JPS59142427A - Heat sensor - Google Patents

Heat sensor

Info

Publication number
JPS59142427A
JPS59142427A JP58016423A JP1642383A JPS59142427A JP S59142427 A JPS59142427 A JP S59142427A JP 58016423 A JP58016423 A JP 58016423A JP 1642383 A JP1642383 A JP 1642383A JP S59142427 A JPS59142427 A JP S59142427A
Authority
JP
Japan
Prior art keywords
temp
temperature
type
rate
heat sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58016423A
Other languages
Japanese (ja)
Other versions
JPH0244378B2 (en
Inventor
Takeo Ishigaki
石垣 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58016423A priority Critical patent/JPS59142427A/en
Publication of JPS59142427A publication Critical patent/JPS59142427A/en
Publication of JPH0244378B2 publication Critical patent/JPH0244378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • G01J5/35Electrical features thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors

Abstract

PURPOSE:To enable stable heat sensing by combination of both functions of a constant temp. type and a differential type without mulfunction by detecting both of temp. and temp. rising rate with a pyroelectric element provided with an impedance conversion circuit. CONSTITUTION:An FET2 of an impedance conversion circuit connecting to an output resistance 4 is connected to a pyroelectric element 1 which is an insulator connected with an input resistor 3 and detects the IR corresponding to a temp. of high resistance. The DC bias voltage of the FET2 changes according to the change rate of ambient temp. and the AC signal superposed on a DC bias by the radiation IR energy of an object to be measured of temp. chopped through an IR transmission window is taken out from said FET. Both of the temp. rising rate and the temp. are detected by such DC bias signal and AC signal. The stable heat detection is thus accomplished by the combination of both functions of a constnat temp. type and a differential type without malfunction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は定温式および差動式の両方の性能を合せtつ補
償式スポット型熱感知器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a compensated spot type heat sensor that combines the performance of both constant temperature and differential types.

従来例の構成とその問題点 従来の熱感知器は定温式、差動式、補償式の3方式があ
る。その内、定温式、差動式はいろいろな作動原理のも
のがあるが、補償式には空気・金属膨張併用式しか知ら
れていない。火災の発生においては燃焼状態では差動式
、燻焼状態では定温式が有利であるが1両方の欠点を補
った補償式の方が確実に火災を発見できる。このように
機能の複合化によって単一機能では誤動作をおこしたり
、見出せなかったものをより確実に知ることができる。
Conventional structure and problems There are three types of conventional heat sensors: constant temperature type, differential type, and compensation type. Among them, there are constant temperature type and differential type with various operating principles, but the only known compensation type is the combined air/metal expansion type. When it comes to fire outbreaks, the differential type is advantageous in the combustion state, and the constant temperature type is advantageous in the smoldering state, but the compensation type, which compensates for the drawbacks of both, allows fires to be detected more reliably. By combining functions in this way, it is possible to more reliably discover malfunctions or problems that could not be detected using a single function.

発明の目的 本発明は簡単な構成によ多温度と温度変化率の両方を検
知し、定温式、差動式を合わせもった補償式の熱感知器
、安定な動作をする温度コントロール用センサ等を実現
するための新規な熱感知器を提供することを目的とする
Purpose of the Invention The present invention provides a compensating type heat sensor that detects both multiple temperatures and temperature change rates with a simple configuration, and has both a constant temperature type and a differential type, a temperature control sensor that operates stably, etc. The purpose of this study is to provide a new heat sensor to realize this.

発明の構成 本発明はインピーダンス変換を行なった焦電素子の直流
電圧レベルの変動により周囲温度および温度上昇率の両
者を検知するようにした熱感知器である。
DESCRIPTION OF THE INVENTION The present invention is a heat sensor that detects both ambient temperature and temperature rise rate based on fluctuations in the DC voltage level of a pyroelectric element that has undergone impedance conversion.

実施例の説明 以下本発明を実施例にもとづいて詳細に説明する。Description of examples The present invention will be described in detail below based on examples.

