JPS59141499A - Preparation of single crystal of ferrite - Google Patents

Preparation of single crystal of ferrite

Info

Publication number
JPS59141499A
JPS59141499A JP58011496A JP1149683A JPS59141499A JP S59141499 A JPS59141499 A JP S59141499A JP 58011496 A JP58011496 A JP 58011496A JP 1149683 A JP1149683 A JP 1149683A JP S59141499 A JPS59141499 A JP S59141499A
Authority
JP
Japan
Prior art keywords
single crystal
polycrystal
ferrite
crystal
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58011496A
Other languages
Japanese (ja)
Inventor
Takeshi Hirota
健 広田
Harufumi Sakino
先納 治文
Eiichi Hirota
広田 栄一
Minoru Sugimura
杉村 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58011496A priority Critical patent/JPS59141499A/en
Publication of JPS59141499A publication Critical patent/JPS59141499A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/26Complex oxides with formula BMe2O4, wherein B is Mg, Ni, Co, Al, Zn, or Cd and Me is Fe, Ga, Sc, Cr, Co, or Al

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To mass produce a single crystal of ferrite at low cost, by forming a thin film of a compound to induce liquid crystal sintering of ferrite on contact faces, putting a single crystal and a polycrystal together, heat-treating them. CONSTITUTION:A compound such as Na2O, V2O5, CaO, Sb2O3, etc. is used as a compound to induce liquid-phase sintering. Namely, each of the contact faces 1a and 2a of the single crystal 1 and the polycrystal 2 are ground, the compound is applied to at least one face by sputtering, deposition, etc. to form a thin film with <=1mu thickness. The contact faces 1a and 2a of the single crystal 1 and the polycrystal 2 are put together, heated, pressed, the polycrystal 2 is grown into the single crystal 3, so that the whole single crystal of ferrite is prepared.

