JPS59142460A - Ultrasonic video device - Google Patents

Ultrasonic video device

Info

Publication number
JPS59142460A
JPS59142460A JP1682883A JP1682883A JPS59142460A JP S59142460 A JPS59142460 A JP S59142460A JP 1682883 A JP1682883 A JP 1682883A JP 1682883 A JP1682883 A JP 1682883A JP S59142460 A JPS59142460 A JP S59142460A
Authority
JP
Japan
Prior art keywords
light
ultrasonic
wave
image
ultrasound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1682883A
Other languages
Japanese (ja)
Inventor
Minoru Otsuka
実 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1682883A priority Critical patent/JPS59142460A/en
Publication of JPS59142460A publication Critical patent/JPS59142460A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time

Abstract

PURPOSE:To improve operability of a device, and to make it small-sized by receiving an ultrasonic wave, irradiating light to an ultrasonic light transducing member for forming a standing wave, detecting a variation of quantity of light of its transmitting light or reflected light, and leading it to a light emitting part. CONSTITUTION:An ultrasonic wave from a transducer 1 transmits through an object 2, is modulated, and forms an image on an ultrasonic incident part 6 by an ultrasonic lens 3. The ultrasonic incident part is placed with regularity on a two-dimensional plane, therefore, an ultrasonic image is propagated through the inside of an ultrasonic path 5 as a spot image of the number of this ultrasonic incident part, and becomes a stationary state by being resonated in an ultrasonic light transducing member 7. On the other hand, a light of narrow wavelength width, which passes through an interference filter 9 from a light source 8, and is irradiated to the ultrasonic light transducing member 7 by a condenser lens 10 is diffracted by an ultrasonic wave of a stationary state and led to an optical fiber 11. In this way, the operability is improved and also the device becomes small-sized.

Description

【発明の詳細な説明】 本発明は超音波による被検物体像を視覚にて判断できる
光学映像に置き換えて表示する超音波映像装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic imaging device that replaces and displays an image of an object to be examined using ultrasonic waves with an optical image that can be visually determined.

従来のこの種の装置は超音波映像面に検出器として2次
元アレー状に超音波探触子を配置し、各素子ごとに順次
走査を行い超音波の音場に比例した電気信号に変換し、
CRTモニターの素子の位置に対応する箇所に輝点をと
もすことなどで可視化していたが、素子の数が増加する
と走査のための時間が長くなり、応答性が悪いという問
題点があった。また素子間の干渉更に装置が複雑で大型
になるという問題点があった。
Conventional devices of this type arrange ultrasonic probes in a two-dimensional array as detectors on the ultrasonic image plane, scan each element sequentially, and convert it into an electrical signal proportional to the ultrasonic sound field. ,
Visualization has been achieved by lighting bright spots at locations corresponding to the positions of the elements on a CRT monitor, but as the number of elements increases, the scanning time increases, resulting in poor responsiveness. Further, there are problems in that there is interference between elements and the device becomes complicated and large.

本発明は上記従来例の欠点を除去し、構造が簡単で小型
可搬型の超音波映像装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional examples and to provide a compact and portable ultrasound imaging device with a simple structure.

