JP3814956B2 - Thermoplastic resin foam molding method - Google Patents

Thermoplastic resin foam molding method Download PDF

Info

Publication number
JP3814956B2
JP3814956B2 JP19167397A JP19167397A JP3814956B2 JP 3814956 B2 JP3814956 B2 JP 3814956B2 JP 19167397 A JP19167397 A JP 19167397A JP 19167397 A JP19167397 A JP 19167397A JP 3814956 B2 JP3814956 B2 JP 3814956B2
Authority
JP
Japan
Prior art keywords
steam
pressure
mold
heating
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19167397A
Other languages
Japanese (ja)
Other versions
JPH1134172A (en
Inventor
健二 山口
邦則 真部
和夫 大楽
喜幸 小林
亮二 中山
憲司 山田
昌彦 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP19167397A priority Critical patent/JP3814956B2/en
Publication of JPH1134172A publication Critical patent/JPH1134172A/en
Application granted granted Critical
Publication of JP3814956B2 publication Critical patent/JP3814956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ポリスチレン等のスチレン系樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂等、熱可塑性樹脂の発泡成形方法に関するものであり、更に詳しくは、ビーズ法による型内発泡成形方法による熱可塑性樹脂発泡体の成形方法に関するものである。
【0002】
【従来の技術】
上記のような熱可塑性樹脂発泡体の成形方法、すなわち、ビーズ法による型内発泡成形方法は、(1)充填工程、(2)加熱工程、(3)冷却工程、(4)離型工程、といった一連の工程を1サイクルとして連続的に行われている。前記(1)充填工程では、必要に応じて予備発泡させた発泡性樹脂ビーズを雌型、雄型で構成される金型の成形空間内へ充填し、前記(2)加熱工程では、前記金型成形空間内に充填された樹脂ビーズを、金型に導入される加熱媒体により加熱して、発泡、融着を行う。一般的には、この(2)加熱工程において樹脂ビーズの発泡と融着を行うための加熱媒体としては、例えば飽和水蒸気が使用されており、(2)加熱工程では、雄型と雌型を構成する移動側と固定側との各々の金型蒸気室に供給された蒸気の圧力を2次圧力として検知しながら、成形品の品質要求に適合するように加熱時の蒸気の圧力と加熱時間を設定して、自動的に成形を行っている。この(2)加熱工程は、更に、一方加熱、逆一方加熱、両面加熱(本加熱)といった細かい加熱工程に別れており、これらの各加熱工程での加熱の方法、すなわち、金型への蒸気の供給量の制御方法が、樹脂ビーズの発泡と融着、更には1サイクルの成形時間の長短に重要な役割を果たしており、従来から多くの提案がなされている。
【0003】
例えば、特開昭62−216734号公報には、金型蒸気室に供給する蒸気に脈動を与えるように蒸気弁の制御方法を工夫することで、成形サイクルを短縮化でき、かつ、均一な融着が行なわれ、しかも加熱媒体の消費量を少なくすることができると記載されている。また、特開昭61−171326号公報には、加熱工程での加熱方法として、先ず固定側から移動側に飽和水蒸気を流す一方加熱と、続いて移動側から固定側に蒸気を流す逆一方加熱と、それに続いて固定側と移動側の圧力を一定に保つ両面加熱といった、各加熱工程での蒸気圧の設定を、各々の工程が要求する個別の圧力に制御することで、高品質の成形品を得ることができ、かつ、使用する蒸気量を節約することができる、と記載されている。
【0004】
ところが、前記のような従来の技術では、いずれの場合においても、設備化された蒸気弁や制御の方法を十分には生かしきれておらず、発泡成形に必要な加熱の行うために過剰な設備を必要としている。すなわち、特開昭62−216734号公報に記載の方法では、加熱蒸気に脈動を与えることで金型成形空間内の樹脂ピーズに出来るかぎり満遍なく蒸気が行き渡るようにすることに主眼がおかれており、蒸気を短時間で金型内に供給することには成功していない。また、一方加熱や逆一方加熱の場合には、金型蒸気室の設定圧力は、両面加熱時の設定圧力に較べて相当に低く、例えば、一方加熱;0.2kg/cm2 G、逆一方加熱;0.4kg/cm2 Gに対して、両面加熱;0.7kg/cm2 Gといった具合である。このため、特開昭61−171326号公報に記載の方法では、例えば前記の如く3種類の圧力の設定を行うには、それぞれの加熱段階に応じてそれぞれ個別の圧力調節設備を必要とすることから、設備が複雑となり、コスト高となるだけでなく、設備の保全も面倒となる。更に、一方加熱や逆一方加熱では、蒸気弁の開度は常に100%近くとなり、金型に供給される蒸気量は多い。ところが、両面加熱の場合、蒸気室の圧力が設定値に近づいてゆくと、蒸気弁は金型蒸気圧が設定値を越えることのないように制御しようと作動して蒸気弁の開度が設定値に到達する以前から徐々に減少して供給される蒸気量が減少してゆき、結果として、金型蒸気室の圧力が設定値に達するまでの時間が長くなってしまい、成形サイクルを短縮するという期待した効果が必ずしも得られていないのが現状である。
