JPS59143056A - Manufacture of continuously hot dipped steel sheet - Google Patents

Manufacture of continuously hot dipped steel sheet

Info

Publication number
JPS59143056A
JPS59143056A JP58015989A JP1598983A JPS59143056A JP S59143056 A JPS59143056 A JP S59143056A JP 58015989 A JP58015989 A JP 58015989A JP 1598983 A JP1598983 A JP 1598983A JP S59143056 A JPS59143056 A JP S59143056A
Authority
JP
Japan
Prior art keywords
sheet
gas
reducing
furnace
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58015989A
Other languages
Japanese (ja)
Inventor
Hajime Suzuki
肇 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP58015989A priority Critical patent/JPS59143056A/en
Publication of JPS59143056A publication Critical patent/JPS59143056A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To improve the adhesive strength of layers formed by hot dipping by directly blowing a reducing gas on a steel sheet in a reducing zone at a high temp. to accelerate the reducing reaction of the sheet. CONSTITUTION:A rolled steel sheet is heated in a nonoxidation heating zone to remove fats and oils sticking to the sheet. A reducing gas is directly blown on both sides of the sheet passing through a reducing zine to accelerate the reducing reaction of both sides of the sheet. The sheet is then sent to a hot dipping vessel through a cooling zone, and it is continuously hot dipped. Since both sides of the sheet are cleaned and activated, the adhesive strength of layers formed by hot dipping is improved.

Description

【発明の詳細な説明】 この発明は、メッキ層の密着性の向上を目的とする連続
溶融メッキ鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a continuous hot-dip plated steel sheet, the purpose of which is to improve the adhesion of a plated layer.

連続溶融メッキ鋼板の製造方法としては、冷間圧延コイ
ル、または酸洗後の熱間圧延コイルを無酸化炉で加熱し
鋼板表面に付着した油脂類を除去し、次いで還元炉で鋼
板表面の還元、活性化および焼なましを行ない、冷却帯
でメッキに適した温度まで冷却した後スナウトを介して
大気に触れることなく直接溶融メッキ浴槽に導きメ・ツ
キする方法が一般的である。
The method for producing continuous hot-dip plated steel sheets involves heating a cold-rolled coil or a hot-rolled coil after pickling in a non-oxidizing furnace to remove oils and fats adhering to the surface of the steel sheet, and then reducing the surface of the steel sheet in a reducing furnace. A common method is to perform activation and annealing, cool the material in a cooling zone to a temperature suitable for plating, and then directly guide it through a snout into a hot-dip plating bath without exposing it to the atmosphere, and then plate it.

第1図は無酸化炉方式の連続式メッキ設備の一例を示す
もので、(1)は無酸化炉、(2)は還元炉、(3)は
冷却帯、(4)は調整冷却帯、(5)はスナウト、(6
) i−!溶融メッキ浴槽であって、無酸化炉(1)は
Cガス、LPG、天然ガス等を、高空燃比(0,85〜
0.90)で燃焼させ、炉内はGo−Go2−H,−I
(20の雰囲気で1000〜1300°Cの高温に保た
れており、還元炉(2)は鋼板表面の酸化鉄の還元塾行
なl、N、表面を活性化するためにN2−N2混合ガス
(以下説明の便宜上「AXガス」という)を鋼板と向流
(こ流し、炉内で還元と同時に焼なましを行なうよう1
こなっている。
Figure 1 shows an example of a non-oxidizing furnace type continuous plating equipment, in which (1) is a non-oxidizing furnace, (2) is a reducing furnace, (3) is a cooling zone, (4) is a controlled cooling zone, (5) is snout, (6
) i-! It is a hot-dip plating bath, and the non-oxidation furnace (1) is used to heat C gas, LPG, natural gas, etc. at a high air-fuel ratio (0.85 to
0.90), and the inside of the furnace is Go-Go2-H,-I
(It is maintained at a high temperature of 1000 to 1300°C in an atmosphere of (hereinafter referred to as "AX gas" for convenience of explanation) is flowed countercurrently (hereinafter referred to as "AX gas") to the steel plate, so that annealing is performed at the same time as reduction in the furnace.
It's happening.

