JPS59143252A - Electric field generating apparatus - Google Patents

Electric field generating apparatus

Info

Publication number
JPS59143252A
JPS59143252A JP58016635A JP1663583A JPS59143252A JP S59143252 A JPS59143252 A JP S59143252A JP 58016635 A JP58016635 A JP 58016635A JP 1663583 A JP1663583 A JP 1663583A JP S59143252 A JPS59143252 A JP S59143252A
Authority
JP
Japan
Prior art keywords
electric field
electrodes
potential
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58016635A
Other languages
Japanese (ja)
Other versions
JPH0328775B2 (en
Inventor
Norihiro Naito
統広 内藤
Morio Ishihara
石原 盛男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP58016635A priority Critical patent/JPS59143252A/en
Publication of JPS59143252A publication Critical patent/JPS59143252A/en
Publication of JPH0328775B2 publication Critical patent/JPH0328775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To enable electrodes to be installed within a narrow space and freely change distribution of electric field to be generated by generating electric field with line-shaped electrodes arranged on a pair of substrates. CONSTITUTION:A substrate is formed like a half-sector along the center path O of ion and on the opposing surfaces thereof, n pieces of electrodes A1-An (substrate 4) and B1-Bn (substrate 4') with concentric arc forms having the width of, for example 0.5mm. are respectively arranged at a pitch of 0.5mm.. With such a constitution, when a voltage is applied to the n-pairs of electrodes, an electric field is generated in the space surrounded by the electrodes. Within such electric field, an equal potential plane formed by connecting each pair of electrodes given the equal potential to each other can exist but such equal potential plane is influenced by the potential applied to the adjacent electrodes. Accordingly, an electric field having arbitrary distribution of potential can be formed in the space surrounded by the electodes.

Description

【発明の詳細な説明】 本発明は質量分析装置特に重畳場質量分析装置に用いて
好適な電場発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric field generator suitable for use in a mass spectrometer, particularly a superimposed field mass spectrometer.

重畳場質量分析装置においては、例えば第1図に示づ様
に磁極1,1′間に形成される一様磁場中に同心円筒状
電極2.2′を設置し、該磁場と直交するトロイダル電
場を発生させ、重畳場としている。かかる重畳場を分析
場として用いた質量分析装置において電場掃引により質
量掃引を行おうとすると、イオンビームの集束位置が変
化してしまい、その位置変化を打消まために、i〜ロイ
ダル電場の定数c、c’を電場掃引に連動して変化させ
る必要がある。ところが、第1図に示される様に同心円
筒状電極を用いる従来装置では、電場分布は電極形状に
よって一義的に決まってしまい、c、c’ を変えるこ
とは出来ない。3.3′はそのために用いられる松山プ
レートと称される補正電極で、該電極3,3′に印加す
る直流電圧を変化させることにより、トロイダル電場の
定数C1C′を変化させることが出来る。
In a superimposed field mass spectrometer, for example, as shown in FIG. It generates an electric field and creates a superimposed field. If an attempt is made to sweep the mass by electric field sweeping in a mass spectrometer that uses such a superimposed field as an analysis field, the focusing position of the ion beam will change. , c' must be changed in conjunction with the electric field sweep. However, in the conventional device using concentric cylindrical electrodes as shown in FIG. 1, the electric field distribution is uniquely determined by the electrode shape, and c and c' cannot be changed. 3.3' is a correction electrode called a Matsuyama plate used for this purpose, and by changing the DC voltage applied to the electrodes 3 and 3', the constant C1C' of the toroidal electric field can be changed.