【0005】
【発明が解決しようとする課題】
そこで、本発明は、上記のような熱可塑性樹脂発泡体の型内成形方法に鑑み、加熱時の温度上昇速度を向上させて成形サイクルを短縮化可能な成形方法を提供せんとするものである。
【0006】
【課題を解決するための手段】
本発明者らは、上記目的達成のため、加熱媒体である飽和水蒸気の性質から、熱可塑性樹脂粒子を発泡・融着させるための適切な温度は、蒸気室内の蒸気の圧力と相関があるため、加熱工程、特に両面加熱の初期において金型に供給される蒸気の圧力を急激に上昇させることが、成形に必要な金型温度、すなわち、熱可塑性樹脂粒子の温度を早く上げることになり、結果として成形サイクルを短縮する結果となる、と考えた。そして、この点について、鋭意研究を重ねた結果、加熱工程の初期、特に、両面加熱の初期のある一定時間には、蒸気弁を全開として蒸気を供給し、その後、成形品の品質要求に適合するように予め設定された一定値に制御することにより、熱可塑性樹脂発泡体の成形方法における蒸気加熱時間を大幅に短縮し、成形サイクルの短縮化を達成した。
【0007】
即ち、本発明に係る熱可塑性樹脂発泡体の型内発泡成形方法は、両面加熱の工程で加熱時に金型に供給する蒸気の圧力設定を2段階とし、かつ1段目の設定値を2段目の設定値よりも大とし、加熱の初期には1段目の設定値で金型へ蒸気を供給し、次いで2段目の設定値に切り換えて金型へ蒸気を供給することにより、金型への蒸気の供給量を、両面加熱の初期には多量に供給し、次いで予め設定された目標とする蒸気圧での供給量の制御により両面加熱を行うことを特徴とするものである。これにより、両面加熱の初期には瞬間的に多量に供給して蒸気室内の蒸気圧を急上昇させ、次いで蒸気室の設定値に応じて蒸気の供給量を制御することができる。また、前記金型へ供給する蒸気圧の1段目から2段目への設定値の切り換えは、タイマーで行うことが好ましい。更に、前記1段目の蒸気圧の設定を高圧用のエアレギュレータで行い、2段目の蒸気圧の設定を低圧用のエアレギュレータで行うことが好ましい。
【0008】
上記のような本発明に係る熱可塑性樹脂発泡体の成形方法は、既設の成形機を利用して実施することができる。具体的には、現在、生産活動を行っている成形機の蒸気弁に、従来使用している圧力調整用エアレギュレータに加えて、これよりも更に高圧用の圧力調整用エアレギュレータを並列に設けるとともに、前記従来のエアレギュレータ(低圧用)と、前記新たに追加した高圧用エアレギュレータとを切り換えるためのタイマーを設ければよい。すなわち、本発明の成形方法は、前記高圧用エアレギュレータとタイマーとを、固定側及び移動側の金型にそれぞれ1個ずつ新たに設けるだけで、既設の成形機で容易に実施することができる。これにより、従来においては、1つの圧力設定であったものを、両面加熱の工程において、高圧用エアレギュレータによる初期の1段目の圧力設定値と、低圧用エアレギュレータによる2段目の圧力設定値との2段に設定することができ、加熱時の金型への飽和水蒸気の供給量を、加熱の初期には瞬間的に多量に供給して蒸気室内の蒸気圧を急激に上昇させ、次いで蒸気室の設定値に制御して加熱を行うことができ、蒸気加熱時間を大幅に短縮することが可能となる。
【0009】
【作用】
成形品の品質要求に合うように予め設定された両面加熱時の蒸気室の圧力が、例えば、スチレン系樹脂発泡体の成形時の設定圧力が0.7kg/cm2 Gである場合、従来方法では、金型に供給される蒸気の圧力は両面加熱の当初から蒸気弁により0.7kg/cm2 Gに制御されていたため、蒸気弁の開度は、蒸気室内の蒸気圧の上昇速度が前記目標とする設定値である0.7kg/cm2 Gを越えることのないように、0.7kg/cm2 Gに到達する以前から徐々に小さくなり、蒸気室内の圧力の上昇速度が抑制され、結果として設定圧力に達するまでの時間が長くなっていた。これに対し、本発明によれば、両面加熱初期の1段目の設定圧力を、目標とする設定圧力である0.7kg/cm2 Gより高圧、例えば1.0kg/cm2 Gとしておくことで、両面加熱の初期には、この1.0kg/cm2 に設定された蒸気弁は略全開状態で、この蒸気弁を通じて金型内へ瞬間的に多量に水蒸気が供給され、金型内の蒸気圧が本来の目標である0.7kg/cm2 Gの近傍まで急激に上昇する。次いで、蒸気弁の設定圧力が本来の目標値である0.7kg/cm2 Gに切り換えられることで、両面加熱における金型蒸気圧が、成形品の品質要求に応じた0.7kg/cm2 Gに維持される。このように、本発明の成形方法によれば、金型蒸気圧の設定圧への上昇時間が従来に較べて短縮され、結果として、1サイクルの工程全体の成形時間が短縮される。
【0010】
【発明の実施の形態】
以下、添付図面に基づき、本発明を更に詳細に説明するが、これは本発明の単なる例示であり、本発明はこれに限定されるものではない。
【0011】
図1に示すものは、本発明に係る熱可塑性樹脂発泡体の成形方法を実施するための型内発泡成形機の概略図である。図中、符号1は成形用金型であり、該金型1は、移動側のコア金型10と固定側のキャビティ金型20とから構成されており、両金型10、20間で成形空間2が形成され、該成形空間2の背面側のコア金型10、及びキャビティ金型20のそれぞれには、蒸気室11、21が設けられている。各蒸気室11、21は、途中に蒸気調圧弁13、23を介して蒸気源4と蒸気配管12、22にて連通、連結されており、また、コア型蒸気室11、キャビティ側蒸気室21のそれぞれには、ドレン管81、82が連通、連結されている。更に、キャビティ金型20には、成形空間へ原料となる樹脂ビーズを充填するための充填機6や、図示しないエジェクトピン等が設けられている。
【0012】