Description

【発明の詳細な説明】 【産業上の利用分野) 本発明は、′磁気ヘッド桐材として利用される単結晶フ
ェライトの製造方法に関するものである。 (従来例の構成とその問題点) 従来 fl結晶と多結晶とを接合し、これを熱処理する
ことにより多結晶を単結晶化する接合型単結晶の製造方
法が知られている。これは、捷ず、単結晶、多結晶双方
の接合面を鏡面研摩した後、表面活性を高めるためにそ
の鏡面に酸を塗布して両者を張り合わせ、しかる後熱処
理を行な°つて多結晶を単結晶化する。゛しかしながら
、この方法は同相反応であるため単結晶化の速磨の大き
さにはおのずから限界があった。 (発明の目的) 本発明は、上記従来例の欠点を改善したもので、単結晶
化の速度が太きく、低コストで、倒産性の高い単結晶フ
ェライトの製造方法を提侠するものである。 (発明の構成) 上記目的を達成するーために、本発明では、?11結品
と多結晶の接合に先立って、それらの接合面のいずれか
一方゛マ/こ(d両方に、フェライトの液相焼結を誘起
する化合物の薄膜を予め形成し、そのプ両者の接合面を
張り合わせて熱処理するものである。 シ、1、図面を用いて実施例を詳細に説明する。 (実施例の説明) 第1図は、本発明の接合型単結晶フェライトの単結晶育
成オでのゴニ程を模式的(C示し/こもので、第1図(
A)は単結晶1七多結晶2とを張り合わせるnilの状
態を示しており、1aは単結晶1の接合面、2aN多結
晶2の接合面である。第1図(1+) II、イノLら
接合面を互いに接合した後、熱処理17だ接合体を示し
ており、多結晶2′は1部部結晶化している。第1図(
C)は、第1図(B)の複合体をx−x’で切断した後
、研+q、エツチングした断面を示している。3は多結
晶から単結晶化した部分であり、1は一!だ11j結晶
化[7ていない多結晶部分である。5はjl’+結晶化
の界面である。 本発明の製造方法、を説明すると、捷ず、単結晶1・及
び多結晶2の各接合面1a、  2aをよく研摩し、そ
の接合面1a、’ 2aの一方又は両方に、後述するフ
ェライトの液相焼結を誘起する化合物を、スパッター、
蒸着、CVD(ケミカル ペーパー ディポジション)
、その他の薄膜作製方法により1μm以下のN BtA
として形成する。次に、単結晶1と多結晶2の接合面1
a、2aを合わせ、加熱又は加圧熱処理により互いに接
合する。このようにして後合し/こ接合体如、さらに熱
処理を施I7、多結晶を単結晶に成長させる。 ここで、単結晶と多結晶の接合面てフェライトの液相焼
結を誘起する化合物を含廿ない場合は、第2図に示した
ように、単結晶部分3と多結晶部分4の結晶粒子との固
相反応により単結晶化が進部分4の結晶粒子が、界面5
で単結晶のれ+1晶方位に強制的にそろえられ吸引され
ていくため、この反応が律速になる。 一方、本発明方法により、単結晶と多結晶の汲置in)
に予め液相焼結を誘起する化合物を形成した場合は、第
3図に示したように、単結晶部分3と多結晶部分4との
界面5において、化合物が周囲のフェライトと反応して
薄い液相6を形成する。 この液相の層の厚さは、最初単結晶と多結晶の接合面に
形成された化合物の薄膜の厚さに比例する。 本発明者等が接合面に形成する化合物の膜厚について実
験、検削を行なっ/こ結果、1μm以トの膜jワの楊合
如単結晶化の速度が最も大きくなることが判明し/こ。 この液相6の役割は、多結晶7<15分4の結晶粒子を
溶かI〜込み、この液相中でフェライトの各成分イメン
を拡散移動させ、中結晶rytt分゛う側で再析出させ
るものである。この過程は、固相反応による結晶粒イの
単結晶への吸収過程に匹べて紗倍速い。その結果、界面
5の移動速度、即ち、単結晶化の速IIが大きくなるも
のである。 本発明方法を実施−ノ“るに当って、液相6に含まれる
化合物が、中、結晶化終了後の単結晶内部に、できるだ
け取り込脣れないこと、即ちフェライト単結晶内に拡散
しにくいこと、あるいは/ことえ拡散しても、磁気的特
杆その他の特性を劣化させるもので々いことが必要であ
る。 本発明者等が、液相焼結を誘起する各種化合物を検討し
た結果、Na2O,V2O5+ Cab、 5io2.
 C++20. Crの酸化物および5b203のうち
少なくとも1種類が、単結晶と多結晶の接合面に入って
いると、液相が形成されて本発明の目的が達成され、る
ことかわかった。 次如、本発明の具体的実施例((ついて説明する。 実施例1 最終組成比が、52モル%FC203132モル%Mn
O。 16モル%ZnOになるように、純度99.5 %のα
−F(420:、。 1825gと、含有量91.2%のMnCO388,7
gとA純度9 <s%のZnO28,7gを秤量し、ウ
レタンボールミルにて、湿式で15時間混合し、900
℃−2時間、空気中で仮焼した。仮焼後、再度、ウレタ
ンボールミルで15時時間式混合し、その後、その沈殿
物を、130℃で10時間乾燥した。純水を12〜15
係加えてライカイ器にて造粒し、粒度をイろえ/C後、
:300kg/Gm2の成形圧で造粒粉を成形した。こ
の成形体を空気中にて、1280°C−3時間、300
 kgAw?でボッ1グレス1.て、平均結晶粒径25
μm1気孔率002%の焼結体を得た。この焼結体を]
0’X 20 X 30Jの直方体に切断し、20X:
3Qmm2の而を接合面とし、この而を寺2000メツ
/ユのGCC研削剤、さらに≠4000ノソンユのGC
研1?剤で研F? l、た後、直径3μmのダイヤモン
ド砥粒で研厚し、鏡面に仕上げだ。このような多結晶を
複数個用、きし、その鏡1rii K Arカスを用い
たスパック−法により、そわ−ぞれNa2O+ V2O
51Cart Cu2O+ 5i02+ Cr2O3+
 5b2o2及びSrO,pbo、 8aOの薄膜を】
000^の厚みで形成した。 一方、多結晶と同組成のJli結晶を、フリッンーlン
法にてイ′[製し、接合面が(100)面に、そit、
と垂直な面が4110) Kなるよって、20X30X
]5m−の試料片を切断し/こ。接合面の20X3Q+
u+  を、多結晶と同様な方θ、で鏡面研削し、表面
活性を高めるため希硝酸を塗布後、多結晶とm結晶の各
接合面を互いに張り合せ、N2中で1320℃、6時間
の熱処理を行なった。比較のため、同一の多結晶で化合
物をスパッター シないものを用い、同一条件−トで、
単結晶との接合及び熱処理を行なった。熱処理後、接合
体を中央部で切断し、切断面を鏡面研削し、塩酸にてエ
ツチングし、単結晶化の長さSをiI]1[定した。本
発明のNa2O+ V2O5,Cab、 5i02. 
Cu2O,Cr2O3+st、2o3をスパッター[7
たものでは単結晶化長さSは4〜5羽、Bad、 Sr
O,PbOをスパッターしたものではSけ約2 mm、
化合物をスパッターしなかったものではSは1龍以下で
あった。 上記のごとき本発明方法により多結晶から一中結晶化反
だ部分を切り出し、磁気特性を調べだところ、周波数1
 kHzでの透磁率(μmk)が1.0.000で、抗
磁力(Hc)は0.05 (Oe)であった。たたし、
11aO。 SrO,PbOをスパッターしたものでは、μmkが5
、000−6.000. HcがQ、loeであツ/コ
。一本発明方法によるものは、従来のノリソノマン法で
作製された同一組成の単結晶と同等の特性であった。 この単結晶を用いて磁気ヘッドを試作し、・〜ラドの特
性を調べた結果、S/′N及び周波数5 Ml、、1 
zでの出力では、ノリフシ−フン法で作製されたものと
、同等もしくはそれ以上イあっ/こ。なお、化合物の7
バツターをt1ウ−結晶の接合面にしても、又、両者の
接合面にしても(但L7薄膜の厚みは台用して1 /1
mを越えないようにする)効果は、同じであった。 実施例2 実施例1と同様に作成したMn−Zn多結晶に、Na 
20 +V2O5+  Cu2O+  5i02+  
Cr2O:++  5b203 を 100人、  2
0(10人。 5000X、 1μm、 2μmの各厚みでスパッター
し、実施例1と同様に単結晶と接合し、熱処理を行なう
ことにより単結晶化を試み/こ。その結果、単結晶化長
さSは、薄膜の厚みに対して、4 、4 、3 、2 
。 05關となり1.薄膜の厚みが1/7mを越すと、逆に
111結晶化が悪くなった。 (発明の効果) Jン上説明したよう匠、本発明によれは、ソリノジマン
θミで作製された単結晶と同等以上の唱慴を有する中結
晶フエライ1を、従来の接合型1411結晶フエライト
の製造方法に比べて4〜5倍以上速く製造することがで