この目的を達成するため、本発明においては超音波を受
波し、定在波を形成させる超音波光変換部材を有し、こ
れに光を照射し、透過光又は反射光の光量変化を検出し
、更には複数個の超音波光変換部材により各画素に対し
て、直接光変換を行うことを特徴とする。
To achieve this objective, the present invention includes an ultrasonic light conversion member that receives ultrasonic waves and forms standing waves, irradiates this with light, and detects changes in the amount of transmitted light or reflected light. Furthermore, it is characterized in that direct light conversion is performed for each pixel using a plurality of ultrasonic light conversion members.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明の実施例を示し、1は超音波エネルギー
を射出するためのトランスデユーサ−で、2は超音波映
像化される物体、5は超音波レンズ、4は超音波路ミの
一端に在り、超音波入射部6を置 一定の耐高に支持するための支持部材、7は超音波路5
と超音波的に結合され、°超音波共振器となり光に対し
て透明な超音波光変換部材である。また8は光源、9は
波長選択用干渉フィルター、10はコンデンサー−レン
ズ、11は元シアイバーであり、一端を超音波光変換部
材7に光学的に結合され、他端を光射出部12で超音波
入射部6と対応する配置に支持部材16により保持され
る。光ファイバー11の光射出部12は支持部材16に
より超音波入射部4に対応して規則性をもって保持され
る。なお14は観察者の眼を示す。
FIG. 1 shows an embodiment of the present invention, in which 1 is a transducer for emitting ultrasonic energy, 2 is an object to be imaged by ultrasound, 5 is an ultrasound lens, and 4 is an ultrasound path mirror. A support member 7 located at one end of the ultrasonic wave path 5 is used to support the ultrasonic wave incidence section 6 at a certain height.
It is an ultrasonic light conversion member that is ultrasonically coupled with the ultrasonic wave resonator and becomes an ultrasonic resonator and is transparent to light. Further, 8 is a light source, 9 is an interference filter for wavelength selection, 10 is a condenser lens, and 11 is a former shear bar, one end of which is optically coupled to the ultrasonic light conversion member 7, and the other end of which is connected to the ultrasonic light conversion member 7. It is held by a support member 16 in a position corresponding to the sound wave incidence section 6 . The light emitting portion 12 of the optical fiber 11 is held with regularity by the support member 16 in correspondence with the ultrasonic wave incident portion 4 . Note that 14 indicates the observer's eyes.

第2図は第1図に示す装置の平面図を示す。FIG. 2 shows a plan view of the apparatus shown in FIG.

図中10/は超音波光変換部材7で回折される光束を光
ファイバー11に照射させるためのレンズで必要により
用いられる。
In the figure, 10/ is a lens for irradiating the optical fiber 11 with the light beam diffracted by the ultrasonic light conversion member 7, which is used as necessary.

ここで超音波光変換部材7は、次のような構造と機能を
有する。
Here, the ultrasonic light conversion member 7 has the following structure and function.

超音波光変換部材7は例えば周囲をガラスで囲み、中圧
液体を封入した構造で超音波伝播方向に媒質中の半波長
の整数倍の間隔に枠壁を設定して共振筒を構成するセル
状部材を有する。
The ultrasonic light conversion member 7 is, for example, a cell whose periphery is surrounded by glass and has a structure in which medium-pressure liquid is sealed, and whose frame walls are set at intervals of an integral multiple of a half wavelength in the medium in the ultrasonic propagation direction to form a resonant tube. It has a shaped member.

このセル状部材は超音波導波路5の一部又は端部に配さ
れ、液体素子の他、超音波の共振長に設定した透明な水
晶等の固体素子であっても良い。
This cellular member is disposed at a part or end of the ultrasonic waveguide 5, and may be a liquid element or a solid element such as a transparent crystal set to the resonance length of the ultrasonic wave.

ここで超音波は連続して放出され、超音波導波路を伝播
した超音波はセル状部材内に放射され、該セル状部材内
で干渉し定常的な波面が構成され、いわゆる超音波格子
が時間的に安定して形成される。
Here, the ultrasonic waves are continuously emitted, and the ultrasonic waves that propagated through the ultrasonic waveguide are emitted into the cellular member, where they interfere and form a stationary wave front, creating a so-called ultrasonic grating. Formed stably over time.

ここで、トランスデユーサ−1よりの超音波が物体2を
透過して変調され、超音波レンズ6により超音波入射部
6に結像する。超音波入射部は2次元平面内に規則性を
もって配置されて〜・るため、超音波像はこの超音波入
射部の数の点像として超音波路5の内部を伝播し、超音
波光変換部材7の中で共振することにより定常状態とな
る。一方、光源8より干渉フィルター9を通り、コンデ
ンサー・レンズ10により超音波光変換部材7に照射さ
れた波長幅の狭い元は定常状態の超音波により回折され
て元ファイバー11に導かれる。
Here, the ultrasonic waves from the transducer 1 are transmitted through the object 2 and modulated, and an image is formed on the ultrasonic incidence section 6 by the ultrasonic lens 6. Since the ultrasound incidence parts are arranged with regularity in a two-dimensional plane, the ultrasound image propagates inside the ultrasound path 5 as a point image corresponding to the number of ultrasound incidence parts, and ultrasonic light conversion occurs. A steady state is achieved by resonating within the member 7. On the other hand, the light beam from the light source 8 passes through the interference filter 9 and is irradiated onto the ultrasonic light conversion member 7 by the condenser lens 10, and is diffracted by steady-state ultrasonic waves and guided to the source fiber 11.