前記コア側蒸気配管12、キャビティ側蒸気配管22の途中にそれぞれ設けられた蒸気調圧弁13、23には、調圧手段14、24が設けられている。この調圧手段14、24には、コア側蒸気室11、及びキャビティ側蒸気室21から2次側圧力配管18、28により2次側蒸気が導入されるように構成するとともに、各調圧手段14、24は、弁開用空気源5に連結されている。そして、従来においては、各調圧手段14、24には、調圧空気源として圧力調整用エアレギュレータが、それぞれ1つずつ設けられており、2次側圧力配管18、28から導入される金型蒸気室11、21内の蒸気圧、及びエアレギュレータに予め設定された空気圧と、弁開用空気源5から供給される空気圧とで蒸気調圧弁13、23の開度が調整されて金型蒸気室11、21内への水蒸気の供給量が調整されていた。これに対して、本発明においては、図例の如く、調圧手段14、24に三方切換弁15、25を連設するとともに、該三方切換弁15、25のそれぞれに、1段目の蒸気圧の設定を行う高圧用エアレギュレータ16、26と、2段目の蒸気圧の設定を行う低圧用エアレギュレータ17、27とをそれぞれ並列に設けるとともに、コア側の高圧用エアレギュレータ16と低圧用エアレギュレータ17、及びキャビティ側の高圧用エアレギュレータ26と低圧用エアレギュレータ27とを、それぞれタイマーT1 、T2 にて切り換え可能に設けてなるものである。
【0013】
上記の発泡成形機による本発明の可塑性樹脂発泡体の成形方法を簡単に説明すると、先ず、(1)充填工程では、コア金型10とキャビティ金型20とで形成される成形空間2内へ充填機6から樹脂ビーズを充填する。次に、(2)加熱工程では、キャビティ側ドレン管82を閉じる一方、コア側ドレン管81は開放した状態で、キャビティ側蒸気配管22からキャビティ側蒸気室21へ蒸気を供給して一方加熱を行う。次に、コア側ドレン管81を閉じる一方、キャビティ側ドレン管82は開放した状態で、コア側蒸気配管12からコア側蒸気室11へ蒸気を供給して逆一方加熱を行う。その後、コア側ドレン管 81及びキャビティ側ドレン管 82を両方とも閉じた状態で、コア側蒸気配管12及びキャビティ側蒸気配管22の両方から、それぞれコア側蒸気室11及びキャビティ側蒸気室21の両方へ同時に蒸気を供給して両面加熱を行うのであるが、この両面加熱の初期には、各蒸気配管12、22の途中に設けた蒸気調圧弁13、23は、それぞれの調圧手段14、24における三方切換弁15、25にそれぞれに並列に連結されたエアレギュレータ16、17、及び26、27のうちの金型設定蒸気圧より高圧に設定された高圧用エアレギュレータ16、26により制御され、蒸気調圧弁13、23が略全開の状態で蒸気源4からそれぞれの蒸気室11、21へ蒸気が供給されることで、加熱の初期には瞬間的に蒸気が多量に供給されて蒸気室11、21内の蒸気圧が急上昇する。次いで、タイマーT1、T2により設定された所定時間が経過すると、金型蒸気圧に設定された低圧用エアレギュレータ17、27にそれぞれ切り換えられ、各蒸気室11、21内が成形品の品質要求に適合するように予め設定された蒸気圧に到達するまで蒸気源4から引き続いて蒸気が供給される。その後、金型蒸気圧が設定値にある状態で所定時間、保熱を行う。次に、(3)冷却工程では、コア金型10、キャビティ金型20のそれぞれの蒸気室11、21内に設けた冷却水入口配管71、72から冷却水を成形空間2の背面側に散水して金型及び成形空間2内の成形品の水冷を行う。この水冷の後、ドレン管81、82を通じて蒸気室11、21内を減圧し、冷却水の気化潜熱を利用して、効果的に冷却する、いわゆる真空成形方法が行われる場合もある。そして、冷却後の(4)離型工程では、移動側金型であるコア金型10を後退させるとともに、図示しないエジェクトピンの作用により、成形品を成形空間2内から取り出す。
【0014】
本発明に係る熱可塑性樹脂発泡体の成形方法は前記のようにして行われる。この図1に示す成形機を用い、ポリスチレン発泡体を成形するに際し、両面加熱時の設定圧力が0.7kg/cm2 Gを必要とする場合において、高圧用エアレギュレータ16、26による両面加熱時の初期の設定圧力を1.0kg/cm2 Gとし、タイマーT1 、T2 で両面加熱の開始から2秒後に、低圧用エアレギュレータ17、27で設定した本来の両面加熱時の設定圧力である0.7kg/cm2 Gに切り換えて成形を行ったところ、両面加熱時の初期から0.7kg/cm2 Gに設定したままの従来方法の場合に較べて、両面加熱の時間を8秒から5秒に短縮することができた。
【0015】
さらに、従来方法では一方加熱や逆一方加熱の合計時間は一般的に20秒に設定されていたが、本発明の上記実施例では、両面加熱時の初期の蒸気室設定圧力が高くなり、両面加熱の初期の圧力上昇速度が早くなったため、一方加熱や逆一方加熱の合計時間を10秒に短縮しても、所定の成形品品質が得られることが分かった。この結果、加熱工程における加熱時間の合計は、28秒から15秒に短縮することが可能となり、工業的に顕著な成形のハイサイクル化を達成し得た。
【0016】
なお、本発明は上述した通りであるが、両面加熱の初期における蒸気の大量吹き込みには、次の(1)、(2)のような手段も考えられる。しかし、これらは、いずれも難点を有している。これに対し、上記した方法は、このような難点もなく、最もすぐれた方法である。
(1)使用する蒸気弁を容量の大きいものとして両面加熱の初期から大量の飽和水蒸気を供給することが考えられるが、その一方、設定圧力に応じた蒸気圧の細かいコントロールがしにくくなり、良好な調整が難しくなる傾向がある。
(2)上記のような高圧用エアレギュレータと低圧用エアレギュレータとの併用に変えて、蒸気弁の数を増やし、1段目では全ての蒸気弁を開放して瞬間的に多量の蒸気を供給し、2段目では一部の蒸気弁を閉じることで設定圧力に制御することで、エアレギュレータの場合と同様の効果を得ることもできる。但し、この場合には、制御が複雑となり、コスト高になる傾向がある。