一般に質量分析装置においては、分解能あるいは測定範
囲の面で磁場強度が高いことが望まれ、そのためには磁
極間隔は出来るだけ狭くする必要がある。ところが、上
述した従来装置では、磁極間に電極2.2′及び補正電
極3,3′を設置しな【プればならない関係上狭くする
のにも限度があった。又、補正電極によ゛り定数c、c
、’ を変えることは出来るものの、場の中心から離れ
るほど理想的なトロイダル電場からのズレが大きくなっ
てしまい、高次の収差が大きくなるという欠点もあった
Generally, in a mass spectrometer, it is desired that the magnetic field strength be high in terms of resolution or measurement range, and for this purpose, the magnetic pole spacing must be as narrow as possible. However, in the conventional device described above, there is a limit to how narrow the space can be made because the electrodes 2, 2' and the correction electrodes 3, 3' must be placed between the magnetic poles. Also, the constants c and c are determined by the correction electrode.
,' can be changed, but the further away from the center of the field, the greater the deviation from the ideal toroidal electric field, which also has the drawback of increasing higher-order aberrations.

本発明は−に連した点に鑑みでなされたものであり、狭
い隙間であっても設置覆ることが出来、しかも電場分布
を任意に変えることの出来る電場発生装置を提供4るこ
とを目的としている。
The present invention has been made in view of the points related to -, and an object of the present invention is to provide an electric field generating device that can be installed and covered even in a narrow gap, and that can arbitrarily change the electric field distribution. There is.

本発明は、中心平面を挾んで等しい距離にある一対の平
行平面上に該中心平面を挾んで上下対称に段【ノられた
複数対の同心円弧状の線状電極群と、該複数対の線状電
極の対句に与える電位に関する情報を記憶りる記憶手段
と、該記憶手段から読出された情報に基づいて各電極対
に所定の電位を与えるための電源手段とから構成される
ことを特徴としている。以下本発明の一実施例を添付図
面に基づき詳)ホJる。
The present invention comprises a plurality of pairs of concentric arc-shaped linear electrodes arranged vertically symmetrically across the center plane on a pair of parallel planes located at equal distances between the center plane, and the plurality of pairs of wire electrodes. It is characterized by being comprised of a storage means for storing information regarding the potential to be applied to the pair of shaped electrodes, and a power supply means for applying a predetermined potential to each electrode pair based on the information read from the storage means. There is. An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第2図は本発明の一実施例の構成を示し、図におい′C
1,1’ は第1図と同様の磁極である。該磁極間には
イオンの通る中心平面りから互いに等しい距離をおいて
絶縁物製の薄い基板4.4′が平行に設置されている。
FIG. 2 shows the configuration of an embodiment of the present invention.
1, 1' are magnetic poles similar to those in FIG. Between the magnetic poles, thin insulating substrates 4,4' are placed in parallel at equal distances from the central plane through which ions pass.

該基板は、第3図に示す様にイオンの中心通路Oに沿っ
た円弧状の形状が与えられると共に、そ・の対向する表
面には例えば0.5非幅のn木の同心円弧状電極A1〜
A。
As shown in FIG. 3, the substrate is given an arcuate shape along the central path O of ions, and on its opposing surface are arranged concentric arcuate electrodes A1 of n trees with a non-width of 0.5, for example. ~
A.

(基板4)、B+ 〜Bn (基板4′ )が0.51
1mのピッチで配列されている。この電極パターンは例
えば、通常の電子機器で使用されるプリン1〜基板と同
様にパターン露光及びエツチングの技術により作成する
ことが出来る。2枚の基板は中心平面を挾Iυでパター
ンが対称になるように、換言づればA1とB+ 、An
とBnが中心平面を挾んで正対するように配置され、夫
々の基板の各電極から引出された引出し線は、正対した
一対の電極同士が一組として接続され、更に各粗角に電
源5に接続されている。6はn個の組について印加すべ
き電圧を記憶させたメモリで、該メモリ6に記憶された
情報は読出し制御回路7によって続出され、各粗角の電
圧情報として電源5に供給される。
(Substrate 4), B+ ~ Bn (Substrate 4') is 0.51
They are arranged at a pitch of 1m. This electrode pattern can be created, for example, by pattern exposure and etching techniques in the same manner as the substrates 1 to 1 used in ordinary electronic equipment. The two substrates are arranged so that the patterns are symmetrical with respect to the central plane Iυ, in other words, A1, B+, An
and Bn are arranged to face directly across the central plane, and the lead wires drawn out from each electrode of each substrate are connected as a pair to a pair of directly facing electrodes, and a power source 5 is connected to each rough corner. It is connected to the. A memory 6 stores voltages to be applied for n sets. The information stored in the memory 6 is successively read out by a read control circuit 7 and supplied to the power source 5 as voltage information for each coarse angle.