すなわち、連続溶融メッキ鋼板の製造;こお0ては、無
酸化炉での圧延油等油脂類の除去と、還元炉での焼なま
しおよび表面酸化被膜の還元力(メ・ツキ密着性を確保
するための重要なポイント−Cあり、特に還元性能は密
着性に大きく寄与する。そのため、従来の溶融メッキ方
法ではスナウト(5)部力〉らAXXガスG、)を吹込
み炉内を還元性に保って酸化、還元を行なうため、鋼板
の表・裏面の亜鉛の密着性に差が生じたり、巾方向で部
分的に密着不良となる現象が生ずることがある。前者の
原因としては、還元反応力が弱いことがあげられ、後者
の原因としては、横型炉の場合第2図に示すごとく左右
炉壁に取付けられた燃焼バーナ(1−2)から噴射され
る燃焼炎(1−3)が上向き傾向となり、下部バーナの
燃焼炎が鋼板00下面に直接触れるために鋼板下面側が
強く酸化されることによるものである。
In other words, manufacturing continuous hot-dip galvanized steel sheets; this involves removing oil such as rolling oil in a non-oxidizing furnace, annealing in a reducing furnace, and improving the reducing power of the surface oxide film (measuring adhesion). There is an important point -C to ensure that reduction performance in particular greatly contributes to adhesion.Therefore, in the conventional hot-dip plating method, snout (5) part force〉AXX gas G,) is blown into the furnace to reduce the inside of the furnace. Since zinc is oxidized and reduced while maintaining its properties, there may be a difference in the adhesion of zinc on the front and back surfaces of the steel sheet, or a phenomenon may occur where adhesion is partially poor in the width direction. The cause of the former is that the reduction reaction force is weak, and the cause of the latter is that in the case of a horizontal furnace, as shown in Figure 2, the fuel is injected from the combustion burners (1-2) attached to the left and right furnace walls. This is because the combustion flame (1-3) tends upward and the combustion flame of the lower burner directly touches the lower surface of the steel plate 00, so that the lower surface side of the steel plate is strongly oxidized.

この発明者らは、従来の前記問題を解決すべく種々検討
した結果、還元性雰囲気ガスの中でさらに還元性ガス(
AXガス)を直接鋼板に吹付けることにより、還元不良
による密着不良を改善することができることを見い出し
たのである。
As a result of various studies to solve the above-mentioned conventional problems, the inventors discovered that reducing gas (
They discovered that by spraying AX gas directly onto the steel plate, poor adhesion caused by poor reduction can be improved.

すなわち、この発明は無酸化加熱帯、還元帯および冷却
帯からなる連続溶融メッキ炉により鋼板表面を清浄、活
性化して溶融メッキを施す方法において、還元帯を通過
する高温度の鋼板の上面および下面に直接還元性ガスを
吹付けることにより還元反応を促進することを特徴とす
るものである。
That is, the present invention provides a method for cleaning and activating the surface of a steel plate and applying hot-dip plating using a continuous hot-dip plating furnace consisting of a non-oxidizing heating zone, a reduction zone, and a cooling zone. This method is characterized by promoting the reduction reaction by directly spraying a reducing gas onto the reactor.