これに対して、上記実施例では、既設の成形機に、圧力調整のための高圧用エアレギュレータと低圧用エアレギュレータとの2種のエアレギュレータと、これを切り換えるタイマーとを備えるだけで、極めて良好な成形サイクル短縮効果が得られる。この点は、同様の成形機を使用して熱可塑性樹脂発泡体の生産活動を行っている企業にとって、大きなメリットとなる。
【0017】
【発明の効果】
以上のように、本発明に係る熱可塑性樹脂発泡体の成形方法によれば、加熱時間を大幅に短縮し、その結果、成形サイクルを短縮化して生産効率を著しく向上させることができる。しかも、この方法は、既存の成形機を利用して容易に実施することができ、工業的に大いに有用である。
【図面の簡単な説明】
【図1】 本発明に係る熱可塑性樹脂発泡体の成形方法に用いる成形機の模式図である。
【符号の説明】
1:成形用金型、 2:成形空間、
4:蒸気源、 5:弁開用空気源、
10:コア金型、 11:コア側蒸気室、
12:コア側蒸気配管、 13:コア側蒸気調圧弁、
14:コア側調圧手段、 15:三方切換弁、
16:高圧用エアレギュレータ、 17:低圧用エアレギュレータ、
18:コア側2次圧力配管、
20:キャビティ金型、 21:キャビティ側蒸気室、
22:キャビティ側蒸気配管、 23:キャビティ側蒸気調圧弁、
24:キャビティ側調圧手段、 25:三方切換弁、
26:高圧用エアレギュレータ、 27:低圧用エアレギュレータ、
28:キャビティ側2次圧力配管、
71,72:冷却水入口配管、 81,82:ドレン管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a foam molding method for thermoplastic resins such as styrene resins such as polystyrene, olefin resins such as polyethylene and polypropylene, and more specifically, thermoplastic resin foaming by an in-mold foam molding method using a bead method. The present invention relates to a body molding method.
[0002]
[Prior art]
The thermoplastic resin foam molding method as described above, that is, the in-mold foam molding method by the bead method includes (1) a filling step, (2) a heating step, (3) a cooling step, (4) a mold releasing step, Such a series of steps is continuously performed as one cycle. In the (1) filling step, the foamed resin beads pre-foamed as needed are filled into a molding space of a die composed of a female die and a male die, and in the (2) heating step, the gold The resin beads filled in the mold forming space are heated by a heating medium introduced into the mold to be foamed and fused. Generally, for example, saturated water vapor is used as a heating medium for foaming and fusing resin beads in the (2) heating step. (2) In the heating step, a male mold and a female mold are used. Steam pressure and heating time during heating to meet the quality requirements of the molded product while detecting the pressure of the steam supplied to each mold steam chamber on the moving side and the fixed side constituting the secondary pressure Is set and molding is performed automatically. This (2) heating step is further divided into fine heating steps such as one-side heating, reverse one-side heating, and double-sided heating (main heating), and the heating method in each of these heating steps, that is, steam to the mold The supply amount control method plays an important role in the foaming and fusion of resin beads, and also in the length of molding time in one cycle, and many proposals have been made.
