (en) Exhaust valve device used for vibration compression filling method
JPH0221928B2 (en)
JP2747681B2 (en) Molding method of foam with skin
JP2787127B2 (en) Molding method of foam with skin
JPS6315731A (en) Manufacturing device for synthetic resin foamed molded form
JP2784704B2 (en) Molding device for foam with skin
JPS5923546B2 (en) Foam molding equipment with skin
JPS62216734A (en) Process for foam molding of thermoplastic resin
JP3814956B2 (en) Thermoplastic resin foam molding method
JPS6218430Y2 (en)
JP2004188737A (en) Foaming resin molding apparatus and its heating control method