JPS59142840A - Vapor deposition device - Google Patents

Vapor deposition device

Info

Publication number
JPS59142840A
JPS59142840A JP1619783A JP1619783A JPS59142840A JP S59142840 A JPS59142840 A JP S59142840A JP 1619783 A JP1619783 A JP 1619783A JP 1619783 A JP1619783 A JP 1619783A JP S59142840 A JPS59142840 A JP S59142840A
Authority
JP
Japan
Prior art keywords
filament
vapor deposition
electron beam
cover
beam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1619783A
Other languages
Japanese (ja)
Inventor
Isao Myokan
明官 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP1619783A priority Critical patent/JPS59142840A/en
Publication of JPS59142840A publication Critical patent/JPS59142840A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To enable long-term and satisfactory production of a film deposited by evaporation without film contamination by making it possible to suppress the emission of a filament material of an electron beam generator into a vapor deposition vessel and to prevent the early disconnection of the filament without contaminating the filament. CONSTITUTION:A base body 1 for vapor deposition and an evaporating source 2 are disposed in an evaporating vessel 3 and an introducing pipe 6 for introducing modifying gas is provided by connecting the outlet thereof to the chamber 3 and further an electron ray generator 10 which irradiates an electron ray to the modifying gas introduced into the vessel 3 is produced. A filament 11, a cover 12 in common use as a lead-out electrode provided so as to enclose the filament 11, and an electron ray exit port 13 disposed at the part opposite to the filament in the cover 12 are provided in the generator 10. As a result, the emission of the filament material in the electron ray generator into the vapor deposition vessel is suppressed and the early disconnection of the filament is prevented without contaminating the filament, whereby the film deposited by evaporation having no contamination with the film is satisfactorily produced over a long period of time.

Description

【発明の詳細な説明】 本発明は、蒸着装置に関するものである。[Detailed description of the invention] The present invention relates to a vapor deposition apparatus.

最近において、太陽電池や電子写真感光体等の構成材料
としてアモルファスシリコン(以下ra−8iJと記す
。)が非常に有用祝されてきている。
In recent years, amorphous silicon (hereinafter referred to as RA-8iJ) has become extremely useful as a constituent material for solar cells, electrophotographic photoreceptors, and the like.

このa−8iは種々の方法により薄膜として形成するこ
とができるが、このa−8iには水素原子を導入してダ
ングリングボンドを封鎖することが必要であって、これ
によシ初めて大きい暗抵抗や光導電性を有する水素含有
a−8i(以下「a−8i:f(Jと記す。)が得られ
、実用化が可能となる。
This a-8i can be formed as a thin film by various methods, but it is necessary to introduce hydrogen atoms into this a-8i to seal the dangling bonds, and only then can a large darkness be created. Hydrogen-containing a-8i (hereinafter referred to as "a-8i:f (J))" having resistance and photoconductivity is obtained, and practical application becomes possible.

a−8i:Hの薄膜を形成する方法として、従来、高周
波イオンブレーティング法、直流イオンブレーティング
法、イオン化または活性化された水素を導入して蒸着を
行なう方法などが知られているが、形成される薄膜が汚
染され易く、或いは薄膜形成条件が不安定で安定した均
質の薄膜の形成が困難であり、または薄膜に対する水素
原子の導入が不均一で良好な特性の薄膜が形成されない
等の欠点を有する。
Conventionally known methods for forming a thin film of a-8i:H include a high frequency ion blating method, a direct current ion blating method, and a method of vapor deposition by introducing ionized or activated hydrogen. The formed thin film is easily contaminated, or the thin film forming conditions are unstable and it is difficult to form a stable and homogeneous thin film, or the introduction of hydrogen atoms into the thin film is uneven and a thin film with good characteristics cannot be formed. It has its drawbacks.