[0003]
For example, Japanese Patent Application Laid-Open No. 62-216734 discloses a method for controlling a steam valve so as to pulsate steam supplied to a mold steam chamber, thereby shortening a molding cycle and achieving uniform melting. It is described that the attachment is performed and the consumption of the heating medium can be reduced. Japanese Patent Application Laid-Open No. 61-171326 discloses a heating method in the heating process, in which first, saturated steam flows from the fixed side to the moving side, and then one reverse heating, in which steam flows from the moving side to the fixed side. High-quality molding by controlling the vapor pressure setting in each heating process, such as double-sided heating that keeps the pressure on the fixed side and moving side constant, to the individual pressure required for each process. That the product can be obtained and the amount of steam used can be saved.
[0004]
However, in the conventional techniques as described above, in any case, the installed steam valve and the control method are not fully utilized, and excessive facilities are used to perform heating necessary for foam molding. Need. That is, in the method described in Japanese Patent Application Laid-Open No. Sho 62-216734, the main purpose is to make the steam spread as evenly as possible to the resin peas in the molding space by pulsating the heated steam. It has not succeeded in supplying steam into the mold in a short time. In the case of one-side heating or reverse one-side heating, the set pressure of the mold steam chamber is considerably lower than the set pressure during double-sided heating, for example, one-side heating; 0.2 kg / cm 2 G, For heating: 0.4 kg / cm 2 G, double-sided heating: 0.7 kg / cm 2 G. For this reason, in the method described in Japanese Patent Application Laid-Open No. 61-171326, for example, in order to set three types of pressures as described above, it is necessary to provide individual pressure control equipments according to the respective heating stages. As a result, the equipment becomes complicated and expensive, and the maintenance of the equipment becomes troublesome. Further, in the one-side heating or the reverse one-side heating, the opening degree of the steam valve is always nearly 100%, and the amount of steam supplied to the mold is large. However, in the case of double-sided heating, when the steam chamber pressure approaches the set value, the steam valve operates to control the mold steam pressure so that it does not exceed the set value, and the opening of the steam valve is set. The amount of steam supplied gradually decreases before reaching the value, and as a result, the time until the pressure in the mold steam chamber reaches the set value becomes longer, and the molding cycle is shortened. The current situation is that the expected effect is not necessarily obtained.
[0005]
[Problems to be solved by the invention]
Therefore, in view of the above-described method for molding a thermoplastic resin foam in the mold, the present invention provides a molding method capable of shortening the molding cycle by improving the temperature rise rate during heating. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have found that the appropriate temperature for foaming and fusing the thermoplastic resin particles correlates with the pressure of the steam in the steam chamber because of the property of saturated steam as the heating medium. The rapid increase in the pressure of the steam supplied to the mold at the initial stage of the heating process, particularly the double-sided heating, quickly increases the mold temperature necessary for molding, that is, the temperature of the thermoplastic resin particles. As a result, it was considered that the molding cycle was shortened. As a result of extensive research on this point, steam was supplied with the steam valve fully open at a certain time in the initial stage of the heating process, particularly in the initial stage of double-sided heating, and then met the quality requirements of the molded product. Thus, by controlling to a predetermined constant value, the steam heating time in the thermoplastic resin molding method was greatly shortened, and the molding cycle was shortened.
[0007]
That is, the in-mold foam molding method for a thermoplastic resin foam according to the present invention has two steps for setting the pressure of steam supplied to the mold during heating in the double-sided heating process, and sets the first set value to two steps. By setting steam higher than the set value for the first stage, supplying steam to the mold at the first stage set value at the beginning of heating, then switching to the second set value and supplying steam to the mold, the amount of steam supplied to the mold, a large amount supplied to the initial duplex heated and then is characterized in performing the double-sided heating by controlling the supply amount of vapor pressure with a preset target. Thereby, in the initial stage of double-sided heating, a large amount can be instantaneously supplied to rapidly increase the steam pressure in the steam chamber, and then the steam supply amount can be controlled according to the set value of the steam chamber. Moreover, it is preferable to switch the set value of the vapor pressure supplied to the mold from the first stage to the second stage with a timer. Further, it is preferable that the first-stage vapor pressure is set by a high-pressure air regulator, and the second-stage vapor pressure is set by a low-pressure air regulator.