すなわちセル状部材に入射した光は回折され、入射光に
対向するファイバー面上に到達する光束の絶対量が減少
し、ファイバー射出部よりの光量が減る。これ′によっ
て超音波像を光の像に変換するとき、超音波の強さに反
比例する映像(ネガ映像)ができる。
That is, the light incident on the cellular member is diffracted, and the absolute amount of the light beam reaching the fiber surface facing the incident light is reduced, and the amount of light from the fiber exit portion is reduced. When converting an ultrasound image into a light image, this creates an image (negative image) that is inversely proportional to the intensity of the ultrasound.

なお本実施例では、入射光に対向する位置にファイバー
を設定しているが、回折方向にファイバーを設定すれば
超音波が入射したときにファイバーへの光量が増加し、
ファイバー射出部の光量が増加し、これKよって超音波
の強さに比例する映像(ポジ映像)が形成される。なお
本発明において透過光又は反射光の検出は光ファイバー
に限らず、集束性光学繊維素子(商品名セルフォック)
等を用いても良い。
In this example, the fiber is set at a position facing the incident light, but if the fiber is set in the diffraction direction, the amount of light to the fiber increases when the ultrasonic wave is incident,
The amount of light at the fiber exit portion increases, and an image (positive image) proportional to the intensity of the ultrasonic wave is formed by this K. Note that in the present invention, the detection of transmitted light or reflected light is not limited to optical fibers, but also uses a focusing optical fiber element (trade name SELFOC).
etc. may also be used.

また本発明では必ずしも超音波波面による光の回折現象
のみに限定されず、超音波が連続的に伝播されていく時
の散乱による光の減少を利用することもできる。
Furthermore, the present invention is not necessarily limited to the phenomenon of light diffraction due to the ultrasonic wavefront, but can also utilize the reduction in light due to scattering when ultrasonic waves are continuously propagated.

従って照射する光は完全なスペクトル線でなくても良く
、200〜30 、、o X程度の波長幅があっても良
い。
Therefore, the irradiated light does not have to be a complete spectrum line, and may have a wavelength width of about 200 to 30°.

なおセル状部材は必ずしも超音波導波路の終端部に限定
されず途中に設けられても良く、更に超音波導波路がそ
の機能を兼ねるものであっても良〜)また光源としては
レーザーを用いることができ、光学系圧より光束を広げ
、複数個の超音波光変換部材に照射することにより、よ
り鮮明な映像を得ることも可能である。
Note that the cellular member is not necessarily limited to the terminal end of the ultrasonic waveguide, but may be provided in the middle, and the ultrasonic waveguide may also serve as that function.) Also, a laser is used as the light source. It is also possible to obtain a clearer image by spreading the light flux using the optical system pressure and irradiating it onto a plurality of ultrasonic light conversion members.

また本発明において超音波入力の有無による二値化(デ
ジタル)映像も可能である。
Furthermore, in the present invention, binarized (digital) images based on the presence or absence of ultrasonic input are also possible.

第6図は超音波光変換部材の異なる実施例で、振動モー
ド変換を用いたものを示す。
FIG. 6 shows a different embodiment of the ultrasonic light conversion member, which uses vibration mode conversion.