上述の如き構成にお(\て、0組の電極に電圧を印加す
ると、電極に挾まれた空間には、電場が生成される。そ
の電場内では、等しい電位が与えられた各月の電極同士
を結ぶ等電位面が存在するが、その等電位面はお互いに
隣合う電極に印加された電位による影響を受ける。従っ
て各電極にどの様な電圧を印加し/j時にどの様な電場
が形成されるかを求めでおけば、この電極に挾まれた空
間に任意の分布を持った電場を生成さけることが可能で
ある。
In the above configuration (\), when a voltage is applied to 0 sets of electrodes, an electric field is generated in the space between the electrodes. Within that electric field, each month's electrodes given the same potential There is an equipotential surface that connects the electrodes, but the equipotential surface is affected by the potentials applied to adjacent electrodes.Therefore, what kind of voltage is applied to each electrode, and what kind of electric field is generated at j? By determining whether or not an electric field is formed, it is possible to avoid generating an electric field with an arbitrary distribution in the space between the electrodes.

ここで、電極で挾まれた空間に成る電場φが形成された
とした時、0組の電極の電位について、第4図を用いて
考察する。
Here, when it is assumed that an electric field φ is formed in the space between the electrodes, the potential of the 0th set of electrodes will be considered using FIG. 4.

今、電場φをイオンの回転中心軸qに対して軸対称なト
[1イダル電場であると考え、該電場内の任意の位置に
お(プる電位(ポテンシャル)を第4図に示1×−y座
標でφ(X、 y)と書けば、次式が成立する。
Now, considering the electric field φ to be an axially symmetrical electric field with respect to the central axis of ion rotation q, the electric potential at any position within the electric field is shown in Figure 4. If we write φ(X, y) in x-y coordinates, the following equation holds true.

Δφ(x、 y) =O・・・(1) ここで、ρ0はイオン中心通路の回転半径、Φは任意点
<x、y>にお番ノる電位である。
Δφ(x, y) =O (1) where ρ0 is the radius of rotation of the ion center path, and Φ is the potential at an arbitrary point <x, y>.

上式よりφ(X、 V)の一般的な形として下式が得ら
れる。
From the above equation, the following equation can be obtained as a general form of φ(X, V).

φ(X、V)=−Eoρ0Σ班(ん鳳5・・・(3)4
.3! ここでaノJは係数、Eoはイオンの中心軌Jx=y=
oでの電場強度である。
φ(X,V)=-Eoρ0Σgroup(nho5...(3)4
.. 3! Here, a no J is a coefficient, and Eo is the central orbit of the ion Jx=y=
is the electric field strength at o.

電極間の距離を21とづれば、各電極はy=±hの平面
に存在りるから、(3)式においてy=hとおき、Xの
値を各電極の位置に応じで代入すれば、各電極の電位を
求めることが出来ることが解る。逆に言えば、その様に
して求めた電位を各電極に与えるようにずれば、電極に
挾まれた空間にはトロイダル電場が生成されることにな
る。尚、該電場の短縁部eは場の乱れが生じるが、電極
間距離2hを電極の幅Wに比べて十分に大きくしてお(
)ば、イオン中心通路付近にお番プる場の乱れは無視す
ることが出来る。
If the distance between the electrodes is 21, then each electrode exists on the plane of y=±h, so if we set y=h in equation (3) and substitute the value of X according to the position of each electrode, we get It can be seen that the potential of each electrode can be determined. Conversely, if the potential determined in this way is applied to each electrode in a different manner, a toroidal electric field will be generated in the space between the electrodes. Note that field disturbance occurs at the short edge e of the electric field, but the distance 2h between the electrodes is made sufficiently larger than the width W of the electrodes (
), the disturbance in the field near the ion center path can be ignored.

