JPH0419667B2 - - Google Patents

Info

Publication number
JPH0419667B2
JPH0419667B2 JP59233780A JP23378084A JPH0419667B2 JP H0419667 B2 JPH0419667 B2 JP H0419667B2 JP 59233780 A JP59233780 A JP 59233780A JP 23378084 A JP23378084 A JP 23378084A JP H0419667 B2 JPH0419667 B2 JP H0419667B2
Authority
JP
Japan
Prior art keywords
electric field
electrode
electrodes
potential
linear electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59233780A
Other languages
Japanese (ja)
Other versions
JPS61110956A (en
Inventor
Norihiro Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP59233780A priority Critical patent/JPS61110956A/en
Publication of JPS61110956A publication Critical patent/JPS61110956A/en
Publication of JPH0419667B2 publication Critical patent/JPH0419667B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/22Electrostatic deflection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は質量分析装置用電場発生装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electric field generator for a mass spectrometer.

[従来の技術] 質量分析装置においては、イオンのエネルギー
による収差を補正するため、トロイダル電場を用
いている。トロイダル電場は、第4図に示すよう
に、断面の曲率半径がRa,Rbの同心電極E,
E′によつて作ることができる。第4図において、
raは中心平面L上を通るイオンビームの中心軌道
Oの回転半径(回転中心軸q)、Reはこの中心軌
道Oを通る等電位面の曲率半径であり、トロイダ
ル電場の定数Cが両者の比ra/Reで与えられる。
そして、トロイダル電場を歪を十分小さくするた
め、電極の間隔Gに比して電極の高さhは通常7
倍以上と十分大きくとられている。
[Prior Art] In a mass spectrometer, a toroidal electric field is used to correct aberrations caused by ion energy. As shown in Fig. 4, the toroidal electric field is generated by concentric electrodes E, whose cross-sectional radii of curvature are R a and R b ,
It can be made by E′. In Figure 4,
r a is the rotation radius (rotation center axis q) of the central orbit O of the ion beam passing on the central plane L, Re is the radius of curvature of the equipotential surface passing through this central orbit O, and the constant C of the toroidal electric field is It is given by the ratio r a /Re.
In order to make the distortion of the toroidal electric field sufficiently small, the height h of the electrodes is usually 7
It is sufficiently large, more than twice as large.

ところで、質量分析装置においては、分解能あ
るいは測定範囲の面で磁場強度が高いことが望ま
れ、そのため磁極間隔は出来るだけ狭くする必要
がある。ところが、上述した構成では、電極の高
さhが先に述べたように大きいため、重畳場質量
分析装置のようにこの電極を磁極の間に収容しな
ければならない装置では磁極間隔を狭くすること
ができる不利であつた。
Incidentally, in a mass spectrometer, it is desired that the magnetic field strength be high in terms of resolution or measurement range, and therefore the magnetic pole spacing must be as narrow as possible. However, in the above-mentioned configuration, the height h of the electrode is large as mentioned above, so in a device such as a superimposed field mass spectrometer that requires the electrode to be housed between the magnetic poles, the spacing between the magnetic poles must be narrowed. It was a disadvantage to be able to do so.

そこで、本発明者は、狭い隙間であつても設置
することができる電場発生装置を先に提案(特願
昭58−16635号)した。この装置は、第5図に示
すように、中心平面Lを挾んで等しい距離にある
一体の平行平面上に該中心平面Lを挾んで上下対
称に同心円弧状の線状電極群A1〜Ao,B1〜Bo
配置し、この線状電極群の各電極にその位置に応
じた所定の電位を与えることにより、線状電極群
で挾まれた領域にトロイダル電場を作るものであ
る。
Therefore, the present inventor proposed an electric field generating device that can be installed even in a narrow gap (Japanese Patent Application No. 16635/1982). As shown in FIG. 5, this device consists of a group of linear electrodes A 1 to A o arranged vertically symmetrically in the form of concentric arcs, on a single parallel plane that is equally spaced from the central plane L. , B 1 to B o and applying a predetermined potential to each electrode of the linear electrode group according to its position, a toroidal electric field is created in the region sandwiched by the linear electrode group.