−画面内の画素をモザイク状九分割し、超音波が伝播し
たかどうかを光におきかえることにより、映像を得るも
の罠あっては超音波導波路は超音波の伝播を妨げない範
囲で細いものが良い。この場合)超音波光変換部材とし
て直接、棒状部材又は板状部材を設定して縦波から横波
に振動モード変換することが適する。すなわち第3図に
おいて超音波導波路の一部又は終端部には薄板状の共振
系部材15が配され、ここで振動モード変換され、ここ
に光を照射し、超音波が伝播するときに生ずる共振系部
材の機械的振動による光の乱反射又は反射角度の変化に
よる光量の変化が検出される。この共振系部材15は丁
度伝播してきた超音波が、板波に変換され易い角度で結
合されている。
- An image is obtained by dividing the pixels in the screen into nine mosaic-like parts and replacing it with light to indicate whether or not the ultrasound has propagated.The ultrasonic waveguide must be as thin as possible without interfering with the propagation of the ultrasound. is good. In this case) it is suitable to directly set a rod-shaped member or a plate-shaped member as the ultrasonic light conversion member to convert the vibration mode from longitudinal waves to transverse waves. In other words, in FIG. 3, a thin plate-shaped resonance system member 15 is disposed at a part or the end of the ultrasonic waveguide, and the vibration mode is converted here, and the vibration that occurs when the ultrasonic wave is propagated by irradiating light thereon is converted into a vibration mode. Diffuse reflection of light due to mechanical vibration of the resonance system member or change in light amount due to change in reflection angle is detected. This resonance system member 15 couples the just-propagated ultrasonic waves at an angle that allows them to be easily converted into plate waves.

また光は共振部材表面に集束するように入射し、その正
反射光を検出するようにファイバーが設定されている。
Further, the fiber is set so that the light is focused on the surface of the resonant member and the specularly reflected light is detected.

超音波導波路を伝播してきた超音波は共振部材に板波伝
播をするため、共振部材は板厚方向に5ねるような振動
をおこし、入射光束は任意の角度で振られファイバー罠
到達する単位時間当りの光量が変化し、ファイバー射出
口における明るさが変化する。
The ultrasonic wave propagating through the ultrasonic waveguide propagates as a plate wave in the resonant member, causing the resonant member to vibrate in the direction of the plate thickness, and the incident light beam is swayed at an arbitrary angle and reaches the fiber trap unit. The amount of light per hour changes, and the brightness at the fiber exit port changes.

本実施例においてもファイバーを正反射位置よりずらし
て設定すること罠より、超音波人力に見合った光信号を
うろことができる。
In this embodiment as well, by setting the fiber at a position shifted from the specular reflection position, it is possible to obtain an optical signal commensurate with the ultrasonic human power.

さらに、透過光量の変化として検出する場合には透過光
に対応する位置圧ファイバーを設定し、光に透明な共振
部材表面に回折格子をもうけるか、拡散面にするなどし
て振動におけるファイバー面での光量変化が得られるよ
う圧する。。
Furthermore, when detecting changes in the amount of transmitted light, a position pressure fiber corresponding to the transmitted light is set up, and a diffraction grating is provided on the surface of the resonant member that is transparent to light, or a diffraction surface is used to detect the change in the amount of transmitted light. Apply pressure to obtain a change in light amount. .

第4図は超音波導波路を微細化して−いく場合に効率の
良い伝播を行うためのモード変換の実施例を示す。
FIG. 4 shows an embodiment of mode conversion for efficient propagation when the ultrasonic waveguide is miniaturized.

縦波16の超音波速度をvl、入射角度をi1モード変
換される横波17の超音波速度をυ2、屈折角をθとす
ると、スネルの法則及び入射面で全反射しない条件より 1v1 i(sin□ 2 、−1  ν2 θ= sxn  (X 5inL) 1 を満足するようにすれば良い。
If the ultrasonic velocity of the longitudinal wave 16 is vl, the incident angle is i1 mode, the ultrasonic velocity of the transverse wave 17 converted to mode is υ2, and the refraction angle is θ, 1v1 i (sin □ 2 , -1 ν2 θ=sxn (X 5inL) 1 may be satisfied.

これと同様に極細棒状の系振動等の変換も可能である。In the same way, it is also possible to convert system vibrations in the form of ultra-thin rods.

また所定方向に反射率の高い極薄板を接合し、その反射
光を検出するようにしても良い。
Alternatively, an extremely thin plate with high reflectance may be bonded in a predetermined direction, and the reflected light may be detected.

次に第5図は超音波入射部及び光射出部における画素の
配置を示す図で、18は超音波入射部の配置、19.2
0は光射出部の配置を示している。
Next, FIG. 5 is a diagram showing the arrangement of pixels in the ultrasound incidence part and the light emission part, where 18 is the arrangement of the ultrasound incidence part, 19.2
0 indicates the arrangement of the light emitting section.