斯かる欠点を解消した方法として、蒸着基体と蒸発源と
を設けた蒸着槽内に水素ガスをそのまま導入し、これに
電子線を照射して水素を活性化若しくはイオン化させな
がら、蒸発源よりのシリコンを蒸着基体に蒸着せしめる
方法が開発された。
As a method to overcome these drawbacks, hydrogen gas is directly introduced into a vapor deposition tank equipped with a vapor deposition substrate and an evaporation source, and is irradiated with an electron beam to activate or ionize the hydrogen while evaporating from the evaporation source. A method has been developed for depositing silicon onto a deposition substrate.

しかして一般に電子線を出射する電子線発生器は、熱電
子発生用のフィラメントと、このフィラメントから生じ
た熱電子を出射せしめるための引出し電極とによシ構成
され、フィラメントを加熱すると共に引出し電極にフィ
ラメントよりも大きい正電位を与えて、フィラメントか
ら生じた熱電子を引出し電極によシ引出し、電子ビーム
を出射するようにしておシ、これを上述のようガ方法の
実施に用いると、電子銃のフィラメントの材料物質が蒸
着槽内に出射されるため、このフィラメントの材料物質
が蒸着基体に形成される蒸着膜中に混入して当該蒸着膜
が汚染されること、或いは蒸発源物質がフィラメントに
付着して当該フィラメントを汚染するため、フィラメン
トが断線され易いこと等の欠点があシ、結局膜汚染のな
い良好な蒸着膜を得ることができない。
Generally, an electron beam generator that emits an electron beam is composed of a filament for generating thermionic electrons and an extraction electrode for emitting the thermionic electrons generated from the filament. A positive potential greater than that of the filament is applied to the filament, and the thermoelectrons generated from the filament are drawn out to the extraction electrode to emit an electron beam. When this is used to carry out the method described above, the electron Since the material of the filament of the gun is ejected into the vapor deposition tank, there is a possibility that the material of the filament may be mixed into the vapor deposited film formed on the vapor deposition substrate and contaminate the vapor deposited film, or the evaporation source material may be mixed with the filament. Since the filament adheres to the filament and contaminates the filament, there are disadvantages such as the filament being easily broken, and as a result, it is impossible to obtain a good deposited film without film contamination.

本発明は以上の如き事情に基いてなされたものであって
、電子線発汗器のフィラメント材料物質の蒸着槽内への
出射を抑止することができ、しかもフィラメント汚染が
生ぜずフィラメントの早期断線を防止することができ、
結局膜汚染のない蒸着膜を長期間に亘って良好に製造す
ることができる蒸着装置を提供することを目的とする。
The present invention has been made based on the above-mentioned circumstances, and is capable of suppressing emission of filament material of an electron beam sweater into a vapor deposition tank, and also prevents filament contamination and early breakage of the filament. can be prevented,
The object of the present invention is to provide a vapor deposition apparatus that can successfully produce a vapor-deposited film without film contamination over a long period of time.

本発明蒸着装置の特徴とするところは、蒸着槽と、この
蒸着槽内に配置した蒸着基体及び蒸発源と、その出口を
前記蒸着槽に接続して設けた、修飾ガスを導入する導入
管と、前記蒸着槽内に導入された修飾ガスに電子線を照
射する電子線発生器とを具えて成シ、前記電子線発生器
は、フィラメントと、このフィラメントを囲繞するよう
設けた引出し電極を兼ねるカバーと、このカバーにおけ
る前記フィラメントとの対向部に設けた電子線出射口と
を有して成る点にある。
The vapor deposition apparatus of the present invention is characterized by a vapor deposition tank, a vapor deposition substrate and an evaporation source arranged in the vapor deposition tank, and an inlet pipe for introducing a modification gas whose outlet is connected to the vapor deposition tank. , an electron beam generator for irradiating an electron beam to a modification gas introduced into the vapor deposition tank, the electron beam generator serving also as a filament and an extraction electrode provided to surround the filament. The present invention comprises a cover and an electron beam exit opening provided at a portion of the cover facing the filament.