[発明が解決しようとする問題点] ところが、このような提案装置で線状電極群の
間に発生する電場を詳しく調べたところ、その電
位は、例えば第6図に示すような円筒電場に近い
分布となり、目的としたトロイダル電場を正確に
発生させることができなかつた。これは外部から
の電場の影響によるものであり、線状電極群の外
側の第6図における一点鎖線の位置にアース電位
のシールドを配置してみても効果はあまりなかつ
た。
[Problems to be solved by the invention] However, when we investigated in detail the electric field generated between the linear electrode groups in such a proposed device, we found that the potential was close to that of a cylindrical electric field as shown in Figure 6, for example. distribution, and it was not possible to accurately generate the desired toroidal electric field. This is due to the influence of an external electric field, and even if a ground potential shield was placed outside the linear electrode group at the position indicated by the dashed-dotted line in FIG. 6, it was not very effective.

本発明はこの点に鑑みてなされたものであり、
上述した提案装置を更に改良することにより、狭
い隙間であつてもトロイダル電場を歪なく発生さ
せることのできる装置を提供することを目的とし
ている。
The present invention has been made in view of this point,
By further improving the proposed device described above, the present invention aims to provide a device that can generate a toroidal electric field without distortion even in a narrow gap.

[問題点を解決するための手段] この目的を達成するため、本発明の質量分析装
置用電場発生装置は、イオン通路を含む中心平面
を挾んで等しい距離にある一対の平行平面上に該
中心平面を挾んで上下対称に設けられた複数対の
同心円弧状の線状電極群と、前記各平面上に配置
される前記同心円弧状の複数の線状電極の間に各
電極間を電気的に接続するように〓間なく配設さ
れる板状又は膜状の電気抵抗体と、前記複数対の
線状電極の対毎に与える電位に関する情報を記憶
する記憶手段と、該記憶手段から読出された情報
に基づいて各電極対に所定の電位を与えるための
電源手段とから構成されることを特徴としてい
る。
[Means for Solving the Problems] In order to achieve this object, the electric field generator for a mass spectrometer of the present invention has a central plane that is located on a pair of parallel planes that are equally spaced from each other with a central plane that includes an ion path. Electrically connecting each electrode between a plurality of pairs of concentric arc-shaped linear electrodes arranged vertically symmetrically across a plane and the plurality of concentric arc-shaped linear electrodes arranged on each plane. In order to It is characterized by comprising a power supply means for applying a predetermined potential to each electrode pair based on the information.

[実施例] 以下本発明の一実施例を添付図面に基づき詳述
する。
[Example] An example of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明の一実施例の構成を示す図であ
る。図において1,1′はスペーサSa,Sbによつ
て所定の距離を隔て平行に配置された磁極であ
る。該磁極1,1′の対向する表面には、セラミ
ツクなど絶縁物製の薄い基板2,2′が夫々取付
けられている。該基板は、第2図に示す様にイオ
ンの中心通路に沿つた円弧状の形状が与えられる
と共に、その対向する面には、塗布あるいは蒸着
等の処理により薄い抵抗被膜が形成されている。
そして、更にその抵抗被膜の上に、例えば0.5mm
幅のn本の同心円弧状電極A1〜Ao(基板2)、B1
〜Bo(基板2′)が0.5mmのピツチで配列されてい
る。この電極パターンは、例えばマスクを使つた
導電体の塗布や蒸着、あるいは通常の電子機器で
使用されるプリント基板と同様のパターン露光及
びエツチングの技術などにより作成することが出
来る。2枚の基板は中心平面Lを挾んでパターン
が対称になるように、換言すればA1とB1、Ao
Boが中心平面を挾んで正対するように配置され、
夫々の基板の各電極から引出された引出し線は電
源3に接続されている。
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention. In the figure, reference numerals 1 and 1' indicate magnetic poles arranged in parallel with a predetermined distance apart by spacers Sa and Sb. Thin substrates 2, 2' made of an insulating material such as ceramic are attached to opposing surfaces of the magnetic poles 1, 1', respectively. As shown in FIG. 2, the substrate is given an arcuate shape along the central path of ions, and a thin resistive film is formed on the opposing surfaces by a process such as coating or vapor deposition.
Then, on top of the resistive film, for example, 0.5mm
n concentric arc-shaped electrodes of width A 1 to A o (substrate 2), B 1
~B o (substrate 2') are arranged at a pitch of 0.5 mm. This electrode pattern can be created, for example, by coating or vapor deposition of a conductor using a mask, or by pattern exposure and etching techniques similar to those used for printed circuit boards used in ordinary electronic devices. The patterns of the two substrates should be symmetrical across the center plane L, in other words, A 1 and B 1 , A o and
B o is arranged so that it faces directly across the central plane,
A lead wire drawn out from each electrode of each substrate is connected to a power source 3.