焦電形赤外線検出器は被測温物体からでる赤外線エネル
ギーを焦電素子でうけ、それによる温度上昇を電圧に変
換して読み出す。焦電素子は絶縁体で抵抗が高いので取
扱いにくいため、第1図に示すように、FET2を用い
たインピーダンス変換回路を焦電素子IK接続し、この
回路をTo−s等のヘッダー、キャップに組込む。ここ
で3は入力抵抗、4は出力抵抗である。印加電圧vGに
12Vを加えFET2を動作状態にすれば、常温Toで
直流バイアス電圧Vo(To) は約1vとなる。この
時焦電素子1に赤外透過窓を通ってチョッピングされて
入ってさた被測温物体の放射赤外エネルギーによりTo
 (To )の上に重畳された交流信号として出力がと
りだされる。ここでVo(T)は周囲温度(T)が変動
すると変化し、温度が上昇するに従って、人さくなる。
A pyroelectric infrared detector uses a pyroelectric element to receive infrared energy from an object to be measured, converts the resulting temperature rise into voltage, and reads it out. Since the pyroelectric element is an insulator and has a high resistance, it is difficult to handle, so as shown in Figure 1, an impedance conversion circuit using FET2 is connected to the pyroelectric element IK, and this circuit is connected to the header or cap of To-S etc. Incorporate. Here, 3 is an input resistance, and 4 is an output resistance. If 12V is added to the applied voltage vG to put the FET 2 into operation, the DC bias voltage Vo (To) will be approximately 1V at room temperature To. At this time, To
The output is taken out as an AC signal superimposed on (To). Here, Vo(T) changes as the ambient temperature (T) changes, and becomes less sensitive as the temperature rises.

その様子を第2図に示す。この上昇の仕方ばFET2の
種類によって変る。そしてそのFET2の使用温度上限
近傍で印加電圧vcに達し、ランチアップ状態になり動
作しなくなる。このようにVo(T)は周囲温度によっ
て変化するので一定電圧で作動するように温度を設定す
れば、定温式の熱感知器となる。
The situation is shown in Figure 2. The way this rises depends on the type of FET2. Then, the applied voltage VC is reached near the upper limit of the operating temperature of the FET 2, and the FET 2 enters a launch-up state and stops operating. In this way, Vo(T) changes depending on the ambient temperature, so if the temperature is set so that it operates with a constant voltage, it becomes a constant temperature type heat sensor.

この焦電形赤外検出器は周囲温度が一定の温度変化率で
変化した時に直流バイアス電圧は一定量だけ変化する。
In this pyroelectric infrared detector, when the ambient temperature changes at a constant temperature change rate, the DC bias voltage changes by a constant amount.

基板上にのった2 mM X 2 amのPbTiO3
素子2と、10Ωの入力抵抗3をTO−5型の容器に入
れた構成の時の様子を第3図に示す。
2 mM X 2 am PbTiO3 on the substrate
FIG. 3 shows a configuration in which the element 2 and the input resistor 3 of 10Ω are placed in a TO-5 type container.

これは次の様に説明される。分極をP、焦電係数を′p
゛、温度をT、時間をt、素子面積をA、焦電流ip、
温度変化率dT/dtをαとするととあられされる。だ
から ip = Aα・p          ・・・・・・
(2)となりFETのゲートに生ずる電圧vpは入力抵
抗3の値をR1とすると Vp = 1p−R+ = Ap−R,・a     
・・・・・・(3)とあられされる。従って温度変化率
αと温度変化によって生じた焦電圧vpH比例する。p
 = :2.5X 10  coul/c4−0K (
PbTiO3)、A−4−1R,=10 Ω とすれば
、(3)式より Vp :1.67α 〔v/℃/虹n、)   ・・・
・・・(4)となる。出力電圧VはFIT特性に依存す
る。
This is explained as follows. Polarization is P, pyroelectric coefficient is ′p
゛, temperature is T, time is t, element area is A, pyroelectric current ip,
Let α be the temperature change rate dT/dt. Therefore, ip = Aα・p...
(2), and the voltage vp generated at the gate of the FET is as follows, assuming that the value of the input resistor 3 is R1: Vp = 1p-R+ = Ap-R, ・a
・・・・・・(3) Hail. Therefore, the temperature change rate α is proportional to the pyrovoltage vpH caused by the temperature change. p
= :2.5X 10 coul/c4-0K (
PbTiO3), A-4-1R, = 10 Ω, then from equation (3), Vp: 1.67α [v/℃/rainbow n,)...
...(4). The output voltage V depends on the FIT characteristics.