以下図面によって本発明の実施例について説明する。Embodiments of the present invention will be described below with reference to the drawings.

本発明においては、第1図に示すように、蒸着槽を形成
するペルジャー3に排気路8を介して真空ポンプ(図示
せず)を接続し、ペルジャー3内に配置される蒸着基板
1を加熱する加熱器4及び当該蒸着基板1またはこれが
絶縁性のものであるときにはその背後電極に負の直流電
圧を印加する直流電源5を設け、前記蒸着基板1と対向
するよう蒸発源2を配設し、その出口を前記ペルジャー
3に接続した修飾ガスを導入するだめの導入管6を設け
、この導入管6によジベルジャー3内に導入された修飾
ガスをイオン化または活性化するための電子線発生器1
0を設ける。この電子線発生器10においては、第2図
及び第3図に詳細に示すように、例えばタングステン製
のフィラメント11を囲繞するよう、引出し電極を兼ね
る例えばステンレス製筒状のカバー12を設ける。この
カバー12におけるフィラメント11との対向部には例
えばフィラメント11の大きさに対応する大きさの穴を
設けて電子線出射口13を形成する。
In the present invention, as shown in FIG. 1, a vacuum pump (not shown) is connected to the Pel jar 3 forming a vapor deposition tank via an exhaust path 8, and the vapor deposition substrate 1 placed inside the Pel jar 3 is heated. A heater 4 for heating and a DC power source 5 for applying a negative DC voltage to the vapor deposition substrate 1 or its rear electrode when the vapor deposition substrate 1 is insulating are provided, and an evaporation source 2 is disposed to face the vapor deposition substrate 1. , an electron beam generator for ionizing or activating the modifying gas introduced into the jiber jar 3 through the introduction pipe 6; 1
Set 0. In this electron beam generator 10, as shown in detail in FIGS. 2 and 3, a cylindrical cover 12 made of stainless steel, for example, which also serves as an extraction electrode, is provided to surround a filament 11 made of, for example, tungsten. In a portion of the cover 12 facing the filament 11, a hole having a size corresponding to the size of the filament 11 is provided to form an electron beam exit port 13, for example.

カバー12の後端開口部には絶縁材14を嵌合して設け
、さらにこの絶縁材14の外方には、中央に開口を有す
る例えばステンレス製の枠15を設けてこれにより絶縁
材14とカバー12とを固足する。前記絶縁材14の内
部にはこれを貫通I−て伸びるリード棒16.16  
を埋設し、このリード棒16.16 の両端をそitそ
れカバー12内及び枠15の中央開口外に突出せしめる
。このリード棒16.16  のカバー12内に突出す
る内端部間に前記フィラメント11を接続し、リード棒
16゜16の枠15の中央開口外部に突出する外端部間
には交流または直流のフィラメント加熱用電源17を接
続する。前記カバー12の外周にはこれと直接接触する
よう溶接などにより例えば銅製の水冷パイプ18を螺旋
状に巻き付は固定して設ける。この水冷パイプ18の両
端部19 、20 は下方に向かって伸びその脚部21
 、22 が電子線発生器10の支持具を兼ねている。
An insulating material 14 is fitted into the opening at the rear end of the cover 12, and a frame 15 made of stainless steel, for example, having an opening in the center is provided outside the insulating material 14, so that the insulating material 14 and Secure the cover 12. A lead rod 16.16 is provided inside the insulating material 14 and extends through the insulating material 14.
is buried, and both ends of the lead rods 16 and 16 are made to protrude into the cover 12 and outside the central opening of the frame 15. The filament 11 is connected between the inner ends of the lead rods 16.16 that protrude into the cover 12, and an alternating current or direct current is connected between the outer ends of the lead rods 16.16 that protrude outside the central opening of the frame 15. Connect the filament heating power source 17. A water cooling pipe 18 made of copper, for example, is spirally wound and fixed by welding or the like on the outer periphery of the cover 12 so as to be in direct contact therewith. Both ends 19 and 20 of this water cooling pipe 18 extend downward and their legs 21
, 22 also serves as a support for the electron beam generator 10.