溶融メッキ鋼板を製造する連続溶融メッキ炉では、スナ
ウトから吹込まれるAXガスで炉内の雰囲気ガスへを還
元性に保っているが、メッキ鋼板の表裏面に還元不良に
よるメッキの密着不良が生じた場合、これに対処する方
法としては炉内へのAXXガス吹込位置の変更、あるい
はバーナーの燃焼炎による局部加熱の防止が考えられる
が、連続式溶融メッキ炉はAXガスを鋼板と向流に流し
炉内で還元と同時に焼なましを行なう方式であるため、
AXガスの吹込み位置はスナウト下部(こ設置する必要
があり、またバーナーの燃焼炎による局部加熱を防止す
るためには、バーナー構造や加熱方法、炉体構造等の改
良が必要であり得策でない。また、スナウト下部からA
Xガスを吹込む従来方法では、ヌナウト部通過時、被メ
ツキ鋼板の温度はかなり低下しており(例えば550°
C)、この温度の下った鋼板とAXガスが反応すること
になるので、表面酸化被膜の還元力が劣るという木質的
な欠陥をもっている。
In continuous hot-dip plating furnaces that manufacture hot-dip plated steel sheets, AX gas injected from the snout keeps the atmospheric gas in the furnace reducible, but poor adhesion of the plating occurs on the front and back surfaces of the plated steel sheets due to poor reduction. In such a case, a possible way to deal with this is to change the position of the AXX gas injection into the furnace or to prevent local heating caused by the combustion flame of the burner, but continuous hot-dip plating furnaces do not allow the AX gas to flow counter-currently to the steel sheet. Because it is a method that performs reduction and annealing at the same time in a sink furnace,
The AX gas injection position must be installed at the bottom of the snout (this is not a good idea as it requires improvements to the burner structure, heating method, furnace structure, etc. to prevent local heating due to the combustion flame of the burner). .Also, from the bottom of the snout,
In the conventional method of blowing X gas, the temperature of the steel plate to be plated drops considerably when it passes through the nout section (for example, 550°
C) Since the AX gas reacts with the steel plate at this lower temperature, it has a woody defect in that the reducing power of the surface oxide film is poor.

しかし、この発明のように高温還元帯(例えば炉温10
00〜1300°C)において鋼板の上面および下面に
直接AXXガス吹付けるようにすれば、この還元帯での
還元力がより高められることになり鋼板表裏面および板
中方向での密着不良の防止か可能となる。しかもこの方
法であれば、還元炉にAXガス噴射管を配管設置するだ
けで目的を達成することができるので、既説の設備に容
易に適用し得る利点がある。
However, as in this invention, a high temperature reduction zone (for example, a furnace temperature of 10
If AXX gas is sprayed directly onto the top and bottom surfaces of the steel plate at temperatures between 00 and 1300°C, the reducing power in this reduction zone will be further enhanced, thereby preventing poor adhesion on the front and back surfaces of the steel plate and in the direction of the inside of the steel plate. It becomes possible. Furthermore, this method has the advantage that it can be easily applied to existing equipment, since the purpose can be achieved by simply installing an AX gas injection pipe in the reduction furnace.

第3図はこの発明の一実施例を示すもので、還元炉(2
)の側壁にAXガス噴射管(2−1)を鋼板q0の板巾
方向に進退可能に設置し、ハースローラ(2−2)上の
鋼板0Qの上面およびF面に直接AXガス(G2)を吹
付けられるようにする。AXガス噴射管(2−1)は、
同一高さ位置に所望の間隔を置いて例えばl−T’2本
ずつ設置することができる。また、その設置場所は還元
炉各ゾーンに取付けるか、またはあるゾーンに限定して
取付けてもよい。また、この噴射管を進退可能としたの
は、鋼板の板巾方向でAxガスの吹付は位置をコントロ
ールできるようにするためと、板巾の変更に対応させる
ためである。(2−8)はラジアントチューブである。
Figure 3 shows an embodiment of this invention, in which a reduction furnace (2
) is installed on the side wall of the steel plate q0 so as to be able to advance and retreat in the width direction of the steel plate q0, and AX gas (G2) is directly applied to the upper surface and F surface of the steel plate 0Q on the hearth roller (2-2). Allow it to be sprayed. The AX gas injection pipe (2-1) is
For example, two pieces of L-T' can be installed at the same height position at a desired interval. Further, the installation location thereof may be in each zone of the reduction furnace, or may be limited to a certain zone. Furthermore, the reason why this injection pipe is made movable is to be able to control the spraying position of the Ax gas in the width direction of the steel plate, and to accommodate changes in the width of the steel plate. (2-8) is a radiant tube.