FETのID−vc、s曲線と出力抵抗4の値R2に依
存する負荷直線の交点のよりをより。とすれば、v−I
DO’R2で示される。ここでIDOがvpにより変わ
り、vp  が大きくなるとIDOが大きくなる。FI
CTのID  VG8曲線は直線ではないので厳密には
Vはvpと直線的には比例しないが、実験的には直線で
十分近似でさる。これはID  ves曲線の温度依存
性から見掛上gmがあ1シ変らないようになるためと思
われる。ID  yGs曲線を直線近似すると、となる
。一般にgmR2)1となるようにとるから、V≠vp
−vT           ・・・・・・(6)と近
似され、出力電圧Vはvp  と直線比例する。
From the twist of the intersection of the FET ID-vc, s curve and the load straight line that depends on the value R2 of the output resistor 4. Then, v-I
Indicated by DO'R2. Here, IDO changes depending on vp, and as vp increases, IDO increases. FI
Since the ID VG8 curve of CT is not a straight line, strictly speaking, V is not linearly proportional to vp, but experimentally, a straight line is a sufficient approximation. This seems to be because gm does not seem to change at all from the temperature dependence of the ID ves curve. When the ID yGs curve is linearly approximated, it becomes. In general, it is taken so that gmR2)1, so V≠vp
-vT (6) is approximated, and the output voltage V is linearly proportional to vp.

ここでvTばFIICTのピンチオフ電圧である。Here, vT is the pinch-off voltage of FIICT.

実測値は第3図から V−Vo(T)≠1.3 a (V/C/min、’)
 ・−−−−−(7)と々す、(4)式と良い一致を示
す。このように温度変化率が数℃/m1n1以上では実
験的にも直線にのるので、出力電圧Vの変動を捕えるこ
とにより温度変化率を知ることができる。(7)式から
印加電圧vCK:12Vを使うとα≠9℃/minでラ
ッチしてしまい、火災検知器の作動試験条件の温度変化
率1゜〜15℃/minで動作しない。そこでこの直線
の傾きを変えるには、(3)式を見ればわかるように素
子面積A又は入力抵抗値R1を変えることによりVpを
変化させる。また外の周囲温度変化が直接素子に伝わら
ないようにケースの熱容量を大きくすることにより直線
の傾きは小さくなり、0.3 V/C/min位にする
のは容易である。
The actual measured value is V-Vo(T)≠1.3 a (V/C/min,') from Figure 3.
----(7) shows good agreement with equation (4). In this way, when the temperature change rate is several degrees centigrade/m1n1 or more, it is experimentally linear, so the temperature change rate can be determined by capturing the fluctuations in the output voltage V. From equation (7), if an applied voltage vCK of 12V is used, it will latch at α≠9°C/min, and will not operate at a temperature change rate of 1° to 15°C/min, which is the operating test condition for the fire detector. Therefore, in order to change the slope of this straight line, Vp is changed by changing the element area A or the input resistance value R1, as can be seen from equation (3). In addition, by increasing the heat capacity of the case so that changes in the outside ambient temperature are not directly transmitted to the element, the slope of the straight line becomes smaller, and it is easy to make it about 0.3 V/C/min.

このように温度変化率に対する直流バイアス電圧変動量
は、素子、ケースを設計し、入力抵抗を選択することに
より要求仕様を満たすことができる。一定電圧に設定レ
ベルをとると、温度及び温度変化いずれか又は両方を感
知できる。この場合周囲温度が高い時に感知でさる温度
変化率は周囲温度が低い時に感知できる温度変化率にく
らべて小さい。もしこの現象をさけて一定の温度変化率
を検知したい場合は、急激な温度変化率が生じる直前の
電圧レベルを記憶しておいて、その値を基準とするよう
な電気的な処理を行なえばよい。このように目的に応じ
て容易に感知機能、レベルを変えることが可能である。
In this way, the amount of DC bias voltage fluctuation with respect to the temperature change rate can be satisfied by designing the element and case and selecting the input resistance. With a set level at a constant voltage, temperature and/or temperature change can be sensed. In this case, the rate of temperature change that can be sensed when the ambient temperature is high is smaller than the rate of temperature change that can be sensed when the ambient temperature is low. If you want to avoid this phenomenon and detect a constant rate of temperature change, you can memorize the voltage level just before a sudden rate of temperature change occurs and perform electrical processing to use that value as a reference. good. In this way, the sensing function and level can be easily changed depending on the purpose.