そして前記一方のリード棒16には直流電源23の負側
を接続すると共にこの直流電源23の正側はカバー12
に接続し、このカバー12はアース電位とする。
The negative side of the DC power source 23 is connected to the one lead rod 16, and the positive side of the DC power source 23 is connected to the cover 12.
The cover 12 is connected to the earth potential.

そしてこの電子線発生器10はペルジャー3内において
、例えばその電子線出射方向が蒸着基板1に沿った方向
となシ、電子線出射口15が蒸着基板1の下側方近傍に
位置するよう配置する。
The electron beam generator 10 is arranged in the Pelger 3 such that, for example, the electron beam emission direction is along the vapor deposition substrate 1 and the electron beam emission port 15 is located near the lower side of the vapor deposition substrate 1. do.

以上において、排気路8が接続される真空ポンプはペル
ジャー3内を例えば10−4Torr程度の真空度とす
る能力を有するもの、加熱器4は蒸着基板1を室温から
350〜450℃の温度に加熱する能力を有するもの、
直流電源5は0〜−10KVの直流負電圧を印加し得る
ものとされる。蒸発源2の加熱器7は、電子銃加熱、抵
抗加熱或いは誘導加熱等の任意の加熱方式のものでよく
、昇華によらない場合にはスピッティング(粗大粒塊の
飛翔)防止構造のものであることが好ましい。
In the above, the vacuum pump to which the exhaust path 8 is connected has the ability to create a vacuum of about 10-4 Torr inside the Pelger 3, and the heater 4 heats the deposition substrate 1 from room temperature to a temperature of 350 to 450°C. those who have the ability to
The DC power supply 5 is capable of applying a negative DC voltage of 0 to -10 KV. The heater 7 of the evaporation source 2 may be of any heating type such as electron gun heating, resistance heating, or induction heating, and if it is not based on sublimation, it must be of a structure to prevent spitting (flying of coarse particles). It is preferable that there be.

以上のような構成の装置において、例えば蒸発源2とし
てシリコンを用い、修飾ガスとして水素ガスを用いるこ
とによシ次のようにしてa−8i:IIの蒸着膜が製造
される。即ち、加熱器4により蒸着基板1を加熱すると
共にシリコン蒸発源2を加熱器7により加熱してシリコ
ン蒸気を生成せしめ、一方導入管6よシ水素ガスをペル
ジャー3内に導入して、この導入した水素ガスを電子線
発生器10よりの電子線によりイオン化または活性化せ
しめ、前記シリコン蒸気をイオン化水素または活性化水
素と共に蒸着基板1に付着堆積せしめてダングリングボ
ンドが封鎖されたa−8i:Hの蒸着膜が製造される。
In the apparatus configured as described above, a vapor deposited film of a-8i:II is produced in the following manner by using silicon as the evaporation source 2 and hydrogen gas as the modifying gas, for example. That is, the vapor deposition substrate 1 is heated by the heater 4, and the silicon evaporation source 2 is heated by the heater 7 to generate silicon vapor, while hydrogen gas is introduced into the Pel jar 3 through the introduction pipe 6, and this introduction is completed. a-8i in which the hydrogen gas was ionized or activated by an electron beam from an electron beam generator 10, and the silicon vapor was deposited on the vapor deposition substrate 1 together with ionized hydrogen or activated hydrogen to seal the dangling bonds: a-8i: A vapor deposited film of H is produced.