又、前記スペーサSa,Sbは、互いに絶縁され
た例えば5枚の円弧状電極Sa1〜Sa5、Sb1〜
Sb5から構成され、各電極から引出された引出
し線は、これも電源3に接続されている。
Further, the spacers Sa and Sb are formed of, for example, five arc-shaped electrodes Sa1 to Sa5 and Sb1 to Sb1, which are insulated from each other.
The lead wires made of Sb5 and drawn out from each electrode are also connected to the power source 3.

4は電極A1〜Ao,B1〜Bo,Sa1〜Sa5,Sb
1〜Sb5のすべてについて印加すべき電圧を記
憶させたメモリで、該メモリ4に記憶された情報
は読出し制御回路5によつて読出され、各電極の
電圧情報として電源3に供給される。
4 are electrodes A 1 to A o , B 1 to B o , Sa1 to Sa5, Sb
The memory 4 stores voltages to be applied for all of Sb1 to Sb5.The information stored in the memory 4 is read out by a readout control circuit 5 and supplied to the power source 3 as voltage information for each electrode.

上記の構成において、電極A1〜Ao,B1〜Bo
Sa1〜Sa5,Sb1〜Sb5に電圧を印加すると、
電極に囲まれた空間には、電場が生成される。こ
こで、電極で囲まれた空間に或る電場が形成され
たとした時、各電極の位置における電位につい
て、第3図を用いて考察する。
In the above configuration, the electrodes A 1 to A o , B 1 to B o ,
When voltage is applied to Sa1 to Sa5 and Sb1 to Sb5,
An electric field is generated in the space surrounded by the electrodes. Here, when a certain electric field is formed in a space surrounded by electrodes, the potential at each electrode position will be considered using FIG. 3.

今、電場をイオンの回転中心軸qに対して軸対
称なトロイダル電場であると考え、該電場内に任
意の位置における電位(ポテンシヤル)を第3図
に示すx−y座標でφ(x、y)とすれば、φ
(x、y)は4次近似により次式のように表わさ
れる。
Now, assuming that the electric field is a toroidal electric field that is axially symmetrical with respect to the central axis of rotation q of the ion, the electric potential (potential) at any position within the electric field is expressed as φ (x, y), then φ
(x, y) is expressed by the following equation using fourth-order approximation.

φ(x、y) =2Va[a10X+a20X2/2+a02Y2 /2+a12XY2/2+a30X3 /6+a22X2Y2/4+a40X4 /24+a04Y4/24] ……(1) ここで、Vaはイオン加速電圧、X、Yはx、
yをraで除してノーマライズしたもので、X=
x/ra、Y=y/raと表わされる。又、係数a10
a04は、C1=C、C2=dC/dr、C3=d2C/dr2とし
た時、下式で表わされる。
φ (x, y) = 2V a [a 10 X +a 20 X 2 /2+ a 02 Y 2 / 2 +a 12 XY 2 /2+a 30 X 3 / 6 + a 22 ] ...(1) Here, V a is the ion acceleration voltage, X, Y are x,
Normalized by dividing y by r a , X=
It is expressed as x/ ra , Y=y/ ra . Also, the coefficient a 10 ~
a 04 is expressed by the following formula when C 1 =C, C 2 =dC/dr, and C 3 =d 2 C/dr 2 .