またこの直流バイアス電圧のみを用いるだけでなく、本
来の赤外線検出器の効果も合せて用いることも可能であ
る。例えば特定波長のみをぬきだす赤外光学フィルター
を用いて炎の放射エネルギーを検知し得る。このように
すると炎の検知、温度!温度変化率を同時に検知できる
より確実な火災検知器となる。またこの熱感知器は感度
を任意の値にするように設計でさ、設定値も容易に変え
られる利点をもつので、火災検知だけでなく民生用機器
に多く利用されることが期待される。例えばエアコン用
温度センサーとして周囲温度又は急激な温度変化率を検
知するのでこの機能を用いて温度コントロールを行なう
ことができる。この熱感知器による温度コントロールは
いわゆる0N10FFコントロールでなく、PID方式
の温度コントロールに相当するため、複雑な構成がいら
ずに々めらかなリップルの少ない温度コントロールを行
なうことができる。なお赤外エネルギー検知が特に必要
でない場合は窓のないキャンプで封じれば良い。
In addition to using only this DC bias voltage, it is also possible to use the original effect of the infrared detector. For example, the radiant energy of a flame can be detected using an infrared optical filter that extracts only specific wavelengths. In this way, flame detection and temperature! It becomes a more reliable fire detector that can detect the rate of temperature change at the same time. Furthermore, this heat sensor is designed to have an arbitrary sensitivity value, and has the advantage of being able to easily change the set value, so it is expected that it will be used not only for fire detection but also for many consumer devices. For example, since it is used as a temperature sensor for an air conditioner to detect ambient temperature or a rapid rate of temperature change, this function can be used to control the temperature. Temperature control using this heat sensor is not so-called 0N10FF control, but corresponds to PID type temperature control, so that smooth temperature control with less ripple can be performed without the need for a complicated configuration. If infrared energy detection is not particularly necessary, you can seal it off by camping without windows.

なお、焦電素子をケースに封入するのは、第3図の傾斜
を正確に得るためであるから、シールド効果さえあれば
ケース封入以外の方法によってもよい。
Incidentally, since the reason for enclosing the pyroelectric element in the case is to accurately obtain the slope shown in FIG. 3, methods other than enclosing the pyroelectric element in the case may be used as long as it has a shielding effect.

寸た、熱輻射以外に熱伝導による場合にも本発明は使用
できる。
In addition to heat radiation, the present invention can also be used in cases where heat conduction is used.

発明の効果 以上のように、本発明はインピーダンス変換を行なった
焦電素子による焦電形熱検出器の直流バイアス電圧の変
動を検出して、周囲温度および温度上昇率の両方を検出
するようにした熱感知器で、温度と温度変化率両方を同
時にとらえ、火災検知器としては定温式、差動式を合わ
−Vtった補償式の熱感知器とすることがでさ、又民生
用の温度コントロール用センザーとしても用いられる安
定確実な動作を行なう新規な熱感知器である。
Effects of the Invention As described above, the present invention detects fluctuations in the DC bias voltage of a pyroelectric heat detector using a pyroelectric element that has undergone impedance conversion, and detects both the ambient temperature and the rate of temperature rise. It is possible to detect both temperature and rate of temperature change at the same time, and as a fire detector, it can be used as a compensated heat sensor that combines constant temperature type and differential type. This is a new heat sensor that operates stably and reliably and can also be used as a temperature control sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による焦電型熱感知器の構成を示す結線
図、第2図は第1図の熱感知器における直流バイアス電
圧の温度依存性を示す特性図、第3図は第1図の直流バ
イアス電圧の温度変化率依存性を示す特性図である。 1・・・・・・焦電素子、2・・・・・・FICT、3
・・・・・・入力抵抗、4・・・・・・出力抵抗。
Fig. 1 is a wiring diagram showing the configuration of a pyroelectric heat sensor according to the present invention, Fig. 2 is a characteristic diagram showing the temperature dependence of the DC bias voltage in the heat sensor of Fig. 1, and Fig. 3 is a diagram showing the temperature dependence of the DC bias voltage in the heat sensor of Fig. 1. FIG. 3 is a characteristic diagram showing the temperature change rate dependence of the DC bias voltage shown in FIG. 1...Pyroelectric element, 2...FICT, 3
...Input resistance, 4...Output resistance.

Claims (1)

【特許請求の範囲】[Claims] インピーダンス変換回路を備えた焦電素子を有する焦電
形検出器の直流電圧を検出して周囲温度及び温度上昇率
の両方を検出することを特徴とする熱感知器。
A heat sensor characterized in that it detects both an ambient temperature and a rate of temperature rise by detecting a DC voltage of a pyroelectric detector having a pyroelectric element equipped with an impedance conversion circuit.
JP58016423A 1983-02-02 1983-02-02 Heat sensor Granted JPS59142427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58016423A JPS59142427A (en) 1983-02-02 1983-02-02 Heat sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58016423A JPS59142427A (en) 1983-02-02 1983-02-02 Heat sensor

Publications (2)

Publication Number Publication Date
JPS59142427A true JPS59142427A (en) 1984-08-15
JPH0244378B2 JPH0244378B2 (en) 1990-10-03

Family

ID=11915826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58016423A Granted JPS59142427A (en) 1983-02-02 1983-02-02 Heat sensor