以上のような構成によれば、フィラメント11とカバー
12との間に直流電源23により電場が形成されるので
、カバー12がアース電位とされて引出し電極としての
作用を果たすため、これによシミ子線出射口13から電
子線が出射されるが、フィラメント11がカバー12に
よシ蔽われているため、フィラメント材料物質が電子線
出射口13から電子線発生器10外に出射されても大幅
に小さくなり、また電子線出射口13から電子線発生器
10内部へ蒸発源物質が侵入するとしてもわずかである
ため、この結果フィラメント材料物質の電子線発生器1
0外への出射を抑止することができると共にフィラメン
トの汚染を抑止することができフィラメントの早期断線
を防止することができ、結局膜汚染のない蒸着膜を長期
間安定し−て良好に製造することができる。
According to the above configuration, since an electric field is formed between the filament 11 and the cover 12 by the DC power supply 23, the cover 12 is brought to the ground potential and acts as an extraction electrode, thereby preventing stains. The electron beam is emitted from the electron beam exit port 13, but since the filament 11 is covered by the cover 12, even if the filament material is emitted from the electron beam exit port 13 to the outside of the electron beam generator 10, it will not be significantly affected. In addition, even if the evaporation source substance enters into the electron beam generator 10 from the electron beam exit port 13, it is very small.
It is possible to prevent radiation from being emitted outside of zero, to prevent contamination of the filament, and to prevent early breakage of the filament, resulting in a stable and good production of a deposited film without film contamination over a long period of time. be able to.

また電子線出射方向が蒸着基体1に沿うよう電子線発生
器10を設けた場合には、蒸着基体1に向かう修飾ガス
を全体的に活性化若しくはイオン化せしめることができ
るので、修飾ガスを均一に蒸着膜中へ混入せしめること
ができ、良好な特性の蒸着膜を得ることができる。
Furthermore, when the electron beam generator 10 is installed so that the electron beam emission direction is along the vapor deposition substrate 1, the modification gas directed toward the vapor deposition substrate 1 can be activated or ionized as a whole, so that the modification gas is uniformly distributed. It can be mixed into the deposited film, and a deposited film with good characteristics can be obtained.

そしてカバー12が引出し電極を兼ねているため、電子
線発生器10の構成が簡素であり、この結果カバー12
を設けたことによる大型化を招くことがなく、結局電子
線発生器10f!:コンノくクトなものとすることがで
き、この結果電子線発生器10が原因となって生ずる蒸
着槽内の汚染を軽減することができる。またカバー12
は金属製であればよいので、その成形加工が容易であり
、例えば電子線出射口13は打ち抜き等によシ簡単に形
成することができ、しかも比較的大きな耐熱性を得るこ
とができる。またカバ−12自体が引出し電極であるた
め、フィラメント11よりの熱電子がカバー12に取込
まれて当該カバー12が発熱するようになるが1、熱電
子発生出力を大きなものとする場合には、上述の実施例
におけるように、カバー12の外周に接触固定して水冷
パイプ18を設けておくことが好ましく、そうすること
によってカバー12の過熱を防止することができ、従っ
て当該カバー12が汚染源となることを抑止することが
できる。またこの水冷パイプ18の一部を脚部21.2
2  に形成しておけば、こitf支持具に兼用するこ
とができ、他に支持具を設けることが′不要となるので
便利である。
Since the cover 12 also serves as an extraction electrode, the configuration of the electron beam generator 10 is simple, and as a result, the cover 12
In the end, the electron beam generator 10f! : As a result, contamination inside the vapor deposition tank caused by the electron beam generator 10 can be reduced. Also cover 12
Since it only needs to be made of metal, its molding process is easy; for example, the electron beam exit port 13 can be easily formed by punching or the like, and it can also provide relatively high heat resistance. In addition, since the cover 12 itself is an extraction electrode, thermionic electrons from the filament 11 are taken into the cover 12 and the cover 12 generates heat. As in the above embodiment, it is preferable to provide a water cooling pipe 18 in contact with and fixed to the outer periphery of the cover 12, thereby preventing the cover 12 from overheating and thus preventing the cover 12 from becoming a source of contamination. It is possible to prevent this from happening. Also, a part of this water cooling pipe 18 is attached to the leg portion 21.2.
2, it is convenient because it can also be used as an itf support and no other support is required.