a10=1 a20=−(1+C1) a02=C1 a12=C2−C1(1+C1) a30=2+2C1−C2+C1 2 a22=−2C1+2C2+C3−2C1 2 −3C1C2+C1 3 a40=−6−6C1+3C2−C3−3C1 2 +3C1C2−C1 3 a04=−C1+C2−C3−C1 2 +3C1C2−C1 3 従つて、Va、raを決め、Cを所望の値に設定
すれば係数a10〜a04が決まつて(1)式が確定する。
その(1)式に各電極の位置を(x、y)座標で代入
すれば、各電極の位置における電位を求めること
ができる。逆に言うと、その求めた電位を各電極
に与えるようにすれば、電極に囲まれた空間に所
望の係数Cを持つトロイダル電場が形成されるこ
とになる。
a 10 =1 a 20 =-(1+C 1 ) a 02 =C 1 a 12 =C 2 -C 1 (1+C 1 ) a 30 =2+2C 1 -C 2 +C 1 2 a 22 =-2C 1 +2C 2 +C 3 −2C 1 2 −3C 1 C 2 +C 1 3 a 40 = −6−6C 1 +3C 2 −C 3 −3C 1 2 +3C 1 C 2 −C 1 3 a 04 = −C 1 +C 2 −C 3 −C 1 2 +3C 1 C 2 −C 1 3 Therefore, by determining V a and r a and setting C to a desired value, the coefficients a 10 to a 04 are determined and equation (1) is finalized.
By substituting the position of each electrode in (x, y) coordinates into equation (1), the potential at the position of each electrode can be determined. Conversely, if the determined potential is applied to each electrode, a toroidal electric field having a desired coefficient C will be formed in the space surrounded by the electrodes.

その際、先に説明した提案装置では、電極A1
〜Aoの間及びB1〜Boの間は自由空間であつた。
そのため、外部からの電場が電極で囲まれた領域
における電場に大きな影響を与えていた。その
点、本発明においては、電極A1〜Aoの間及びB1
〜Boの間は自由空間ではなく、抵抗被膜が存在
し、しかも抵抗被膜は電極と電気的に接続されて
いるため、この抵抗被膜の表面における電位は、
隣り合う電極に夫々与えられた電位を位置に応じ
て分圧したものとなる。
At that time, in the proposed device explained earlier, electrode A 1
~ A o and B 1 ~ B o were free spaces.
Therefore, an external electric field has a large effect on the electric field in the area surrounded by the electrodes. In this regard, in the present invention, between electrodes A 1 to A o and B 1
There is no free space between ~B o , but a resistive film, and since the resistive film is electrically connected to the electrode, the potential at the surface of this resistive film is:
The potentials applied to adjacent electrodes are divided according to their positions.

例えば電極A1,A2にV1,V2の電位が夫々与え
られているとし、A1,A2が回転中心軸qから半
径r1,r2の円周上に夫々位置するとすれば、電極
A1とA2の間の抵抗被膜表面で、回転中心軸qか
ら距離rの位置の点の電位Vは下式で表わされ
る。
For example, suppose that potentials V 1 and V 2 are applied to electrodes A 1 and A 2 , respectively, and that A 1 and A 2 are located on the circumference of a radius r 1 and r 2 from the rotation center axis q, respectively. ,electrode
The potential V at a point at a distance r from the rotation center axis q on the surface of the resistive coating between A 1 and A 2 is expressed by the following formula.

V=(V1−V2)ln(r/r2) /ln(r1/r2)+V2 ……(2) 従つて、電極で囲まれた領域は抵抗被膜により
完全にシールドされ、外部の電場の影響を受ける
ことがなくなり、この領域に乱れのないトロイダ
ル電場を作ることが可能となる。
V = (V 1 - V 2 ) ln (r/r 2 ) / ln (r 1 / r 2 ) + V 2 ... (2) Therefore, the area surrounded by the electrodes is completely shielded by the resistive film, It is no longer affected by external electric fields, and it becomes possible to create an undisturbed toroidal electric field in this region.