[0008]
The method for molding a thermoplastic resin foam according to the present invention as described above can be carried out using an existing molding machine. Specifically, in addition to the pressure regulator air regulator that has been used in the past, the pressure regulator air regulator for high pressure is installed in parallel on the steam valve of the molding machine currently in production. In addition, a timer for switching between the conventional air regulator (for low pressure) and the newly added high pressure air regulator may be provided. That is, the molding method of the present invention can be easily carried out with an existing molding machine by newly providing the high-pressure air regulator and the timer one by one on each of the fixed side and moving side molds. . As a result, in the conventional double-sided heating process, the initial first-stage pressure setting value by the high-pressure air regulator and the second-stage pressure setting by the low-pressure air regulator are used. The amount of saturated steam supplied to the mold during heating can be instantaneously increased in large quantities at the initial stage of heating to rapidly increase the steam pressure in the steam chamber, Subsequently, heating can be performed by controlling the set value of the steam chamber, and the steam heating time can be greatly shortened.
[0009]
[Action]
When the pressure in the steam chamber at the time of double-sided heating set in advance to meet the quality requirements of the molded product is, for example, 0.7 kg / cm 2 G when the set pressure at the time of molding the styrene resin foam is a conventional method Then, since the pressure of the steam supplied to the mold has been controlled to 0.7 kg / cm 2 G by the steam valve from the beginning of the double-sided heating, the opening rate of the steam valve is the rate of increase of the steam pressure in the steam chamber. so as not to exceed 0.7 kg / cm 2 G is a set value of the target, gradually decreases from a previous to reach 0.7 kg / cm 2 G, the rising speed of the pressure of the steam chamber is suppressed, As a result, it took a long time to reach the set pressure. On the other hand, according to the present invention, the set pressure in the first stage at the initial stage of double-sided heating is set to a pressure higher than the target set pressure of 0.7 kg / cm 2 G, for example, 1.0 kg / cm 2 G. In the initial stage of double-sided heating, the steam valve set to 1.0 kg / cm 2 is in a substantially fully open state, and a large amount of steam is instantaneously supplied into the mold through the steam valve. The vapor pressure rises rapidly to near the original target of 0.7 kg / cm 2 G. Next, the set pressure of the steam valve is switched to 0.7 kg / cm 2 G, which is the original target value, so that the mold vapor pressure in double-sided heating is 0.7 kg / cm 2 according to the quality requirements of the molded product. G is maintained. Thus, according to the molding method of the present invention, the rise time of the mold vapor pressure to the set pressure is shortened as compared with the conventional method, and as a result, the molding time for the entire process of one cycle is shortened.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. However, this is merely an example of the present invention, and the present invention is not limited thereto.
[0011]
FIG. 1 is a schematic view of an in-mold foam molding machine for carrying out the method for molding a thermoplastic resin foam according to the present invention. In the figure, reference numeral 1 denotes a molding die, which is composed of a moving-side core die 10 and a fixed-side cavity die 20, and is formed between both dies 10 and 20. A space 2 is formed, and steam chambers 11 and 21 are provided in each of the core mold 10 and the cavity mold 20 on the back side of the molding space 2. Each of the steam chambers 11 and 21 is connected and connected to the steam source 4 and the steam pipes 12 and 22 via the steam pressure regulating valves 13 and 23 in the middle, and the core-type steam chamber 11 and the cavity-side steam chamber 21 Drain pipes 81 and 82 are connected to each other. Furthermore, the cavity mold 20 is provided with a filling machine 6 for filling resin beads as raw materials into the molding space, an eject pin (not shown), and the like.
[0012]
Pressure regulating means 14 and 24 are provided in the steam pressure regulating valves 13 and 23 respectively provided in the middle of the core side steam piping 12 and the cavity side steam piping 22. The pressure adjusting means 14 and 24 are configured such that secondary side steam is introduced from the core side steam chamber 11 and the cavity side steam chamber 21 through the secondary side pressure pipes 18 and 28, and each pressure adjusting means 14 and 24 are connected to the valve opening air source 5. Conventionally, each of the pressure adjusting means 14 and 24 is provided with one pressure adjusting air regulator as a pressure adjusting air source, and gold introduced from the secondary side pressure pipes 18 and 28 is provided. The opening of the steam pressure regulating valves 13 and 23 is adjusted by the steam pressure in the mold steam chambers 11 and 21 and the air pressure preset in the air regulator and the air pressure supplied from the valve opening air source 5. The amount of water vapor supplied into the steam chambers 11 and 21 was adjusted. On the other hand, in the present invention, as shown in the figure, the three-way switching valves 15 and 25 are connected to the pressure regulating means 14 and 24, and the first-stage steam is connected to each of the three-way switching valves 15 and 25. The high-pressure air regulators 16 and 26 for setting the pressure and the low-pressure air regulators 17 and 27 for setting the second-stage vapor pressure are provided in parallel, and the high-pressure air regulator 16 on the core side and the low-pressure air regulator 16 The air regulator 17 and the cavity-side high-pressure air regulator 26 and the low-pressure air regulator 27 are provided so as to be switched by timers T 1 and T 2 , respectively.