上記のごとく連続式溶融メッキ設備の還元炉にAXガス
噴射管を設置し、スナウトから吹込まれるAXXガスG
1)により還元性雰囲気となっている中でさらに前記噴
射管(2−1)よりAXガス(G2)を直接高温の鋼板
C1Oに吹付けると、鋼板表裏面の還元反応がより一層
促進される。また、バーナー火炎により局部加熱され易
い鋼板の両側端部に対し集中的にAXガスを吹付けた場
合も同様、当該部分の還元反応が促進されメッキ密着性
が向上しメッキ剥離を防止し得る。
As mentioned above, an AX gas injection pipe is installed in the reduction furnace of the continuous hot-dip plating equipment, and AXX gas G is blown in from the snout.
When the AX gas (G2) is further sprayed directly onto the hot steel plate C1O from the injection pipe (2-1) in the reducing atmosphere created by 1), the reduction reaction on the front and back surfaces of the steel plate is further promoted. . Similarly, when AX gas is sprayed intensively on both ends of the steel plate, which are likely to be locally heated by the burner flame, the reduction reaction in those parts is promoted, plating adhesion is improved, and plating peeling can be prevented.

次に、実際の連続式溶融メッキ設備に、第3図に示す方
式でこの発明法を適用して溶融メッキを施した場合の実
施例を示す。
Next, an example will be shown in which hot-dip plating was carried out by applying the method of the present invention to an actual continuous hot-dip plating equipment in the manner shown in FIG.

〔実施例〕〔Example〕

(I)操業条件 ■ 供試材:板厚0.4朋、板幅914門■ 炉内雰囲
気温度 無酸化炉:  1000°C 還元帯:900°C 冷却帯:650°C 調整冷却帯−550°C スナウト部−550°C ■ 還元性ガス吹込み量 スナウト部 :N、ガス100 Nrrf/Hr 4−
AXXガスN275係p  H2 25% ) 120 Nm’/Hr 還 元 帯 :AXガス2096ON扉、/H[(Jl
)効果 ■ 密着不良現象  従来50Ton/月→15Ton
/’月に減少 ■ ラインスピード  従来80ノn/m 1 [1→
120 m1m inに向上 以上説明したごと(、この発明法によれば、高温度の還
元帯で直接鋼板にAXガスを吹付けるので溶融メッキ鋼
板の密着性の向上をはかることができるとともに、ライ
ンスピードも上げることができるので、溶融メッキ鋼板
の品質および生産性を向上させることができ、工業的(
こ極めて有益である。
(I) Operating conditions ■ Test material: plate thickness 0.4 mm, plate width 914 plates ■ Furnace atmosphere temperature Non-oxidizing furnace: 1000°C Reduction zone: 900°C Cooling zone: 650°C Adjusted cooling zone -550 °C Snout part -550°C ■ Reducing gas injection amount Snout part: N, gas 100 Nrrf/Hr 4-
AXX gas N275 pH H2 25%) 120 Nm'/Hr Reduction band: AX gas 2096 ON door, /H [(Jl
) Effect ■ Poor adhesion phenomenon Conventional 50Ton/month → 15Ton
Decreased in /'month■ Line speed Conventional 80n/m 1 [1→
As explained above, according to the method of this invention, since AX gas is sprayed directly onto the steel plate in the high-temperature reduction zone, it is possible to improve the adhesion of the hot-dip plated steel plate, and to increase the line speed. It is possible to improve the quality and productivity of hot-dip galvanized steel sheets, making it possible to improve industrial (
This is extremely beneficial.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は無酸化炉方式の連続式溶融メッキ設備の一例を
示す概略図、第2図は無酸化炉の炉内燃焼状況の一例を
示す概略図、第3図はこの発明の一実施例を示す縦断正
面図である。 ■・・・無酸化炉、2・・・還元炉、2−1・・・AX
Xガス射管、3・・・冷却帯、4・・・調整冷却帯、5
・・・スナウト、G、、G2 ・・AXガス。 出願人  住友金属工業株式会社 代理人  押  1) 良  久 第1図 第3図
Fig. 1 is a schematic diagram showing an example of a non-oxidizing furnace type continuous hot-dip plating equipment, Fig. 2 is a schematic diagram showing an example of a combustion situation in a non-oxidizing furnace, and Fig. 3 is an embodiment of the present invention. FIG. ■...Non-oxidation furnace, 2...Reduction furnace, 2-1...AX
X gas injection tube, 3... Cooling zone, 4... Adjustment cooling zone, 5
...Snout, G,, G2...AX gas. Applicant Sumitomo Metal Industries Co., Ltd. Agent 1) Yoshihisa Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 無酸化加熱帯、還元帯および冷却帯からなる連続溶融メ
ッキ類により鋼板表面を清浄、活性化して溶融メッキを
施す方法において、還元帯を通過する鋼板の上面および
下面に直接還元性ガスを吹付けることにより鋼板表裏面
の還元反応を促進することを特徴とする連続溶融メッキ
鋼板の製造方法。
In a method of cleaning and activating the surface of a steel plate and applying hot-dip plating through continuous hot-dip plating, which consists of a non-oxidizing heating zone, a reduction zone, and a cooling zone, reducing gas is directly sprayed onto the upper and lower surfaces of the steel plate as it passes through the reduction zone. A method for producing a continuous hot-dip plated steel sheet, characterized by promoting reduction reactions on the front and back surfaces of the steel sheet.
JP58015989A 1983-02-02 1983-02-02 Manufacture of continuously hot dipped steel sheet Pending JPS59143056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58015989A JPS59143056A (en) 1983-02-02 1983-02-02 Manufacture of continuously hot dipped steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58015989A JPS59143056A (en) 1983-02-02 1983-02-02 Manufacture of continuously hot dipped steel sheet