ここで、実際に各電極の電位を求めるには、係数827
を求めな(プればならない。即ち、(3)のラプラス方
程式から係数a に関し、次の漸化式゛(recurs
ion formula )が得られる。
Here, to actually find the potential of each electrode, the coefficient 827
(recurs
ion formula) is obtained.

(j +1 ) aL、1t2 +aj+1..j+z
 + (j + 2) az、z、z +al−t3.
j−0−(3) ここひa4 = 01f、J ≧Or” アル。
(j +1) aL, 1t2 +aj+1. .. j+z
+ (j + 2) az, z, z +al-t3.
j-0-(3) Here a4 = 01f, J ≧Or” Al.

又、正対りる電極同士の電位が等しいことから電場は中
心平面しに関し対称であり、そのためyのべきの奇数項
の係数は0′Cある。
Furthermore, since the potentials of directly facing electrodes are equal, the electric field is symmetrical about the central plane, and therefore the coefficient of the odd term of the power of y is 0'C.

これらのことを総合(ると、j=0でない中心平面外の
場を表すyが含まれる項の係数a i7は、リーベ−(
中心平面内のyを含まない項の係数ai0(1≧1)C
′表りことが出来る。4次までの係数についζ例示づる
と、上式の様になる。
Combining these things, the coefficient a i7 of the term containing y representing the field outside the central plane where j = 0 is calculated by Liebe (
Coefficient ai0 (1≧1)C of terms that do not include y in the central plane
'It can be expressed. An example of ζ for coefficients up to the fourth order is as shown in the above equation.

a02”’ −ago  a20      ・・・(
5)a+z=a+o  azo  a3o   −<6
)az   2  =−28+o−1−2a   2 
 o   −a   3  o   −a   4  
Q・・・(7) ao4=ato−a2o+2a3o+a4゜・・・(8
) 結局、質量分析装置において実際に必要となる3次まe
のW+nには、alo、azo、a3o。
a02"' -ago a20...(
5) a+z=a+o azo a3o -<6
) az 2 =-28+o-1-2a 2
o -a 3 o -a 4
Q...(7) ao4=ato-a2o+2a3o+a4゜...(8
) In the end, the third-order magnification that is actually required in a mass spectrometer
W+n is alo, azo, a3o.

a40の4つの係数を与えれば(3)、(4)式により
、任意のトl]イダル電場に関し、各電極に与えるべき
電圧(ボテフシ1シル)を与えることが出来る。
If the four coefficients of a40 are given, the voltage (voltage 1 sill) to be applied to each electrode can be given with respect to an arbitrary triidal electric field using equations (3) and (4).

このalo、a2(1,a30.a40の4つの係数を
求めるには、例えばコンピュータを用いて実際に各係数
に数値を代入し、特定の電場(例えば特定の定数01を
持つ電場)において最も収差の少い組み合わせを選定す
るように1れば良く、この様にして求めたa+o+az
o+a3ona40の値及び各電極の位置のデータを用
いて前記(5)〜(8)式及び(3)式により、各電極
Δ1〜An  (夫々接続されている81〜Bnも含む
)に印加すべき電位の情報V++〜VIT+が特定の定
数Cの電場について計算される。全く同様にしで異なる
定数Cz 、 C3、・・・の電場各種について各電極
に印加する電位の情報V21〜Vzn、V3t>V3n
、***を求め、夫々の情報に基づいて各電極に電圧を
印加づれば、各定数の電場を発生させることが出来る。
In order to find the four coefficients alo, a2 (1, a30, a40), for example, use a computer to actually substitute numerical values for each coefficient, and in a specific electric field (for example, an electric field with a specific constant 01), 1 is enough to select a combination with a small number of
Using the value of o+a3ona40 and data on the position of each electrode, the voltage should be applied to each electrode Δ1 to An (including 81 to Bn connected to each other) according to equations (5) to (8) and equation (3) above. Potential information V++ to VIT+ is calculated for an electric field of a certain constant C. Information on the potential applied to each electrode V21 to Vzn, V3t>V3n for various electric fields with completely different constants Cz, C3, ...
, *** and apply a voltage to each electrode based on the respective information, it is possible to generate an electric field of each constant.