超音波映像化にあたって第1図のように超音波レンズ6
を用いて超音波像を形成し、光倉換して光射出部12を
直接見るときには第5図における18と20の配置をと
ること罠より、正立正像の映像を得ることができる。
For ultrasound imaging, the ultrasound lens 6 is used as shown in Figure 1.
When an ultrasonic image is formed using the light beam and the light emitting section 12 is directly viewed by changing the light beam, an erect image can be obtained by adopting the arrangement of 18 and 20 in FIG.

なお超音波レンズ6を用いず、物体2を超音波入射部6
に密着した場合罠は、第5図における18とで9の配置
をとることにより、正立正像の映像を得ることができる
。ここで超音波レンズ6を用いないで行うことは、物体
が比較的薄い場合−超音波伝播中における散乱等の影響
もうけず効果的な方法である。
Note that the object 2 is placed in the ultrasonic incidence section 6 without using the ultrasonic lens 6.
When the trap comes in close contact with the trap, an erect image can be obtained by placing the trap in the position 18 and 9 in FIG. Here, carrying out the method without using the ultrasonic lens 6 is an effective method when the object is relatively thin, since there is no influence of scattering etc. during the propagation of the ultrasonic waves.

以上説明したよ5に超音波光変換を目的とする超音波映
像装置において、2次元平面内にマ) IJラックス状
配置された点状画素を電気的に走査する必要はなくシス
テムを簡単にし、コンパクト化が達晟できるほか、点状
画素を同一時間で観察系へ伝達fるため映像時間を30
倍から10°倍程度向上させることが可能である。
As explained above, in an ultrasonic imaging device for the purpose of ultrasonic light conversion, there is no need to electrically scan dotted pixels arranged in an IJ rack in a two-dimensional plane, simplifying the system. In addition to achieving compactness, the image time is reduced by 30 minutes because point pixels are transmitted to the observation system in the same time.
It is possible to improve it by about 10 times to 10 times.

従って装置の操作性も格段に向上し、従来困難とされそ
いた水中における観察などの用途ならびに、非破壊検査
や医学用途などに簡便に使用できる。
Therefore, the operability of the device is greatly improved, and it can be easily used for underwater observation, which has been considered difficult in the past, as well as non-destructive testing and medical applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる装置の実施例の図、第2図は第
1図装置の平面図、 第6図は振動モード変換を用いた異なる実施例の図、 第・4図は振動モード変換の説明図、 第5図は画素配列の図、 図中 1はトランスデユーサ−12は物体、6は超音波レンズ
、5は超音波路、6は超音波入射部、7は超音波光r換
部材、8は光源、9は波長選択用干渉フィルター、10
はコイデンサー・レンズ、11は光ファイバー、12は
光射出部、15は共振系部材、16は縦波、17は横波
である。 出願人 キャノン株式会社
Fig. 1 is a diagram of an embodiment of the device according to the present invention, Fig. 2 is a plan view of the device shown in Fig. 1, Fig. 6 is a diagram of a different embodiment using vibration mode conversion, and Fig. 4 is a diagram of vibration modes. An explanatory diagram of conversion. Figure 5 is a diagram of a pixel arrangement. In the diagram, 1 is a transducer 12 is an object, 6 is an ultrasound lens, 5 is an ultrasound path, 6 is an ultrasound incidence part, and 7 is an ultrasound light r conversion member, 8 a light source, 9 a wavelength selection interference filter, 10
11 is an optical fiber, 12 is a light emitting part, 15 is a resonance system member, 16 is a longitudinal wave, and 17 is a transverse wave. Applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】 1、被検体からの超音波信号を受波し、光変換する超音
波映像装置において、超音波・を受波して定在波を形成
する手段と、 該手段に光を照射する手段と、 前記定在波形成手段からの透過光又は反射光を検出し、
光射出部に導く導光手段を有することを特徴とする超音
波映像装置。 2、前記定在波形成手段が縦波として定在波を形成する
特許請求の範囲第1項記載の超音波映像装置。 6、前記定在波形成手段が振動モード変換された横波と
して定在波を形成する特許請求の範囲第して複数個設け
られる特許請求の範囲第1項記載の超音波映像装置。 5、前記導光手段の受光方向が前記照射手段の投光方向
に対向し、ネガ映像として光変換される特許請求の範囲
第4項記載の超音波映像装置。 6、前記導光手段の受光方向が前記照射手段の投光方向
と斜めに配置され、ポジ映像として光変換される特許請
求の範囲第4項記載の超音波映像装置。 7、前記各導光手段の入射部と射出部が規則正しい画素
配列を形成するよう対応付けられる特許請求の範囲第4
項記載の超音波映像装置。
[Claims] 1. In an ultrasound imaging device that receives an ultrasound signal from a subject and converts it into light, the means includes a means for receiving the ultrasound signal and forming a standing wave; means for irradiating, and detecting transmitted light or reflected light from the standing wave forming means,
An ultrasonic imaging device characterized by having a light guide means for guiding the light to a light emitting section. 2. The ultrasound imaging apparatus according to claim 1, wherein the standing wave forming means forms a standing wave as a longitudinal wave. 6. The ultrasound imaging apparatus according to claim 1, wherein a plurality of standing waves are provided, wherein the standing wave forming means forms a standing wave as a transverse wave whose vibration mode has been converted. 5. The ultrasonic imaging apparatus according to claim 4, wherein the light receiving direction of the light guiding means is opposed to the light projecting direction of the irradiating means, and the light is converted into a negative image. 6. The ultrasonic imaging apparatus according to claim 4, wherein the light receiving direction of the light guide means is arranged obliquely to the light projection direction of the irradiation means, and the light is converted into a positive image. 7. Claim 4, wherein the incident portion and the exit portion of each of the light guiding means are associated to form a regular pixel array.
The ultrasonic imaging device described in Section 1.
JP1682883A 1983-02-03 1983-02-03 Ultrasonic video device Pending JPS59142460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1682883A JPS59142460A (en) 1983-02-03 1983-02-03 Ultrasonic video device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1682883A JPS59142460A (en) 1983-02-03 1983-02-03 Ultrasonic video device