きる効果がある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing single crystal ferrite used as a paulownia material for a magnetic head. (Structure of conventional example and its problems) Conventional A method for manufacturing a bonded single crystal is known in which a fl crystal and a polycrystal are bonded and the polycrystal is turned into a single crystal by heat-treating the bonded material. This is done by mirror-polishing the bonding surfaces of both the single crystal and polycrystals without separating them, then applying acid to the mirror surfaces to increase surface activity and bonding them together, followed by heat treatment to form the polycrystals. Become a single crystal. However, since this method involves an in-phase reaction, there is a natural limit to how quickly it can produce single crystals. (Objective of the Invention) The present invention improves the drawbacks of the above-mentioned conventional examples, and proposes a method for producing single crystal ferrite that has a high single crystallization speed, is low cost, and has a high risk of bankruptcy. . (Structure of the Invention) In order to achieve the above object, the present invention: 11 Prior to joining the crystal and polycrystal, a thin film of a compound that induces liquid phase sintering of ferrite is formed on either one of their joint surfaces, and The bonded surfaces are pasted together and heat treated. Example 1. Examples will be explained in detail with reference to the drawings. (Explanation of Example) Figure 1 shows the single crystal growth of the bonded single crystal ferrite of the present invention. Schematic representation of the goni length at O (C shown/in Figure 1)
A) shows a nil state in which the single crystal 1 and the heptad polycrystal 2 are bonded together, where 1a is the bonding surface of the single crystal 1 and the bonding surface of the 2aN polycrystal 2. FIG. 1 (1+) shows a bonded body which has been heat-treated 17 after bonding surfaces of II, Inno L, etc., and the polycrystal 2' is partially crystallized. Figure 1 (
C) shows a cross section obtained by cutting the composite of FIG. 1(B) along xx', polishing +q, and etching. 3 is the part that has become a single crystal from polycrystal, and 1 is one! It is a polycrystalline part that is not crystallized. 5 is the jl'+crystallization interface. To explain the manufacturing method of the present invention, the joint surfaces 1a and 2a of the single crystal 1 and the polycrystal 2 are well polished without being separated, and one or both of the joint surfaces 1a and 2a is coated with ferrite, which will be described later. Sputtering a compound that induces liquid phase sintering,
Vapor deposition, CVD (chemical paper deposition)
, N BtA of 1 μm or less by other thin film fabrication methods
form as. Next, the joint surface 1 of the single crystal 1 and the polycrystal 2
A and 2a are combined and bonded to each other by heating or pressure heat treatment. In this manner, the bonded/bonded body is further heat treated (I7) to grow the polycrystal into a single crystal. Here, if the joint surface between the single crystal and polycrystal does not contain a compound that induces liquid phase sintering of ferrite, the crystal grains of the single crystal part 3 and the polycrystal part 4 will be separated as shown in FIG. Single crystallization progresses due to the solid phase reaction with
This reaction becomes rate-determining because the single crystal is forcibly aligned and attracted to the single-crystal shear +1 crystal orientation. On the other hand, by the method of the present invention, single crystal and polycrystal
If a compound that induces liquid phase sintering is formed in advance, the compound reacts with the surrounding ferrite at the interface 5 between the single crystal part 3 and the polycrystal part 4, as shown in FIG. A liquid phase 6 is formed. The thickness of this liquid phase layer is proportional to the thickness of the thin compound film initially formed on the interface between the single crystal and the polycrystal. The inventors of the present invention conducted experiments and inspections regarding the thickness of the compound film formed on the bonding surface, and as a result, it was found that the rate of single crystallization is the highest for a film of 1 μm or less. The role of this liquid phase 6 is to dissolve the crystal grains of polycrystalline 7<15/4, to diffuse and move