第1図におけるメモリ4には、上述のように(1)
式に基づいて求めた特定の係数Cを持つトロイダ
ル電場を発生させるために各電極に印加すべき電
位の情報が格納されており、読出し制御回路5に
よつてその情報を読出して電源3に供給すると、
電源3は各電極にその情報に基づいた電圧を印加
する。従つて、電極に囲まれた空間にはメモリに
格納された情報に従つたトロイダル電場が生じる
ことになる。
The memory 4 in FIG. 1 contains (1) as described above.
Information on the potential to be applied to each electrode in order to generate a toroidal electric field with a specific coefficient C determined based on the formula is stored, and the readout control circuit 5 reads out the information and supplies it to the power source 3. Then,
The power source 3 applies a voltage to each electrode based on the information. Therefore, a toroidal electric field is generated in the space surrounded by the electrodes in accordance with the information stored in the memory.

尚、上記実施例ではトロイダル電場の側面を囲
む電極Sa1〜Sa5及びSa1〜Sb5として単に5
つの円弧状電極を用い、計算で求めた電位を与え
ただけであつたが、各電極Sa1〜Sa5,Sa1〜
Sb5に代えて電極A1〜Ao,B1〜Boのような線状
電極を用い、間に抵抗被膜を配置するようにして
も良い。ただし、この側面の構造は余りトロイダ
ル電場の分布に大きな影響を与えないので、上記
実施例のような簡単な構造でも十分である。
In the above embodiment, the electrodes Sa1 to Sa5 and Sa1 to Sb5 surrounding the side surfaces of the toroidal electric field are simply 5.
Using two circular arc-shaped electrodes, only the calculated potential was applied, but each electrode Sa1~Sa5, Sa1~
Instead of Sb5, linear electrodes such as electrodes A 1 to A o and B 1 to B o may be used, and a resistive film may be placed between them. However, since this side structure does not have much influence on the distribution of the toroidal electric field, a simple structure like the one in the above embodiment is sufficient.

又、トロイダル電場を発生するための電位の情
報を、Cを異ならせて複数組求めてメモリ4に格
納しておき、その中から所望の情報を選択的に読
出し、電源3へ供給すれば、異なつたCを持つト
ロイダル電場を選択的に発生させることができ
る。
Furthermore, if a plurality of sets of potential information for generating a toroidal electric field are obtained with different values of C and stored in the memory 4, desired information is selectively read out from the set and supplied to the power supply 3. Toroidal electric fields having different C can be selectively generated.

又、重畳場ではなく電場を単独に発生させるの
であれば、磁極は必要でないことは言うまでもな
い。
Furthermore, it goes without saying that magnetic poles are not necessary if an electric field is generated independently rather than a superimposed field.

[発明の効果] 以上詳述した如く本発明によれば、複数の同心
円弧状の線状電極群を対向配置し、この線状電極
群により電場を発生させるため、狭い隙間にも設
置することができると共に、その線状電極群の間
の抵抗体でうめたため外部の電場からの影響を受
けず、歪のないトロイダル電場を発生させること
ができる。
[Effects of the Invention] As detailed above, according to the present invention, a plurality of concentric arc-shaped linear electrode groups are arranged facing each other, and an electric field is generated by the linear electrode group, so that it can be installed even in narrow gaps. In addition, since it is filled with a resistor between the linear electrode groups, it is not affected by an external electric field and can generate a toroidal electric field without distortion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す図、第
2図は基板、抵抗被膜及び線状電極を説明するた
めの図、第3図は線状電極とx−y座標の関係を
示す図、第4図はトロイダル電場を同心電極E,
E′によつて作る場合を説明するための図、第5図
は本発明者が先に提案した電場発生装置を説明す
るための図、第6図はその提案装置で実際に発生
する電位の分布を示す図である。 2,2′:基板、3:電源、4:メモリ、5:
読出し制御回路、A1〜Ao,B1〜Bo:線状電極。
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a diagram for explaining the substrate, resistive coating, and linear electrode, and FIG. 3 is a diagram showing the relationship between the linear electrode and the x-y coordinates. Figure 4 shows the toroidal electric field with concentric electrodes E,
Figure 5 is a diagram to explain the electric field generation device proposed by the present inventor earlier, and Figure 6 is a diagram to explain the potential generated by the proposed device. It is a figure showing distribution. 2, 2': Board, 3: Power supply, 4: Memory, 5:
Readout control circuit, A 1 to A o , B 1 to B o : linear electrodes.