前記フィラメント11の材質としては、熱電子発生性が
良好でありしかも例えば2000℃以上の高融点を有す
る金属を用いることが好ましく、具体的にはタングステ
ンの他に、モリブデン、タンタル、炭素鋼、ランタンホ
ウ化物などを挙げることができる。このフィラメント1
1の大きさによって電子線出射口13の大きさが決めら
れるが、電子線出射口13の大きさは例えば幅が0.1
〜20■、好ましくは1〜10m+程度とされる。そし
てフィラメント11と電子線出射口13との離間距離は
10簡程度とされる。
As the material of the filament 11, it is preferable to use a metal that has good thermoelectron generation property and has a high melting point of, for example, 2000° C. or higher. Specifically, in addition to tungsten, molybdenum, tantalum, carbon steel, and lanthanum are used. Examples include borides. This filament 1
The size of the electron beam exit port 13 is determined by the size of 1, and the size of the electron beam exit port 13 is, for example, 0.1 in width
~20m+, preferably about 1~10m+. The distance between the filament 11 and the electron beam exit port 13 is approximately 10 cm.

前記カバー12の材質としては、1000 ℃以上の高
融点を有する金属が好−ましく、ステンレスの他にtl
・〕(無酸素)、鉄、真鍮、耐熱性アルミニウムなどを
挙げることができる。また枠15の材質もカバー12と
同様の月質とされる。
The material of the cover 12 is preferably a metal having a high melting point of 1000° C. or higher, including stainless steel and tl
・] (oxygen-free), iron, brass, heat-resistant aluminum, etc. The material of the frame 15 is also made of the same material as the cover 12.

前記フィラメント加熱用電源17と(7ては、例えば電
圧10ボルト、電流50アンペア程度の交流寸たは直流
電源が用いられる。そして直流電源23としては例えば
電圧3キロボルトの高電圧電源が用いられ、電子、紐出
射口13から出射される熱電子量は約500mAである
The filament heating power source 17 (7) is an AC or DC power source with a voltage of 10 volts and a current of 50 amperes, for example.As the DC power source 23, a high voltage power source with a voltage of 3 kilovolts, for example, is used. The amount of thermoelectrons emitted from the electron/string emitting port 13 is approximately 500 mA.

前記水冷パイプ18の材質としては、熱伝導性の良好な
銅などの金属が好ましい。また水冷パイプ18の材質を
金属としてこれを支持具に兼用せしめる場合には、カバ
ー12を水冷パイプ18を介して容易にアース電位とす
ることができる。
The material of the water cooling pipe 18 is preferably a metal such as copper, which has good thermal conductivity. Further, when the water cooling pipe 18 is made of metal and is used also as a support, the cover 12 can be easily brought to the ground potential through the water cooling pipe 18.

蒸着基体としCは、平板状のものの他、回転ドラム状ま
たは移動フィルム状のものとしてもよい。
The vapor deposition substrate C may be in the form of a rotating drum or a moving film, as well as a flat plate.