第2図の実施例において、メモリ6には上述の様にして
求めた複数の情報が格納されており、読出し制御回路7
ににってその中から任意の情報を読出しC電源に供給り
ると、該電源5は各電極に該情報に基づいた電圧を印加
する。従って電極に一挾まれた空間には、メモリに格納
された情報に従った電場が生じることになる。
In the embodiment shown in FIG. 2, the memory 6 stores a plurality of pieces of information obtained as described above, and the readout control circuit 7
When any information is read out from the information and supplied to the power source C, the power source 5 applies a voltage based on the information to each electrode. Therefore, an electric field is generated in the space between the electrodes according to the information stored in the memory.

尚、上配例rは1〜l」イダル電場を例にとったが、中
心平面を挾んで対称な電場であれば、いかなる電場であ
つCも、その電場に関する情報が得られれば発生可能で
あることは言うまでもない。
In addition, in the above example, r is 1 to l.'' Although we have taken the idal electric field as an example, any electric field C can be generated as long as the electric field is symmetrical with respect to the central plane, as long as information about that electric field is obtained. It goes without saying that there is.

又、基板4.4′は磁極1.1′に夫々取付けるように
しても良く、重畳場ではなく電場を単独に発生さけるの
であれば、磁極は必要でないことは色うまでもない。
Further, the substrates 4.4' may be attached to the magnetic poles 1.1', respectively, and it goes without saying that the magnetic poles are not necessary if the generation of an electric field alone rather than a superimposed field is avoided.

以」ニ詳述した如く本発明によれば、2枚の基板上に設
置した線状電極により電場を発生させるため、従来の様
な電14i2.2’が不要となり、狭い間隙にも設置す
ることが可能となる。更に発生さける電場の分布をも任
意に変えることが可能である。
As described in detail below, according to the present invention, the electric field is generated by the linear electrodes installed on the two substrates, so the conventional electric field 14i2.2' is not required, and it can be installed even in a narrow gap. becomes possible. Furthermore, it is possible to arbitrarily change the distribution of the electric field to be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を説明するための図、第2図は本発明の
一実施例の構成を示す図、第3図は基板及び線状電極を
説明するだめの図、第4図は線状電極とx−y座標の関
係を承り図である。 4.4’:基板、5:電源、6:メモリ、7:読出し制
御回路、A、B:線状電極。 特許出願人 日本電子株式会社 代表者 伊藤 −夫
Fig. 1 is a diagram for explaining a conventional example, Fig. 2 is a diagram showing the configuration of an embodiment of the present invention, Fig. 3 is a diagram for explaining a substrate and a linear electrode, and Fig. 4 is a diagram for explaining a linear electrode. FIG. 4 is a diagram showing the relationship between the shaped electrode and the x-y coordinates. 4.4': Substrate, 5: Power supply, 6: Memory, 7: Readout control circuit, A, B: Linear electrode. Patent applicant JEOL Ltd. Representative Ito-husband

Claims (1)

【特許請求の範囲】[Claims] 中心平面を挾んで等しい距離にある一対の平行平面上に
該中心平面を挾んで上下対称に設けられた複数対の同心
円弧状の線状電極群と、該複数対の線状電極の月毎に与
える電位に関する情報を記憶する記憶手段と、該記憶手
段から読出された情報に基づいて各電極対に所定の電位
を与えるための電源手段とから成る電場発生装置。
A plurality of pairs of concentric arc-shaped linear electrodes arranged vertically symmetrically across the central plane on a pair of parallel planes located at equal distances across the central plane; An electric field generating device comprising storage means for storing information regarding the applied potential, and power supply means for applying a predetermined potential to each electrode pair based on the information read from the storage means.
JP58016635A 1983-02-03 1983-02-03 Electric field generating apparatus Granted JPS59143252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58016635A JPS59143252A (en) 1983-02-03 1983-02-03 Electric field generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58016635A JPS59143252A (en) 1983-02-03 1983-02-03 Electric field generating apparatus