each component of ferrite in this liquid phase, and to re-precipitate on the other side of the middle crystal rytt. It is something that makes you This process is much faster than the absorption process of crystal grains A into a single crystal due to solid phase reaction. As a result, the moving speed of the interface 5, that is, the single crystallization speed II increases. When carrying out the method of the present invention, it is important to ensure that the compounds contained in the liquid phase 6 are not incorporated into the single crystal after crystallization as much as possible, that is, they are not diffused into the ferrite single crystal. The present inventors have investigated various compounds that induce liquid phase sintering. As a result, Na2O, V2O5+ Cab, 5io2.
C++20. It has been found that when at least one of the Cr oxide and 5b203 is present at the interface between the single crystal and the polycrystal, a liquid phase is formed and the object of the present invention is achieved. Specific examples of the present invention will be described below. Example 1 The final composition ratio is 52 mol%FC203132 mol%Mn
O. α of 99.5% purity to make 16 mol% ZnO
-F(420:,. 1825g and MnCO388,7 with a content of 91.2%
Weighed 28.7 g of ZnO with a purity of 9 < s% and wet mixed it in a urethane ball mill for 15 hours.
It was calcined in air for -2 hours. After calcining, the mixture was mixed again for 15 hours using a urethane ball mill, and then the precipitate was dried at 130° C. for 10 hours. Pure water 12-15
After adding particles and granulating with a Raikai machine and changing the particle size/C,
: The granulated powder was molded at a molding pressure of 300 kg/Gm2. This molded body was placed in the air at 1280°C for 3 hours at 300°C.
kgAw? Debok 1 Gress 1. So, the average grain size is 25
A sintered body with a porosity of 0.2% per μm was obtained. This sintered body]
Cut into a rectangular parallelepiped of 0'X 20X 30J, 20X:
The surface of 3Qmm2 is used as the joint surface, and this surface is treated with a GCC abrasive of 2000mm/yu, and a GC of ≠4000mm/yu.
Ken 1? Ken F? After polishing, it is polished to a mirror finish using diamond abrasive grains with a diameter of 3 μm. By using a plurality of such polycrystals, sintering them, and using the spackle method using K Ar scum, each of them is made into Na2O+V2O.
51Cart Cu2O+ 5i02+ Cr2O3+
Thin films of 5b2o2, SrO, pbo, 8aO】
It was formed with a thickness of 000^. On the other hand, a Jli crystal with the same composition as the polycrystal was manufactured by the Flin-In method, and the bonding surface was the (100) plane.
The plane perpendicular to is 4110) K, so 20X30X
] Cut a 5 m sample piece. 20X3Q+ of joint surface
The u+ was mirror-ground using the same method θ as for the polycrystal, and dilute nitric acid was applied to increase the surface activity.The joint surfaces of the polycrystal and the m-crystal were bonded to each other and then heated in N2 at 1320°C for 6 hours. Heat treatment was performed. For comparison, the same polycrystal without the compound sputtered was used under the same conditions.
Bonding with the single crystal and heat treatment were performed. After the heat treatment, the joined body was cut at the center, the cut surface was mirror-ground, and etched with hydrochloric acid to determine the length S of single crystallization iI]1. Na2O+ V2O5, Cab, 5i02. of the present invention.
Sputter Cu2O, Cr2O3+st, 2o3 [7
The single crystallization length S is 4 to 5, Bad, Sr.
In the case of sputtering O, PbO, the S thickness is about 2 mm,
In the case where the compound was not sputtered, S was 1 dragon or less. Using the above-mentioned method of the present invention, we cut out a crystallized part from a polycrystal and examined its magnetic properties.
The magnetic permeability (μmk) at kHz was 1.0.000, and the coercive force (Hc) was 0.05 (Oe). Tatashi,
11aO. For those sputtered with SrO and PbO, μmk is 5