以上a −8i : Hの薄膜全製造する場合について
説明したが、本発明−においては、蒸発源l物質及び1
;j j’i?5元素を含有するガスを適宜選定するこ
とにより、例えば電子写真感光体、ディスプレー及び書
込用TFT、太陽電池或いは撮像素子等に用いる薄膜の
製造に適用することができる。例えば修飾元素を含有す
るガスとしては、水素ガスの他、酸素ガス、窒素ガス、
フッ素ガス等のハロゲン゛ガス、アンモニアガス、モノ
シランガス、ホスフィンガス、ジボランガス、アルシン
ガス、メタンガス等の炭化水素ガス、フレオンガスなど
を挙げることができる。また蒸発源物質としてはシリコ
ンの他に例えば炭素、ゲルマニウム、スズ等を挙げるこ
とができ、これら修飾ガス及び蒸発源物質を適宜組合せ
ることにより、アモルファスシリコン・カーバイド、ア
モルファス窒化シリコン、アモルファスシリコン・ゲル
マニウム、アモルファスシリコン・スズ、アモルファス
ゲルマニウムナトノ薄膜を製造することができる。
The case where the entire thin film of a-8i:H is manufactured has been described above, but in the present invention, the evaporation source l substance and the
;j j'i? By appropriately selecting a gas containing the five elements, the present invention can be applied to, for example, the production of thin films used in electrophotographic photoreceptors, display and writing TFTs, solar cells, image pickup devices, and the like. For example, gases containing modifying elements include hydrogen gas, oxygen gas, nitrogen gas,
Examples include halogen gas such as fluorine gas, ammonia gas, monosilane gas, phosphine gas, diborane gas, arsine gas, hydrocarbon gas such as methane gas, and freon gas. In addition to silicon, examples of evaporation source substances include carbon, germanium, tin, etc. By appropriately combining these modifying gases and evaporation source substances, amorphous silicon carbide, amorphous silicon nitride, amorphous silicon germanium , amorphous silicon tin, and amorphous germanium nanothin films can be produced.

以上のように本発明蒸着装置は蒸着槽と、この蒸着槽内
に配置した蒸着基体及び蒸発源と、その出口を前記蒸着
槽に接続して設けた、修飾ガスを導入する導入管と、前
記蒸着構内に導入された修飾ガスに電子線を照射する電
子線発生器とを具えて成り、前記電子線発生器は、フィ
ラメントと、このフィラメントヲ囲繞するよう設けた引
出し電極を」(tねるカバーと、このカッく−における
前記フィラメントとの対向部に設けた電子線出射口とを
有して成ることを特徴とする構成であるから、電子線発
生器のフィラメント材料物質の蒸着槽内への出射を抑止
することができ、しかもフィラメント汚染が生ぜずフィ
ラメントの早期断線を防止することができ、結局膜汚染
のない蒸着膜を長期間に亘って良好に製造することがで
きる。
As described above, the vapor deposition apparatus of the present invention includes a vapor deposition tank, a vapor deposition substrate and an evaporation source arranged in the vapor deposition tank, an inlet pipe for introducing a modification gas whose outlet is connected to the vapor deposition tank, and The electron beam generator includes a filament and an extraction electrode provided to surround the filament. and an electron beam exit opening provided in a part of the cup opposite to the filament, so that the filament material of the electron beam generator is not injected into the vapor deposition tank. Emission can be suppressed, and furthermore, filament contamination does not occur and early breakage of the filament can be prevented, and as a result, a deposited film without film contamination can be produced satisfactorily over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1Mは本発明蒸着装置の一実施例を示す説明用断面図
、第2図及び第3図はそれぞれ電子線発生器の一例を示
す説明用縦断正面図及び説明用側面図である。 ■・・・蒸着基板    2・・・蒸発源3・・・ペル
ジャー   4・・・加熱器5・・・直流電源    
6・・・導入管10・・・電子線発生器 11・・・フ
ィラメント12・・・カバー    13・・・電子線
出射口14・−・絶縁材    15・−・枠16・・
・リード棒 17・・・フィラメント加熱用電源 18・・・水冷パイプ  21.22  ・・・脚部2
3・・・直流電源 孝2圏 ≠3図
1M is an explanatory cross-sectional view showing one embodiment of the vapor deposition apparatus of the present invention, and FIGS. 2 and 3 are an explanatory vertical front view and an explanatory side view, respectively, showing an example of an electron beam generator. ■... Evaporation substrate 2... Evaporation source 3... Pelger 4... Heater 5... DC power supply
6...Introduction tube 10...Electron beam generator 11...Filament 12...Cover 13...Electron beam exit port 14...Insulating material 15...Frame 16...
・Lead rod 17...Filament heating power source 18...Water cooling pipe 21.22...Legs 2
3... DC power source 2nd circle ≠ Figure 3

Claims (1)