Claims (1)

【特許請求の範囲】[Claims] 1 イオン通路を含む中心平面を挾んで等しい距
離にある一対の平行平面上に該中心平面を挾んで
上下対称に設けられた複数対の同心円弧状の線状
電極群と、前記各平面上に配置される前記同心円
弧状の複数の線状電極の間に各電極間を電気的に
接続するように〓間なく配設される板状又は膜状
の電気抵抗体と、前記複数対の線状電極の対毎に
与える電位に関する情報を記憶する記憶手段と、
該記憶手段から読出された情報に基づいて各電極
対に所定の電位を与えるための電源手段とから構
成されることを特徴とする質量分析装置用電場発
生装置。
1. A plurality of pairs of concentric arc-shaped linear electrodes arranged vertically symmetrically across the central plane on a pair of parallel planes that are equally spaced apart from each other across the central plane containing the ion path, and arranged on each of the planes. a plate-like or film-like electric resistor disposed closely between the plurality of concentric arc-shaped linear electrodes so as to electrically connect each electrode; and the plurality of pairs of linear electrodes. storage means for storing information regarding the potential applied to each pair;
An electric field generator for a mass spectrometer, comprising power supply means for applying a predetermined potential to each electrode pair based on information read from the storage means.
JP59233780A 1984-11-06 1984-11-06 Electric field generator Granted JPS61110956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233780A JPS61110956A (en) 1984-11-06 1984-11-06 Electric field generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233780A JPS61110956A (en) 1984-11-06 1984-11-06 Electric field generator

Publications (2)

Publication Number Publication Date
JPS61110956A JPS61110956A (en) 1986-05-29
JPH0419667B2 true JPH0419667B2 (en) 1992-03-31

Family

ID=16960448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233780A Granted JPS61110956A (en) 1984-11-06 1984-11-06 Electric field generator

Country Status (1)

Country Link
JP (1) JPS61110956A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115901U (en) * 1991-03-29 1992-10-15 株式会社東海理化電機製作所 Automobile wheel cover mounting structure

Also Published As

Publication number Publication date
JPS61110956A (en) 1986-05-29

Similar Documents

Publication Publication Date Title
EP0186464B1 (en) Electrographic touch sensor
CA2055609C (en) Charged-particle energy analyzer and mass spectrometer incorporating it
US4198539A (en) System for producing electric field with predetermined characteristics and edge terminations for resistance planes therefor
US4985626A (en) Quadrupole mass filter for charged particles
US3517282A (en) Variable capacitance transducer
JPS62188153A (en) Method and structure for creating tetrapole static electric field by closed boundary
US4178481A (en) Electrical data entry devices
JPH0419667B2 (en)
US5051593A (en) Electrostatic multipole lens for charged-particle beam
US3924136A (en) Charged particle apodized pattern imaging and exposure system
CA1085073A (en) Device which makes it possible to effect the programmed tracing of figures which have different shapes
Yu et al. The simulation and application of three-dimensional electrostatic weighting field in MRPC detector
JPH0281469A (en) Analog-digital convertor
JPH0328775B2 (en)
JPS6269454A (en) Ion source
US2945124A (en) Formation of electrical fields
JPH0430707B2 (en)
JP2007155649A (en) Beam position monitor
JPH067466B2 (en) Electrostatic deflector for charged beam
US3673528A (en) Wide frequency response line scan magnetic deflector
JPS5958380A (en) Method for measuring beam diameter and current density of charged particle ray
US3657578A (en) Piezoelectric transducer elements
JPS62238481A (en) Measuring apparatus for beam current density distribution
SU527711A1 (en) Voltage dividing device
JPH0670956B2 (en) Static controller for charged beam