Publications (1)

Publication Number Publication Date
JPS59143056A true JPS59143056A (en) 1984-08-16

Family

ID=11904066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58015989A Pending JPS59143056A (en) 1983-02-02 1983-02-02 Manufacture of continuously hot dipped steel sheet

Country Status (1)

Country Link
JP (1) JPS59143056A (en)

Similar Documents

Publication Publication Date Title
US8609192B2 (en) Method and device for controlling oxidizing-reducing of the surface of a steel strip running continuously through a radiant tubes furnace for its galvanizing
US9322598B2 (en) Process for the heat treatment of steel strips
JP2587724B2 (en) Method for producing high Si content high tensile galvanized steel sheet with good plating adhesion
US6913658B2 (en) Process for the hot-dip galvanizing of metal strip made of high-strength steel
CN102899599A (en) Control method for reducing generation amount of strip steel zinc crust in starting up hot-dip galvanizing aluminum and zinc machine set
JP2530939B2 (en) Method for manufacturing high-strength hot-dip galvanized steel sheet containing high Si
JPS59143056A (en) Manufacture of continuously hot dipped steel sheet
JPH10176253A (en) Production of unrecrystallized hot dip galvanized steel sheet in continuous type hot dip galvanizing line
JP2007277627A (en) Method for producing high strength steel sheet and high strength plated steel sheet, and annealing furnace and production equipment used for producing them
JPS5945757B2 (en) Manufacturing method for single-sided coated galvanized steel sheet
JPS5844133B2 (en) Continuous annealing method for cold rolled steel strip
JP2011006753A (en) Method and facility for manufacturing steel sheet
JP4976942B2 (en) Method for producing hot-dip galvanized steel sheet
JPS5811493B2 (en) Continuous annealing equipment for cold rolled steel strip
JPH08193257A (en) Metallic sheet for lining for high temperature atmospheric furnace
JP2007031806A (en) Method for manufacturing galvannealed steel sheet
JPS61257810A (en) Sliding plate for chain guide rail in dryer
JPS5931858A (en) Production of alloyed galvanized steel plate
JP2576329B2 (en) Method for producing high-strength alloyed hot-dip galvanized steel sheet with excellent coating uniformity and powdering resistance
JP2704819B2 (en) Method for producing high-Si hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPS5929651B2 (en) Heat treatment method for steel strip
JP4631176B2 (en) Method for producing hot-dip galvanized steel sheet
JP2006283109A (en) Method for manufacturing hot-dip galvanized steel sheet
JP4112670B2 (en) Manufacturing method of steel sheet with excellent surface properties
JP2001026852A (en) Production of galvanized steel sheet and galvannealed steel sheet