[0013]
The molding method of the plastic resin foam of the present invention by the above-described foam molding machine will be briefly described. First, in (1) the filling step, the molding space 2 formed by the core mold 10 and the cavity mold 20 is entered. The resin beads are filled from the filling machine 6. Next, (2) in the heating step, the cavity side drain pipe 82 is closed, while the core side drain pipe 81 is opened, steam is supplied from the cavity side steam pipe 22 to the cavity side steam chamber 21 to perform one heating. Do. Next, the core side drain pipe 81 is closed, while the cavity side drain pipe 82 is opened, steam is supplied from the core side steam pipe 12 to the core side steam chamber 11 to perform reverse one-side heating. Thereafter, with both the core side drain pipe 81 and the cavity side drain pipe 82 closed, both the core side steam chamber 11 and the cavity side steam chamber 21 are connected from both the core side steam pipe 12 and the cavity side steam pipe 22, respectively. Steam is simultaneously supplied to the both sides to perform double-sided heating. At the initial stage of this double-sided heating, the steam pressure regulating valves 13 and 23 provided in the middle of the steam pipes 12 and 22 are respectively pressure regulating means 14 and 24. Are controlled by high-pressure air regulators 16, 26 set higher than the mold-set vapor pressure of air regulators 16, 17, and 26, 27 connected in parallel to the three-way switching valves 15, 25, respectively, By supplying steam from the steam source 4 to the respective steam chambers 11 and 21 with the steam pressure regulating valves 13 and 23 being substantially fully open, a large amount of steam is instantaneously supplied at the initial stage of heating. , The vapor pressure in 21 rises rapidly. Next, when a predetermined time set by the timers T 1 and T 2 elapses, the pressure is switched to the low pressure air regulators 17 and 27 set to the mold vapor pressure, and the inside of each of the steam chambers 11 and 21 is the quality of the molded product. Steam is subsequently supplied from the steam source 4 until a steam pressure preset to meet the requirements is reached. Thereafter, heat retention is performed for a predetermined time while the mold vapor pressure is at the set value. Next, (3) in the cooling step, the cooling water is sprayed from the cooling water inlet pipes 71 and 72 provided in the steam chambers 11 and 21 of the core mold 10 and the cavity mold 20 to the back side of the molding space 2. Then, the mold and the molded product in the molding space 2 are cooled with water. After this water cooling, there is a case where a so-called vacuum forming method is performed in which the inside of the steam chambers 11 and 21 is decompressed through the drain pipes 81 and 82 and the cooling water is effectively cooled using the latent heat of vaporization of the cooling water. Then, in the (4) mold release step after cooling, the core mold 10 that is the moving mold is retracted and the molded product is taken out from the molding space 2 by the action of an eject pin (not shown).
[0014]
The method for molding a thermoplastic resin foam according to the present invention is performed as described above. When molding a polystyrene foam using the molding machine shown in FIG. 1, when the set pressure for double-sided heating requires 0.7 kg / cm 2 G, double-sided heating by high-pressure air regulators 16 and 26 The initial set pressure is 1.0 kg / cm 2 G, and after 2 seconds from the start of double-sided heating with timers T 1 and T 2 , the original set pressure for double-sided heating set with low-pressure air regulators 17 and 27 When the molding was switched to a certain 0.7 kg / cm 2 G, the double-sided heating time was 8 seconds compared to the case of the conventional method in which 0.7 kg / cm 2 G was set from the initial stage of double-sided heating. To 5 seconds.
[0015]
Furthermore, in the conventional method, the total time for one-side heating and one-side heating is generally set to 20 seconds. However, in the above embodiment of the present invention, the initial steam chamber set pressure during double-sided heating is increased, and both sides are heated. Since the rate of pressure increase at the initial stage of heating became faster, it was found that a predetermined molded product quality could be obtained even if the total time of one-side heating and reverse one-side heating was reduced to 10 seconds. As a result, the total heating time in the heating step can be shortened from 28 seconds to 15 seconds, and an industrially remarkable high cycle of molding can be achieved.
[0016]
In addition, although this invention is as above-mentioned, the means like following (1) and (2) can also be considered for the large amount blowing of the vapor | steam in the initial stage of double-sided heating. However, both of these have difficulties. On the other hand, the method described above is the best method without such difficulties.
(1) Although it is conceivable to use a large capacity steam valve and supply a large amount of saturated steam from the initial stage of double-sided heating, it is difficult to finely control the steam pressure according to the set pressure, which is good Adjustment tends to be difficult.
(2) Instead of using the high-pressure air regulator and the low-pressure air regulator as described above, increase the number of steam valves and open all the steam valves in the first stage to supply a large amount of steam instantaneously. In the second stage, the same effect as in the case of the air regulator can be obtained by controlling the set pressure by closing some of the steam valves. However, in this case, the control becomes complicated and the cost tends to increase.
On the other hand, in the above embodiment, the existing molding machine is provided with only two types of air regulators, a high pressure air regulator for pressure adjustment and a low pressure air regulator, and a timer for switching between them. Good molding cycle shortening effect can be obtained. This is a great advantage for companies that use the same molding machine to produce thermoplastic resin foam.
[0017]
【The invention's effect】
As described above, according to the method for molding a thermoplastic resin foam according to the present invention, the heating time can be significantly shortened, and as a result, the molding cycle can be shortened to significantly improve the production efficiency. Moreover, this method can be easily implemented using an existing molding machine, and is very useful industrially.