Publications (1)

Publication Number Publication Date
JPS59142460A true JPS59142460A (en) 1984-08-15

Family

ID=11927044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1682883A Pending JPS59142460A (en) 1983-02-03 1983-02-03 Ultrasonic video device

Country Status (1)

Country Link
JP (1) JPS59142460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056494A (en) * 1989-04-26 1991-10-15 Toyota Jidosha Kabushiki Kaisha System for treating vaporized fuel in an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056494A (en) * 1989-04-26 1991-10-15 Toyota Jidosha Kabushiki Kaisha System for treating vaporized fuel in an internal combustion engine

Similar Documents

Publication Publication Date Title
US3790281A (en) Combined system for acoustical-optical microscopy
JPH034151A (en) Light and heat type inspection method and device for executing said method
WO2017163386A1 (en) Optical scanning device, imaging device, and tof type analyzer
WO2011093108A1 (en) Ultrasonic probe and ultrasonic examination device using same
WO2012077356A1 (en) Probe for photoacoustic inspection, and photoacoustic inspection device
US4011748A (en) Method and apparatus for acoustic and optical scanning of an object
WO2013168531A1 (en) Photoacoustic measurement device and probe for photoacoustic measurement device
EP3906407A1 (en) Device and method for testing a test object
JPH10501893A (en) Ultrasonic detector using vertical cavity surface emitting laser
KR100774939B1 (en) Dynamic change detecting method, dynamic change detecting apparatus and ultrasonic diagnostic apparatus
US6470752B2 (en) Ultrasonic detection method and apparatus and ultrasonic diagnostic apparatus
JP2009210395A (en) High-resolving-power-capable ultrasonic sensor
US4905202A (en) Detection panel and method for acoustic holography
US10324280B2 (en) Microscope system
JPS637370B2 (en)
US3831135A (en) Optical imaging of sound fields by heterodyning
JPS59142460A (en) Ultrasonic video device
JP3294148B2 (en) Laser ultrasonic flaw detector
SU832449A1 (en) Scanning acoustic microscope
US5479375A (en) Real time imaging of acoustic wave devices
JP2920122B2 (en) In-pipe inspection method and in-pipe inspection apparatus
WO2014196150A1 (en) Acousto-optic image pickup device
JP2585263B2 (en) Film image reading device
WO2014174800A1 (en) Acousto-optical imaging device
RU2470268C1 (en) Device to visualise spatially inhomogeneous acoustic fields from microobjects