Publications (2)

Publication Number Publication Date
JPS59143252A true JPS59143252A (en) 1984-08-16
JPH0328775B2 JPH0328775B2 (en) 1991-04-22

Family

ID=11921814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58016635A Granted JPS59143252A (en) 1983-02-03 1983-02-03 Electric field generating apparatus

Country Status (1)

Country Link
JP (1) JPS59143252A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110957A (en) * 1984-11-06 1986-05-29 Jeol Ltd Electric field generator
JP2857686B2 (en) * 1989-06-01 1999-02-17 マイクロマス リミテッド Charged particle energy analyzer and mass spectrometer incorporating the same
JP2004214111A (en) * 2003-01-08 2004-07-29 Hitachi High-Technologies Corp Monochromator and scanning electron microscope with monochromator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110957A (en) * 1984-11-06 1986-05-29 Jeol Ltd Electric field generator
JPH0430707B2 (en) * 1984-11-06 1992-05-22
JP2857686B2 (en) * 1989-06-01 1999-02-17 マイクロマス リミテッド Charged particle energy analyzer and mass spectrometer incorporating the same
JP2857685B2 (en) * 1989-06-01 1999-02-17 マイクロマス リミテッド Mass spectrometer with multi-channel detector
JP2004214111A (en) * 2003-01-08 2004-07-29 Hitachi High-Technologies Corp Monochromator and scanning electron microscope with monochromator
US7022983B2 (en) 2003-01-08 2006-04-04 Hitachi High-Technologies Corporation Monochromator and scanning electron microscope using the same
US7315024B2 (en) 2003-01-08 2008-01-01 Hitachi High-Technologies Corporation Monochromator and scanning electron microscope using the same
US7838827B2 (en) 2003-01-08 2010-11-23 Hitachi High-Technologies Corporation Monochromator and scanning electron microscope using the same

Also Published As

Publication number Publication date
JPH0328775B2 (en) 1991-04-22

Similar Documents

Publication Publication Date Title
Hÿtch et al. Quadrupoles in electron lens design
US4962480A (en) Memory reading apparatus
US3622869A (en) Homogenizing coils for nmr apparatus
GB2137408A (en) Scanning a beam of charged particles
GB2061609A (en) Compensation for spherical aberration using a sextupale
US4985626A (en) Quadrupole mass filter for charged particles
JPS62188153A (en) Method and structure for creating tetrapole static electric field by closed boundary
CN112750549A (en) Ion trap
JPS59143252A (en) Electric field generating apparatus
Fukushima et al. Design study of a multipole ion trap for beam physics applications
Takahashi et al. Development of a corona discharge ionizer utilizing high-voltage ac power supply driven by PWM inverter for highly efficient electrostatic elimination
JPH03165444A (en) Electrostatic multipole lens for charged particle beams
JPS6269454A (en) Ion source
JPH0419667B2 (en)
US3781732A (en) Coil arrangement for adjusting the focus and/or correcting the aberration of streams of charged particles by electromagnetic deflection, particularly for sector field lenses in mass spectrometers
Versnel Electrical characteristics of an anisotropic semiconductor sample of circular shape with finite contacts
Martı́nez et al. BEM simulation of Wien filters
JPS61110957A (en) Electric field generator
Hutter Electron Beam Deflection: Part II. Applications of the Small‐Angle Deflection Theory
JP2021157402A (en) Magnetic dot array and magnetic dot array computing element
JPH05312892A (en) Corona current measurement
JPH01248617A (en) Charged particle beam exposure device
US3673528A (en) Wide frequency response line scan magnetic deflector
JPH0616388B2 (en) Magnetic coil assembly for adjusting and deflecting incident electron beam in an electron beam system such as a fault scanner using a computer
JP2512056B2 (en) Electronic beam exposure method