,000-6.000. Hc is Q, loe is Tsu/ko. One crystal produced by the method of the present invention had properties equivalent to those of a single crystal of the same composition produced by the conventional Norisonoman method. As a result of making a prototype magnetic head using this single crystal and investigating the characteristics of ... Rad, S/'N and frequency 5 Ml, 1
The output in Z is equivalent to or better than that produced by the Norifushifun method. In addition, compound 7
Whether the butter is used as the bonding surface of the T1W crystal or the bonding surface of the two (however, the thickness of the L7 thin film is 1/1 for the table).
(do not exceed m) the effect was the same. Example 2 Mn-Zn polycrystal prepared in the same manner as Example 1 was added with Na
20 +V2O5+ Cu2O+ 5i02+
Cr2O: ++ 5b203 for 100 people, 2
0 (10 people. Sputtering with each thickness of 5000X, 1 μm, and 2 μm, bonding with a single crystal in the same manner as in Example 1, and performing heat treatment to attempt single crystallization. As a result, the single crystal length S is 4, 4, 3, 2 with respect to the thickness of the thin film.
. 05 and 1. When the thickness of the thin film exceeded 1/7 m, 111 crystallization worsened. (Effects of the Invention) As explained above, the present invention allows medium-crystal ferrite 1, which has an appeal equal to or higher than that of a single crystal produced by solinodiman θ, to a conventional bonded type 1411-crystal ferrite. It has the effect of being able to manufacture 4 to 5 times faster than other manufacturing methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の接合型単結晶フJライトの単結晶育
成捷ての製造工程を模式的匠示した図、第2図は、従来
の固相反応による単結晶化を説明する図、第3図は、本
発明方法による単結晶化を説明する図である。 1 ・・−・・・中結晶、 2・・・−・・・多結晶、
 la、2a・・・・・ 接合面、 3・・・・・・・
多結晶から単結晶化した部分、 4 ・・・・・・・・
・多結晶部分、 5 ・・・・・・・・単結晶化の界面
、 6・・・・・・・・液相。 特許出願人 松F電器産業株式会社 第1図 (Al (8) (C) 第2図 第3図
Fig. 1 is a diagram schematically showing the manufacturing process of the bonded single-crystal flight J-lite of the present invention including single crystal growth and cutting, and Fig. 2 is a diagram illustrating the conventional single crystallization by solid phase reaction. , FIG. 3 is a diagram illustrating single crystallization by the method of the present invention. 1...Medium crystal, 2...Polycrystal,
la, 2a... joint surface, 3...
The part that became single crystal from polycrystal, 4...
・Polycrystalline portion, 5......Single crystallization interface, 6......Liquid phase. Patent applicant Matsu F Electric Industry Co., Ltd. Figure 1 (Al (8) (C) Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)  単結晶と、該単結晶と同−組成又はそれに近
い組成で、かつ前記却結晶と本質的に同一の結晶構造を
有する多結晶とを接合し、この接合体を加熱保持するこ
とにより前記多結晶を単結晶化する単結晶フェライトの
製造方法において、前記単結晶および多結晶の各接合面
のうちいずれか一方または両方に、フェライトの液相焼
結を誘起する化合物の薄膜を予め膜1’P +μm以内
で形成し、その後両者の接合面を張り合わせて熱処理す
ることを特徴とする単結晶フェライトの製造方法。
(1) By joining a single crystal and a polycrystal having the same composition as the single crystal or a composition close to it and having essentially the same crystal structure as the above-mentioned crystal, and heating and holding this joined body. In the method for producing single-crystal ferrite in which the polycrystal is made into a single crystal, a thin film of a compound that induces liquid phase sintering of the ferrite is previously deposited on one or both of the joint surfaces of the single crystal and the polycrystal. 1. A method for producing single crystal ferrite, which comprises forming a single crystal ferrite within 1'P + μm, and then bonding the two together and heat-treating.
(2)  前記フェライトの液相焼結を誘起する化合物
として、Na02+ ”205+ CaO+ CLI2
015ioz、 Crの酸化物1Sb203 のうちか
ら1種又は2種以上を選んで用いることを特徴とする特
許請求の範囲第(1)項記載の単結晶フェライトの製造
方法。
(2) As a compound that induces liquid phase sintering of the ferrite, Na02+ "205+ CaO+ CLI2
015ioz, Cr oxide 1Sb203, and one or more selected from Cr oxide 1Sb203.
JP58011496A 1983-01-28 1983-01-28 Preparation of single crystal of ferrite Pending JPS59141499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58011496A JPS59141499A (en) 1983-01-28 1983-01-28 Preparation of single crystal of ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58011496A JPS59141499A (en) 1983-01-28 1983-01-28 Preparation of single crystal of ferrite