Country Status (1)

Country Link
JP (1) JPS59142427A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269028A (en) * 1987-04-25 1988-11-07 Murata Mfg Co Ltd Temperature detector
EP2343524A1 (en) 2009-12-24 2011-07-13 Seiko Epson Corporation Infrared detection circuit, sensor device, and electronic instrument
EP2345879A2 (en) 2010-01-06 2011-07-20 Seiko Epson Corporation Detection circuit, sensor device, and electronic instrument
EP2357457A2 (en) 2010-01-26 2011-08-17 Seiko Epson Corporation Detection device, sensor device, and electronic device
EP2357458A1 (en) 2010-01-26 2011-08-17 Seiko Epson Corporation Detection circuit for heat sensor, heat sensor device, and electronic device
US8481940B2 (en) 2010-12-24 2013-07-09 Seiko Epson Corporation Detection device, sensor device, and electronic apparatus
US8895927B2 (en) 2010-12-24 2014-11-25 Seiko Epson Corporation Detection device, sensor device and electronic apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638835U (en) * 1979-08-31 1981-04-11
JPS5677729A (en) * 1979-11-29 1981-06-26 Sanyo Electric Co Ltd Noncontact type infrared-ray detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833196A (en) * 1972-07-10 1974-09-03 Ever Roll Mfg Corp Camera support

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638835U (en) * 1979-08-31 1981-04-11
JPS5677729A (en) * 1979-11-29 1981-06-26 Sanyo Electric Co Ltd Noncontact type infrared-ray detector

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269028A (en) * 1987-04-25 1988-11-07 Murata Mfg Co Ltd Temperature detector
EP2343524A1 (en) 2009-12-24 2011-07-13 Seiko Epson Corporation Infrared detection circuit, sensor device, and electronic instrument
US8373124B2 (en) 2009-12-24 2013-02-12 Seiko Epson Corporation Infrared detection circuit, sensor device, and electronic instrument
EP2345879A2 (en) 2010-01-06 2011-07-20 Seiko Epson Corporation Detection circuit, sensor device, and electronic instrument
CN102141445A (en) * 2010-01-06 2011-08-03 精工爱普生株式会社 Detection circuit, sensor device, and electronic instrument
US8803091B2 (en) 2010-01-06 2014-08-12 Seiko Epson Corporation Detection circuit, sensor device, and electronic instrument
EP2357457A2 (en) 2010-01-26 2011-08-17 Seiko Epson Corporation Detection device, sensor device, and electronic device
EP2357458A1 (en) 2010-01-26 2011-08-17 Seiko Epson Corporation Detection circuit for heat sensor, heat sensor device, and electronic device
JP2011174918A (en) * 2010-01-26 2011-09-08 Seiko Epson Corp Detection device, sensor device, and electronic apparatus
US9222838B2 (en) 2010-01-26 2015-12-29 Seiko Epson Corporation Detection device, sensor device, and electronic device
US8481940B2 (en) 2010-12-24 2013-07-09 Seiko Epson Corporation Detection device, sensor device, and electronic apparatus
US8895927B2 (en) 2010-12-24 2014-11-25 Seiko Epson Corporation Detection device, sensor device and electronic apparatus

Also Published As

Publication number Publication date
JPH0244378B2 (en) 1990-10-03

Similar Documents

Publication Publication Date Title
US4640628A (en) Composite fire sensor
US4319233A (en) Device for electrically detecting a liquid level
US4825079A (en) Pyroelectric infrared detector
US6043493A (en) Infrared sensor and method for compensating temperature thereof
JPH0241737Y2 (en)
Wormser Properties of thermistor infrared detectors
JPS59142427A (en) Heat sensor
EP0443284B1 (en) Detector of a Fourier transform infrared spectrometer
JPH028717A (en) Flame sensor
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
GB2105460A (en) Radiation detectors
JP3210875B2 (en) Compensated fire detector
JPS5940708Y2 (en) Intruder and flame detection devices
JPS583189Y2 (en) Kasaikantiki
JP2690043B2 (en) Infrared detector
JPS6224398A (en) Analog signal output type environment information detector
Kuwano et al. The Pyroelectric Sensor
JPS5924995Y2 (en) gas detection device
JPH01173893A (en) Heat body detecting device
JPH01216292A (en) Heat ray type human body detecting device
KR100395618B1 (en) Thermopile sensor having a temperature revision function
JPS6311610B2 (en)
JP3040048B2 (en) Radiant heat sensor
JPH0330953Y2 (en)
JPS61251918A (en) Temperature controller