【特許請求の範囲】 1)蒸着槽と、この蒸着槽内に配置した蒸着基体及び蒸
発源と、その出口を前記蒸着槽に接続して設けた、修飾
ガスを導入する導入管と、前記蒸着槽内に導入された修
飾ガスに電子線を照射する1子線発生器とを具えて成シ
、前記電子線発生器は、フィラメントと、このフィラメ
ントを囲繞するよう設けた引出し電極を兼ねるカバーと
、このカバーにおける前記フィラメントとの対向部に設
けた電子線出射口とを有して成ることを特徴とする蒸着
装置。 2 ) f?il記電子線発生器の電子線出射方向が前
記蒸着基体に沿っていることを特徴とする特許請求の範
囲第1項記載の蒸着装置。
[Scope of Claims] 1) A vapor deposition tank, a vapor deposition substrate and an evaporation source disposed in the vapor deposition tank, an introduction pipe for introducing a modification gas whose outlet is connected to the vapor deposition tank, and the vapor deposition tank. The electron beam generator includes a single beam generator that irradiates a modifying gas introduced into a tank with an electron beam, and the electron beam generator includes a filament and a cover that is provided to surround the filament and that also serves as an extraction electrode. , and an electron beam exit opening provided in a portion of the cover facing the filament. 2) f? 2. The vapor deposition apparatus according to claim 1, wherein the electron beam emission direction of the electron beam generator is along the vapor deposition substrate.
JP1619783A 1983-02-04 1983-02-04 Vapor deposition device Pending JPS59142840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1619783A JPS59142840A (en) 1983-02-04 1983-02-04 Vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1619783A JPS59142840A (en) 1983-02-04 1983-02-04 Vapor deposition device

Publications (1)

Publication Number Publication Date
JPS59142840A true JPS59142840A (en) 1984-08-16

Family

ID=11909781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1619783A Pending JPS59142840A (en) 1983-02-04 1983-02-04 Vapor deposition device

Country Status (1)

Country Link
JP (1) JPS59142840A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878989A (en) * 1986-11-26 1989-11-07 Texas Instruments Incorporated Chemical beam epitaxy system
FR3140097A1 (en) * 2022-09-27 2024-03-29 Neyco Deposition of layers of material by evaporation and double activation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878989A (en) * 1986-11-26 1989-11-07 Texas Instruments Incorporated Chemical beam epitaxy system
FR3140097A1 (en) * 2022-09-27 2024-03-29 Neyco Deposition of layers of material by evaporation and double activation
WO2024068143A1 (en) * 2022-09-27 2024-04-04 Neyco Deposition of material layers by evaporation and dual activation

Similar Documents

Publication Publication Date Title
RU2675791C2 (en) X-ray device
US4465529A (en) Method of producing semiconductor device
US2164595A (en) Method of coating electrodes
US3024965A (en) Apparatus for vacuum deposition of metals
JPS59142840A (en) Vapor deposition device
US2677771A (en) Ion source
EP0029747A1 (en) An apparatus for vacuum deposition and a method for forming a thin film by the use thereof
US4298768A (en) Cesium vapor thermionic current generator
JPS63472A (en) Vacuum device for forming film
US2690515A (en) Method and apparatus for producing ions
US2624845A (en) Ion source
JPH0770741A (en) Evaporation source
JPS58119332A (en) Method and apparatus for vapor deposition
JP2004139913A (en) Ion beam generating device, ion beam generating method, ion processing device, and ion processing method
JPH09256148A (en) Ion plating device
JPS59145039A (en) Formation of membrane
JPS58110030A (en) Vapor deposition device
US1929122A (en) Vapor space current device
US4171462A (en) Linear electron beam gun evaporator having uniform electron emission
JPS59143247A (en) Electron gun
JPS59144120A (en) Formation of thin film
JPH07300395A (en) Method for reducing amount of hydrogen adsorbed to diamond surface
JPS6116731B2 (en)
JPS5842769A (en) Ion plating device using light beam
JPS59141412A (en) Production of amorphous silicon