Publications (1)

Publication Number Publication Date
JPS59141499A true JPS59141499A (en) 1984-08-14

Family

ID=11779635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58011496A Pending JPS59141499A (en) 1983-01-28 1983-01-28 Preparation of single crystal of ferrite

Country Status (1)

Country Link
JP (1) JPS59141499A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311591A (en) * 1986-07-01 1988-01-19 Matsushita Electric Ind Co Ltd Production of single crystal ceramic
US5302306A (en) * 1991-03-15 1994-04-12 Sony Corporation Process for preparing polycrystalline ferrite materials and composites containing them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311591A (en) * 1986-07-01 1988-01-19 Matsushita Electric Ind Co Ltd Production of single crystal ceramic
JPH0364476B2 (en) * 1986-07-01 1991-10-07 Matsushita Electric Ind Co Ltd
US5302306A (en) * 1991-03-15 1994-04-12 Sony Corporation Process for preparing polycrystalline ferrite materials and composites containing them

Similar Documents

Publication Publication Date Title
JPH0520232B2 (en)
US4339301A (en) Method for producing a single crystal of ferrite
US4900393A (en) Process for producing single-crystal ceramics
JPS59141499A (en) Preparation of single crystal of ferrite
JPS6222411A (en) Nonmagnetic substrate material and magnetic head
JP2719878B2 (en) Vitrified whetstone
JPH0581532B2 (en)
JPS60195097A (en) Production of ferrite single crystal
JP2823626B2 (en) Method for producing Mn-Zn ferrite joined body
JPS61186297A (en) Production of ferrite single crystal
JPS5926994A (en) Preparation of oxide single crystal
JPH09267266A (en) Vitrified bond cubic system boron nitride grinding wheel for finishing grinding work
JPS6159706A (en) Manufacture of single crystal ferrite
JPH1197241A (en) Manufacture of oxide garnet film
JPS61146781A (en) Manufacture of single crystal
JPS63182285A (en) Production of single crystal of composite type oxide
JPS6215519B2 (en)
JPS61146779A (en) Production of single crystal
JPS62223098A (en) Production of single crystal ferrite
JPS6021892A (en) Substrate treated to form single crystal on surface and preparation thereof
JPS63300413A (en) Magnetic head
JPS5918188A (en) Preparation of ferrite of single crystal
JPS6215516B2 (en)
JPH0346308A (en) Manufacture of electronic component
JPH04158503A (en) Manufacture of cemented mn-zn ferrite