[Brief description of the drawings]
FIG. 1 is a schematic view of a molding machine used in a method for molding a thermoplastic resin foam according to the present invention.
[Explanation of symbols]
1: Mold for molding, 2: Molding space,
4: Steam source, 5: Air source for valve opening,
10: Core mold, 11: Core side steam chamber,
12: Core side steam piping, 13: Core side steam pressure regulating valve,
14: Core side pressure adjusting means, 15: Three-way switching valve,
16: Air regulator for high pressure, 17: Air regulator for low pressure,
18: Core side secondary pressure piping,
20: Cavity mold, 21: Cavity side steam chamber,
22: Cavity side steam piping, 23: Cavity side steam pressure regulating valve,
24: Cavity side pressure adjusting means, 25: Three-way selector valve,
26: Air regulator for high pressure, 27: Air regulator for low pressure,
28: Secondary pressure piping on the cavity side,
71, 72: Cooling water inlet pipe, 81, 82: Drain pipe.

Claims (3)

熱可塑性樹脂発泡体の型内発泡成形方法において、両面加熱の工程で加熱時に金型に供給する蒸気の圧力設定を2段階とし、かつ1段目の設定値を2段目の設定値よりも大とし、加熱の初期には1段目の設定値で金型へ蒸気を供給し、次いで2段目の設定値に切り換えて金型へ蒸気を供給することにより、金型への蒸気の供給量を、両面加熱の初期には多量に供給し、次いで予め設定された目標とする蒸気圧での供給量の制御により両面加熱を行うことを特徴とする熱可塑性樹脂発泡体の成形方法。In the in-mold foam molding method for a thermoplastic resin foam, the pressure setting of the steam supplied to the mold during heating in the double-sided heating process is set to two stages, and the first stage setting value is set to be higher than the second stage setting value. Supply steam to the mold at the initial stage of heating by supplying steam to the mold at the first set value, then switching to the second set value and supplying steam to the mold amounts, a large amount supplied to the initial duplex heated and then preset molding method of a thermoplastic resin foam which is characterized in that the two-sided heating by controlling the supply amount of the vapor pressure of the target. 金型へ供給する蒸気圧の1段目から2段目への設定値の切り換えをタイマーにて行うことを特徴とする請求項1記載の成形方法。2. The molding method according to claim 1 , wherein the set value of the vapor pressure supplied to the mold is switched from the first stage to the second stage with a timer. 1段目の蒸気圧の設定を高圧用のエアレギュレータで行い、2段目の蒸気圧の設定を低圧用のエアレギュレータで行うことを特徴とする請求項2記載の成形方法。 3. The molding method according to claim 2 , wherein the first stage vapor pressure is set by a high pressure air regulator, and the second stage vapor pressure is set by a low pressure air regulator.
JP19167397A 1997-07-16 1997-07-16 Thermoplastic resin foam molding method Expired - Fee Related JP3814956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19167397A JP3814956B2 (en) 1997-07-16 1997-07-16 Thermoplastic resin foam molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19167397A JP3814956B2 (en) 1997-07-16 1997-07-16 Thermoplastic resin foam molding method

Publications (2)

Publication Number Publication Date
JPH1134172A JPH1134172A (en) 1999-02-09
JP3814956B2 true JP3814956B2 (en) 2006-08-30

Family

ID=16278561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19167397A Expired - Fee Related JP3814956B2 (en) 1997-07-16 1997-07-16 Thermoplastic resin foam molding method

Country Status (1)

Country Link
JP (1) JP3814956B2 (en)

Also Published As

Publication number Publication date
JPH1134172A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
US3736201A (en) Method for molding bowl-shaped articles
EP0830931B1 (en) On-demand fast cycle mold
US5858288A (en) Method for molding expandable polystyrene foam articles
JP3814956B2 (en) Thermoplastic resin foam molding method
WO2018040553A1 (en) Foam molding die for plastic structural member and molding method
KR20020070289A (en) A method for obtaining a thermoplastic resin injection-molded product having a high-quality appearance
JP3189377B2 (en) Molding method of foamed synthetic resin molded product
KR101030595B1 (en) injection mold apparatus
JP2602447B2 (en) Method for foaming thermoplastic resin
KR20110131828A (en) Injection mold apparatus
JP3706180B2 (en) Method and apparatus for molding foamed plastic products
JPH0336020A (en) Foam molding device of thermoplastic resin
JPH08300385A (en) Molding of foamable synthetic resin
JPH0153179B2 (en)
JPS6123099B2 (en)
JPH06226828A (en) Blow molding method
JPH045536B2 (en)
JPH05104649A (en) Foam molding method for foamed resin
JP2007022053A (en) Inmold forming method of foamed resin
JP2607153B2 (en) Method for foaming thermoplastic resin
US20040142053A1 (en) Method and system for molding low density polymer articles
JPH10180887A (en) Method for cooling foam molding machine and cooling pipeline
JPH01310943A (en) Apparatus for foam molding of thermoplastic resin
JPH0218979B2 (en)
KR950005707B1 (en) Forming method for polystylene foam articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees