JPS59141380A - Automatic one side welding method of girth joint of pipe - Google Patents
Automatic one side welding method of girth joint of pipeInfo
- Publication number
- JPS59141380A JPS59141380A JP1439383A JP1439383A JPS59141380A JP S59141380 A JPS59141380 A JP S59141380A JP 1439383 A JP1439383 A JP 1439383A JP 1439383 A JP1439383 A JP 1439383A JP S59141380 A JPS59141380 A JP S59141380A
- Authority
- JP
- Japan
- Prior art keywords
- groove
- welding
- arc
- pipe
- backing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K33/00—Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
- B23K33/004—Filling of continuous seams
- B23K33/006—Filling of continuous seams for cylindrical workpieces
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はパイプラインの現地溶接におけるガース継手の
自動溶接法に係υ、特に高速溶接でガースm接部の裏波
ヒートを形成することを目的としたパイプのガース継手
の片面自動溶接方法に関するものである。[Detailed Description of the Invention] The present invention relates to an automatic welding method for girth joints in on-site welding of pipelines, and in particular, girth joints for pipes aimed at creating back wave heat at girth m-joints during high-speed welding. This invention relates to a single-sided automatic welding method.
従来、パイプライン等の敷設工事は各層ごとの溶接を分
割して単独で盛上げるスブレッド工法が採られている。Conventionally, when constructing pipelines, etc., the spread construction method has been adopted, in which each layer is welded separately and then welded individually.
このスブレッドエ法においては、初層の裏波溶接金高速
度で仕上けることが工事の実質能率を左右することから
、溶接法は高速度の振分は下進溶接法が行表われている
。一般に、これらのパイプの突合せ溶接を自動溶接で行
う場合、裏当Nil帯をパイプ内面に押当てたいわゆる
銅バッキング法によるガスシールドアーク溶接法によっ
て行なわれている。かXる高速度による下進溶接は充分
な裏波ビードを確保しようとするために必然的にt電流
となる。In this Spredde method, finishing the first layer of Uranami weld metal at a high speed affects the actual efficiency of the work, so the welding method uses the downward welding method to distribute the high speed. Generally, when these pipes are butt welded by automatic welding, it is carried out by a gas-shielded arc welding method using a so-called copper backing method in which a backing Nil band is pressed against the inner surface of the pipe. In downward welding at such a high speed, a t current is inevitably generated in order to ensure a sufficient underwave bead.
このような高電流の高速度における下進溶接においては
アークが溶融プールの先端を走シ、溶融プールが後から
追、駆けてくる状態と々る。このような状態においては
、時としてアークが直接裏当釦j帯に突込み、裏当銅帯
を岱融する結果、溶着を起し、裏波ビードと裏当銅帯と
が溶接されてしまうことが起る。その結果、裏当銅帯を
パイプから外すのに余分な時間を浪費することになシ、
甚しい能率低下を来す。しかも裏波ビードに裏当銅帯の
一部が溶は込んで合金化するため、溶接金属部に高温わ
れを起す原因となる。In such downward welding at high current and high speed, the arc runs along the tip of the molten pool, and the molten pool follows behind. Under such conditions, the arc may sometimes directly penetrate the backing button j band and melt the backing copper band, resulting in welding and welding the backing bead and the backing copper band. happens. As a result, you will not have to waste extra time removing the backing copper strip from the pipe.
This results in a severe decrease in efficiency. Furthermore, a portion of the backing copper band melts into the uranami bead and becomes alloyed, which causes high-temperature cracks in the weld metal part.
このような溶接状態における銅の浴着現象は溶接′t(
5、流、溶接速度を落せば避けられるが、それでは))
r期の高能惠溶接を達成することができない。The copper deposition phenomenon in such welding conditions is caused by welding 't(
5. It can be avoided by slowing down the welding speed, but then))
It is not possible to achieve high performance welding in the R stage.
さらに下進溶接で行なわれる裏波溶接は溶接速度が早く
なる程、その適正条件師、囲も狭くなる。このことはま
だ開先の加工寸法変動、←4管の芯合せによる目違い、
ギヤツブ変動噌の現場で生じる条件変動に対してその許
容度が狭くなり、適用が厳しくなる。Furthermore, the faster the welding speed of Uranami welding performed by downward welding, the narrower the appropriate conditions and the narrower the welding area. This still means variations in the machining dimensions of the groove, misalignment due to alignment of the four pipes,
The tolerance for the variation in the conditions that occur in the field of gear shifting becomes narrower, making it more difficult to apply.
従来、固定管の突合せ円周自動溶接において、裏当装置
を用い、消耗電極式アーク溶接法により、片面溶接を行
う方法としては、例えは第1図、第21シ11.及び第
3図(いずれも特開昭50−23350号記載)に示す
ような技術がある。この技術は裏当銅帯25を用いて、
突合せた固定管11および12の開先ルート面14.1
4’を挾んで内部111ii胴13.13’によって作
られる内(11+1の■開先と、外部傾斜17.17’
によって作られる外側のV開先とからなる2重■字形継
手に対して、外側から接触管60により導いた溶接ワイ
ヤWを導入角度(前進角)A≧15°として送9込む方
法である。Conventionally, in automatic butt circumferential welding of fixed pipes, one-sided welding is performed by consumable electrode arc welding using a backing device, for example, as shown in Fig. 1, Fig. 21, 11. There are techniques as shown in FIG. 3 and FIG. 3 (both described in JP-A-50-23350). This technique uses a backing copper strip 25,
Groove root surface 14.1 of abutted fixed tubes 11 and 12
4' and the inner 111ii created by the 13.13'
This is a method in which a welding wire W guided from the outside through a contact tube 60 is fed into a double ■-shaped joint formed by a V groove on the outside with an introduction angle (advance angle) A≧15°.
そしてこの場合溶融池57を保持するためにシールドガ
ス71をノズル70より非常な高速で噴射しながら溶接
を行い、裏波ビード26を形成するものである。In this case, welding is performed while injecting shielding gas 71 from the nozzle 70 at a very high speed in order to hold the molten pool 57, thereby forming the underwave bead 26.
而して、かかる上記技術は多数の要因、例えば異常な急
角度での正確なワイヤの速度と方向制御、CTWD(ワ
イヤ突出し距離)調整、ガス流制御、高い開先精度等々
が総合的に確保されれは優れた方法と思われる。しかる
に実際の現地溶接においては、これら多くの要因を正確
に確保し、保証することは非常に困難である。またこの
ように制御手段があ−i:、b複雑になると、これを正
常に稼動させるため常時保守管理をしている必要があり
、誠に煩雑である。実際問題として現地溶接に前記の現
場で生じる条件変動を許容して上記技術を適用しようと
試みてもこれを実施することは殆んど不可能に近い。Therefore, the above technology comprehensively ensures a number of factors, such as accurate wire speed and direction control at abnormally steep angles, CTWD (wire projection distance) adjustment, gas flow control, high bevel accuracy, etc. This seems like a good method. However, in actual on-site welding, it is extremely difficult to accurately ensure and guarantee these many factors. Furthermore, when the control means becomes complicated as described above, it is necessary to constantly maintain and manage the control means in order to operate the control means normally, which is really complicated. As a practical matter, even if one attempts to apply the above-mentioned technique to on-site welding while allowing for the variations in conditions that occur on-site, it is almost impossible to do so.
本発明者らは、既にこれらの複雑な制御を要せず、現地
溶接に即した確実な方法により安定上た裏波ビードをイ
t+るパイプラインの溶接自動化技術として、特開昭5
3−130246号およびt1コ「開閉55−1391
94号を提案してきた。すなわち前者は裏当銅帯表向に
0.1〜1.2調厚の配人材コーティングを設けた片面
溶接用幾当帯に関するものであり、後者はパイプのガー
ス継手の自動溶接法に際し、内面側をV開先、外面側を
U開先とし、後退角溶接を行う溶接法に閂するものであ
って、前渚id−裏尚銅帯の裏波ビードへの溶着を防止
し、後者は妙クイ[な制御を要せず現地溶接に安定した
裏波ビードを得るだめのパイプラインの自動化技術を提
供するもので夫々すぐれた効果を発揮するものであるが
、口d先の加工寸法変動、鋼管の芯合せによる目違い、
ギャップ変動に対する適用精度、および時として不確定
々要因によって生じるアーク変動等に対する順応性の点
では夫々単独では充分満足する結果を得るには至らなか
った。The present inventors have already developed a pipeline welding automation technology in Japanese Patent Application Laid-Open No. 5-13301 that does not require these complicated controls and can produce a stable Uranami bead by a reliable method suitable for on-site welding.
No. 3-130246 and t1 "opening/closing 55-1391
I have proposed No. 94. In other words, the former relates to a single-sided welding strip in which a 0.1 to 1.2-thickness coating is provided on the surface of the backing copper strip, and the latter concerns the inner surface of the backing copper strip during automatic welding of pipe girth joints. This bolt has a V-groove on the side and a U-groove on the outer surface, and is used for the welding method that performs receding angle welding, and prevents welding of the front and back copper strips to the uranami bead. This technology provides pipeline automation technology that allows stable welding beads to be obtained in on-site welding without the need for special control, and although these technologies are highly effective, there is a problem with processing dimension fluctuations at the tip of the pipe. , Misalignment due to steel pipe alignment,
In terms of the accuracy of application to gap fluctuations and the adaptability to arc fluctuations sometimes caused by uncertain factors, it has not been possible to obtain sufficiently satisfactory results using each alone.
そこで本発明者らは両技術にさらにシールドガスの選定
を加えて優れた相乗効果を期待することにより現地溶接
の厳しい要求に対して確実な安定した裏波ビードを得る
ための消しいパイプラインの新規な溶接自」11化技術
の棉供に成功したものである。すなわち本発明はパイプ
のガースg手の高速溶接にふ・いて、開先ルート面を挾
んで管内面側に深さ4鼠以下とするIr字形開先を設け
ると共に管外面側は開先ルートを円弧状とする狭開先と
し、且つ0.1〜1.2 mmの厚さの単層又i/″3
:複数層の耐火材コーティング層を有する裏当銅帯を用
いさらに35〜759I+の活性ガスを含むシールドガ
スを用いて管外面側からアーク溶接を行うことを特徴と
するパイプのガース’M手の片面自動溶接方法である。Therefore, the present inventors added shielding gas selection to both technologies and expected an excellent synergistic effect, thereby developing an erasing pipeline to obtain a reliable and stable Uranami bead to meet the strict demands of on-site welding. This was a successful development of a new welding technology. That is, the present invention is based on high-speed girth welding of pipes, and an Ir-shaped groove with a depth of 4 mm or less is provided on the inner surface of the tube, sandwiching the groove root surface, and the groove root is formed on the outer surface of the tube. A single layer or i/″3 with a narrow arc-shaped groove and a thickness of 0.1 to 1.2 mm.
: Girth'M method of pipe, which is characterized by arc welding from the outer surface of the pipe using a backing copper strip having multiple refractory coating layers and a shielding gas containing an active gas of 35 to 759 I+. This is a single-sided automatic welding method.
以下本発明の詳細な説明する。先ず第4図および第5図
は本発明による固定管の円周片面自動溶接法の説明図で
あって、鋼管(母材)11および12の開先を2重開先
とし、開先ルート面14゜14′を密着させて、外側開
先のルート27から外面に至る16.16’と内部傾斜
13.13’を設け、開先内面側36に裏当銅帯25を
押当てた紹(手装置とする。そして外部開先側15.1
5’側から溶接ワイヤWを送シ込み、シールドガス7エ
をノズル70から送給し、アーク溶接するものである。The present invention will be explained in detail below. First of all, FIGS. 4 and 5 are explanatory diagrams of the circumferential single-sided automatic welding method for fixed pipes according to the present invention, in which the grooves of the steel pipes (base metal) 11 and 12 are double grooves, and the groove root surface is 14° and 14' are brought into close contact, 16.16' and internal slope 13.13' are provided from the root 27 of the outer groove to the outer surface, and a backing copper strip 25 is pressed against the inner surface 36 of the groove. Hand device and external bevel side 15.1
The welding wire W is fed in from the 5' side, the shielding gas 7e is fed through the nozzle 70, and arc welding is performed.
このような場合、片面溶接において良好な裏波ビード2
6を得るには開先ルート27の浴は込みが深<、シかも
溶接アーク28の変動が少く、溶融池57が安定して、
生成と凝凶1の繰返しをスムースに行っていくことが必
要である。In such cases, a good Uranami bead 2 is used for single-sided welding.
In order to obtain 6, the groove root 27 must be deep and the fluctuation of the welding arc 28 is small, the molten pool 57 is stable,
It is necessary to smoothly repeat the generation and hardening 1.
しかるに開先ルート面14.14’の密着した溶接継手
において片面溶接によって裏波ビード26が形成される
ためには溶接アーク28が開先ルート27から開先ルー
ト面14.14’の合せ面を通過し々ければならない。However, in order to form the uranami bead 26 by single-sided welding in a welded joint where the groove root surfaces 14.14' are in close contact, the welding arc 28 must move from the groove root 27 to the mating surface of the groove root surfaces 14.14'. I have to pass through it.
そしてこのアーク熱によって周辺区域の母材が溶融した
溶融金属とワイヤWが溶けて生成した溶融金属とによっ
て形成された溶融池57が内側開先13.13’を満た
し裏当銅帯25によって冷却凝固して裏波ビード26が
形成される。A molten pool 57 formed by this arc heat melts the base metal in the surrounding area and molten metal generated by melting the wire W fills the inner groove 13.13' and is cooled by the backing copper band 25. It solidifies to form a Uranami bead 26.
一方、外面の開先は次の理由から円弧状にしなければな
らない。す々わち、円孤形開先15.15’はV字形開
先に比べてなだらかに開先壁16,16’に達するため
、開先幅方向のアーク長の変動が少く、溶接アーク28
は安定する。従って溶融池57の溶融形状が安定化する
ため開先壁面16.16’とのなじみもよく、形成され
るビードは凹凸がなく良好となる。さらに開先ルート2
7は円弧なので溶接アーク28が直角にあたるため溶は
込みが最も犬きくなる。On the other hand, the groove on the outer surface must be arcuate for the following reasons. In other words, the arc-shaped groove 15.15' reaches the groove walls 16, 16' more gently than the V-shaped groove, so there is less variation in the arc length in the groove width direction, and the welding arc 28
becomes stable. Therefore, the molten shape of the molten pool 57 is stabilized, so that it fits well with the groove wall surface 16, 16', and the formed bead has no irregularities and is good. Furthermore, groove route 2
Since 7 is a circular arc, the welding arc 28 hits at a right angle, resulting in the deepest weld penetration.
甘だ内側には、内側開先13.13’を設けておくと、
開先ルート而14.14’を通過したアークは内側開先
13.13’の空間内で吸収され弱められるので耐火材
コーティング層24及び裏当m帯25がアークによって
溶融損傷するということを防ぐことができる。そして管
内面側開先深さhを4晒以下に限定する理由は次の通り
である即ち上述の溶接を行う場合第4図に示す内面側開
先深さhが4問超になると、内側開先13.13’を溶
融池が満しきれなくなるので内側V開先の肩が残って内
面ビード余盛シが得られない。従って管内面開先深さh
を48以下とした。このような理由から本発明において
は開先形状を前記のようなものに限定した。If you make an inner groove of 13.13' on the inside of the sweet spot,
The arc passing through the groove root 14.14' is absorbed and weakened within the space of the inner groove 13.13', thereby preventing the refractory coating layer 24 and the backing m-band 25 from being melted and damaged by the arc. be able to. The reason why the groove depth h on the inner surface of the pipe is limited to 4 or less is as follows. Namely, when performing the above-mentioned welding, if the groove depth h on the inner surface shown in Fig. 4 exceeds 4, Since the molten pool does not completely fill the grooves 13 and 13', a shoulder of the inner V groove remains and an inner bead overgrowth cannot be obtained. Therefore, the pipe inner groove depth h
was set to 48 or less. For this reason, in the present invention, the groove shape is limited to the one described above.
なおワイヤ導入角を前進角にとると立向の位置で溶鋼が
先行を始め、溶融池の上面をアークがたたくようにな7
す、開先ルート27の溶は込みが浅くなって内側開先1
3.13’を溶融池が満せなくなるので溶融池をアーク
後方に追いやるだめワイヤ導入角は垂直あるいは後退角
をとるのが望ましい。次に兵当治具に耐火材のコーティ
ング層24を有する裏当銅帯25を用いるのは適用条件
範囲を広げるためである。すなわち現場で生じる前述の
ような条件変動によシ、標進条件を外れ開先ルート而1
4.14°′を突抜けたアークが裏当銅帯に達した場合
にも第4図の開先内面側36と裏当銅帯25の間に耐火
材コーティング層24を介することによシ裏当銅帯25
にアークがIμ接当るのを防1トすることが可能となシ
納の溶着が生じない。Note that when the wire introduction angle is set to the advancing angle, the molten steel starts to advance in the vertical position, and the arc strikes the top surface of the molten pool.
The weld penetration of groove route 27 becomes shallower and inner groove 1
Since the molten pool cannot fill 3.13', it is desirable that the wire introduction angle be vertical or receding in order to drive the molten pool to the rear of the arc. Next, the purpose of using the backing copper strip 25 having the coating layer 24 of refractory material in the fighting jig is to widen the range of applicable conditions. In other words, due to the above-mentioned condition fluctuations that occur at the site, the groove route may deviate from the advancing conditions.
4. Even if the arc that penetrates through 14°' reaches the backing copper strip, it can be prevented by interposing the refractory material coating layer 24 between the inner surface of the groove 36 and the backing copper strip 25 in FIG. Backing copper band 25
It is possible to prevent the arc from coming into contact with the Iμ contact, and no welding of the joint occurs.
これによって常に安定した裏波ビードが得られる。This allows a stable Uranami bead to be obtained at all times.
ここで耐火材の厚みを0,1鰭以上としたのは0.1未
満では耐火材としての性質を充分に活かすことはMir
L <繰返し使用の耐久性が劣るからである。The reason why the thickness of the refractory material is 0.1 fin or more is that if it is less than 0.1 fin, it will not be possible to fully utilize its properties as a refractory material.
L<This is because the durability after repeated use is poor.
一方、1.2脇超になると溶接後の耐火材表面の凹凸が
大きくなシ、平滑な面が再現されに<<、さらにコーテ
ィング処理したものが取扱中にかけて剥れたりすること
から使用性に見合った適当な厚みは1.2m以下である
。以上のことから耐火材のコーティング処理の厚さを0
1〜1.2能と限定した。On the other hand, if the temperature exceeds 1.2, the unevenness of the refractory material surface after welding becomes large, the smooth surface cannot be reproduced, and the coated material peels off during handling, which impairs usability. A suitable commensurate thickness is 1.2 m or less. Based on the above, the thickness of the coating treatment for fireproof materials should be set to 0.
It was limited to 1 to 1.2 abilities.
本発明にいう耐火材とはAlxOs s S 102
、 MfO。The refractory material referred to in the present invention is AlxOs S 102
, MfO.
Ti021 ZrO,等の金属酸化物でそれを単独ある
いは任意の割1合いで混合したものである。これらの耐
火材はいずれも造滓剤となりうる性質のものであシ、比
較的溶鉄とのなじみが良く、かつ極めて融点の旨いもの
を選ぶ。裏当銅帯に耐火材をコーティングする手法とし
ては、耐火粉末を水ガラスにといだペースト状のものを
塗布する方法、さらに700〜800℃で焼付ける方法
、溶射による方法等があるが溶射がいちばん実用的であ
る。コーティングされた削人材はアークがごく短時間直
接当ることがあっても融点が高くまた裏当銅帯より、裏
から冷却されるので溶は落ちることはなくしかも平滑な
表面が再現されるだめ、繰返し溶接の使用に4えること
ができる。These are metal oxides such as Ti021, ZrO, etc., used alone or mixed in arbitrary proportions. All of these refractory materials have properties that can be used as slag-forming agents, so those that are relatively compatible with molten iron and have extremely high melting points are selected. Methods for coating the backing copper strip with refractory materials include applying a paste of refractory powder dissolved in water glass, baking at 700 to 800°C, and thermal spraying. It is the most practical. Even if the coated cutting tool is directly hit by the arc for a short period of time, it has a high melting point and is cooled from the back by the backing copper strip, so the melt will not fall off and a smooth surface will be reproduced. 4 benefits can be gained from the use of repeated welding.
次に活性ガスを含むシールドガスを用いるのけブロホー
ルの発生を防止するだめである。本発明において活性ガ
スとはCO2ガスの他co2ガスに若干の02ガスを含
んだものを指すものである。また、活性ガスを含むシー
ルドガスとは、Ar、 Heなとの不活性ガスに適量の
活性ガスを混合し/ζものを指す。しかして、一般に高
速度の下進溶接ではブロホールが発生しやすく、このf
lfi向はも゛に上向溶接で顕著となる。このブロホー
ルは不活性ガス中の活性ガスの量によって決まシ、活性
ガスの杯が増すほどブロホールは生じにくくなる。−実
情性ガスの量が増すと安定した裏波ビードを得るための
アーク市川は高くなシ、スパッタも増加し、さらにアー
クの短絡回数が減少することから作業性が劣る。シール
ドガス中の活性ガスが35%未満では特に上向溶接部の
ブロホールを防止することができない。また75%超に
なると短絡回数が減少し、溶接作業性が劣る。以上のこ
とからシールドガス中の活性ガスの比を35〜75%と
限定した。Next, it is necessary to use a shielding gas containing an active gas to prevent the generation of blowholes. In the present invention, the active gas refers to CO2 gas and CO2 gas containing some 02 gas. Moreover, the shielding gas containing active gas refers to a mixture of an appropriate amount of active gas with an inert gas such as Ar or He. However, in general, blowholes are likely to occur in high-speed downward welding, and this
The lfi direction becomes especially noticeable in upward welding. This blohol is determined by the amount of active gas in the inert gas, and the more active gas there is, the less blohol is generated. - Practical Conditions: As the amount of gas increases, the arc required to obtain a stable Uranami bead becomes expensive, spatter increases, and the number of arc short circuits decreases, resulting in poor workability. If the active gas content in the shielding gas is less than 35%, blowholes cannot be prevented, especially in the upward welding part. Moreover, if it exceeds 75%, the number of short circuits will decrease, and welding workability will be poor. Based on the above, the ratio of active gas in the shielding gas was limited to 35 to 75%.
このように本発明は消耗1極による狭開先の高j牙度溶
接において、管内面側にV字形開先を設けると共に管外
面側の開先ルートを円弧状とする開先と而」人材コーテ
ィング層を有する腹当銅帯さらにシールドガス組成の選
択による採用によって、パイプラインガース溶接の全姿
勢に渡って安定した溶接アークと溶融池の均衡を保持し
々からパイプの外面からの溶接で良好な裏波ビードを得
ることが可能となる。In this way, the present invention provides a groove in which a V-shaped groove is provided on the inner surface of the tube and the groove route on the outer surface of the tube is arc-shaped in high-J degree welding of a narrow groove using a single consumable pole. By adopting a bracing copper strip with a coating layer and selecting the shielding gas composition, a stable balance between the welding arc and the molten pool is maintained over all positions during pipeline girth welding, making it possible to weld from the outside of the pipe. It becomes possible to obtain a beautiful underwave bead.
以下本発明の効果を実施例によりさらに具体的にへ兄明
する。Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples.
実施例
(1)輛管
鋼 種 API 5LX X52寸
法 外径 324 tayh
化学成分 C0,11%、Si0.23%、 M、n
l、30%機械的性質 引張強さ55.3梅/’IIJ
降伏点 44.7 kり/d
伸び 36チ
(2)溶接法
消耗電極式アーク溶接法
(3)溶接ワイヤ
実体ワイヤ 直径0.9匍n
化学成分 CO,11%、 SiO,70%、 Mn
1.42%機械的性質 引張強さ584均/mA
降伏点 45’、 6 kq/mA
(4)開先形状と溶接条件および裏当銅帯先ず、第3図
の従来の開先形状を取り、その開先寸法はtt: 12
.7m 、 h : 2w、 RF : 1.5mm
、 tt:6闘、θ、:22.5°、θ、=45°、θ
、ニア°としだ。Example (1) Pipe steel Type API 5LX X52 dimensions Outer diameter 324 tayh Chemical composition C0.11%, Si0.23%, M, n
l, 30% Mechanical properties Tensile strength 55.3ume/'IIJ
Yield point: 44.7 k/d Elongation: 36 inches (2) Welding method: Consumable electrode arc welding method (3) Welding wire Solid wire diameter: 0.9 m Chemical composition: CO, 11%, SiO, 70%, Mn
1.42% Mechanical properties Tensile strength 584 average/mA Yield point 45', 6 kq/mA (4) Groove shape, welding conditions, and backing copper strip First, the conventional groove shape shown in Fig. 3 was taken. , the groove size is tt: 12
.. 7m, h: 2w, RF: 1.5mm
, tt: 6 fights, θ,: 22.5°, θ, = 45°, θ
, Near ° Toshida.
裏当銅帯は第2図の要領で取シっけた。(の寸法は、享
さ10咽9幅40咽、溝の深さd=0.5■である。The backing copper strip was removed as shown in Figure 2. (The dimensions are 10 inches wide, 40 inches wide, and the depth of the groove d = 0.5 square meters.
またシールドガスは100%CO,,流量3077m1
nとしだ。Also, the shielding gas is 100% CO, flow rate 3077ml
It's n.
ワイヤ導入角A:前進角15°、溶接電流260A’。Wire introduction angle A: advancement angle 15°, welding current 260A'.
溶接電圧27V、溶接速度110cTn/min 、ワ
イヤ振動数:390回/minで、第6図に示すような
鋼管断面において、時計の■瞳位置からTTI時位荷位
置■瞳位置を通過して■時位簡に向けて溶接方向59の
振分は下進溶接を行った。結果は■瞳位置に銅の少量溶
着がみられ、さらに、■瞳位置及び■時位1暇において
一部内面側開先13.13’の肩が残ジ、裏波ビードが
得られずAPI規格1104を満足しなかった。At a welding voltage of 27 V, a welding speed of 110 cTn/min, and a wire frequency of 390 times/min, in the cross section of the steel pipe as shown in Fig. 6, we measured the position of the clock from the pupil position to the load position at TTI. The distribution of the welding direction 59 toward the time position was downward welding. The results showed that a small amount of copper was deposited at the pupil position, and in addition, some of the shoulders of the inner groove 13.13' remained at the pupil position and ■1 time position, and an uranami bead could not be obtained. Standard 1104 was not satisfied.
これに対して、同様の(11鋼管、(2)溶接法、(3
)溶接ワイヤを用いて第4図の開先形状を取り、その開
先寸法はθ、二6°、 R: 2.75均/、 RF
: 1.5m+++、θ。On the other hand, similar (11 steel pipes, (2) welding method, (3)
) Using a welding wire, take the groove shape shown in Figure 4, and the groove dimensions are θ, 26°, R: 2.75/, RF
: 1.5m+++, θ.
:225°、とし、hを2 mm 、 4 mm +
5 mmの3水準とθ、、R,RF’を同寸法としてh
−0の内m (lull V開先なしものについて行っ
た。裏当銅帯25は厚さ10門9幅40朔でコーティン
グなしのものと、A t20 sを単独に0.1 mm
、 0.25tan、 0.5m、 1.2mm。:225°, and h is 2 mm, 4 mm +
Assuming that the three levels of 5 mm and θ, , R, and RF' are the same dimensions, h
-0 m (lull V) without a groove.The backing copper strip 25 has a thickness of 10 gates, a width of 40 mm, and an uncoated one, and an A t20 s of 0.1 mm.
, 0.25tan, 0.5m, 1.2mm.
1.51の各厚さに溶射したもの、及びZrQ、とA4
03の層を重ねてo、5「厚さに溶射したものとを剛火
材コーティング層24としてそれぞれ形成させた。1.51, and ZrQ, and A4
The 03 layers were stacked and thermally sprayed to a thickness of 0 and 5 mm to form the refractory coating layer 24, respectively.
々お、該コーティング層24は第4図に示すように銅帯
250両肩部まで均一厚さに設けた。このようにするこ
とにより、溝の深さをいずれもd=0.5罷とした。シ
ールドガスは100チCO2,Ar475 % 002
、 Ar + 50%C02、’ Ar + 35
襲C02*Ar+ 20 % CO,で流量30t/m
inとした。ワイヤ導入角13:後退角5°、溶接部、
流250〜290 Aとし、溶接へ圧25〜27■、溶
接速度110 cm 7m in 、ワイヤ振動数39
0回/minで紀6図に示すような鋼管断面について、
時計のX[時位置から■時位置又は■時位置を通過して
■時位置に向けて振分は下進溶接を行った。As shown in FIG. 4, the coating layer 24 was provided to have a uniform thickness up to both shoulders of the copper strip 250. By doing so, the depth of each groove was set to d=0.5. Shielding gas is 100% CO2, Ar475% 002
, Ar + 50%C02, 'Ar + 35
Attack C02*Ar+ 20% CO, flow rate 30t/m
It was set as in. Wire introduction angle 13: receding angle 5°, welded part,
The flow was 250 to 290 A, the welding pressure was 25 to 27 cm, the welding speed was 110 cm 7 min, and the wire frequency was 39.
Regarding the steel pipe cross section as shown in Fig. 6 at 0 times/min,
Downward welding was performed from the X [hour position of the clock] to the ■ o'clock position or passing through the ■ o'clock position to the ■ o'clock position.
その結果は第1表の通りである。○印のものが溶接部の
全線xi透過試験でJIS 3104の2級以上の成踊
が得られた。The results are shown in Table 1. Items marked with ○ achieved JIS 3104 grade 2 or higher in the full-line xi transmission test of the welded part.
第1表
○良好 △銅少量溶着又は裏波若干不安定X不良(ブロ
ホール又は裏波不良又は釦1溶着)すなわち以上の結果
からルートを円弧状とした開先に4i以下の内面開先を
取り、裏当銅帯に耐火材0,1〜1.2■厚さのコーテ
ィング層を有17たもので、シールドガスに35〜75
%のン舌性ガスを用いて溶接したものはいずれの単独の
使用状態で溶接を行ったものに比べて極めて良好々結果
を示した。上記の実施例から明らかなように本発明はバ
イブのガース継手の自動溶接法において、健全なる裏波
ビードを得る高速度の片面溶接技術を可能にしだもので
あり、産業の発展に貢献する所、極めて大なるものがあ
る。Table 1 ○ Good △ Small amount of copper welded or Uranami slightly unstable The backing copper strip has a coating layer of fireproof material 0.1 to 1.2 cm thick, and the shielding gas has a coating layer of 35 to 75 cm.
The results of welding using % of the non-toxic gas were significantly better than those welding using any of the oxidizing gases used alone. As is clear from the above embodiments, the present invention enables high-speed single-sided welding technology to obtain a sound underwave bead in the automatic welding method of the girth joint of a vibrator, and contributes to the development of industry. , there is something very big.
第1図、第2図および第3図は従来法による固定管の円
周片面自動溶接法の説明図、第4図および第5(シlは
本発明による固定管の円周片面目動溶接法の説明図、第
6図は溶接方向を示す説明図である。
11.12・・・固定管母材、13.13’・−・内部
傾斜、14.14’・・・開先ルート面(合わせ面)、
1.5..15’・・・外部開先ルート円弧、16.1
6’・・・外部開先上段傾斜、 17.17’・・・
外部開先下段傾斜、 24・・・耐火材コーティング
層、 25・・・與当銅帯、 27・・・開先ルー
ト、 36・・・内部開先側、 26・・・裏波ビー
ド、 28・・・溶接アーク、 57・・・溶融池、
59・−・溶接方向、 60・・・接触管、 7
0・−・ノズル、 71・・・シールドガス、 W・
−・溶接ワイヤ、 A・・・ワイヤ導入角前進角、
B・・・ワイヤ導入角後退角、 d・・・溝の深さ、
IIl、、 )]、 LX、 X[l・・・溶接姿勢を
示すために鋼管の断面を時計の文字盤に合せた時計
位置。
出願人 新日本製鐵株式会社
代理人弁理士 青 柳 稔第1図
第2図
第3図
第4図 第5図
第6図Figures 1, 2, and 3 are explanatory diagrams of automatic welding on one side of the circumference of a fixed pipe according to the conventional method, and Figures 4 and 5 (Sil is an illustration of the automatic welding of one side of the circumference of a fixed pipe according to the present invention). Figure 6 is an explanatory diagram showing the welding direction. 11.12...Fixed tube base material, 13.13'...Internal slope, 14.14'...Group root surface (Mating face),
1.5. .. 15'... External bevel root arc, 16.1
6'...Top slope of external bevel, 17.17'...
External groove lower stage slope, 24... Refractory material coating layer, 25... Toto copper band, 27... Bevel root, 36... Internal groove side, 26... Uranami bead, 28 ...welding arc, 57...molten pool,
59... Welding direction, 60... Contact tube, 7
0... Nozzle, 71... Shield gas, W.
-・Welding wire, A...Wire introduction angle advancement angle,
B... Wire introduction angle receding angle, d... Groove depth,
IIl,, )], LX, X[l... Clock position where the cross section of the steel pipe is aligned with the clock face to indicate the welding position. Applicant Nippon Steel Corporation Representative Patent Attorney Minoru Aoyagi Figure 1
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6
Claims (1)
を挾んで管内面側に深さ4咽以下とする■字形開先を設
けると共に管外面側は開先ルートを円弧状とする狭開先
とし且つ、0.1〜1.2胡の厚さの単層又は複数層の
酬人材コーティング層を有する裏当銅帯を用いさらに3
5〜75襲の活性ガスを含むシールドガスを用いて、%
・外面側からアーク溶接を行うことを特徴とするパイプ
のガース継手片面自動溶接方法。In high-speed welding of pipe girth joints, a ■-shaped groove with a depth of 4 mm or less is provided on the inner surface of the pipe, sandwiching the groove root surface, and a narrow groove with an arcuate groove root is provided on the outer surface of the pipe. In addition, using a backing copper strip having a single layer or multiple layer coating layer with a thickness of 0.1 to 1.2 mm, further 3
Using shielding gas containing active gas of 5 to 75%
- A single-sided automatic welding method for pipe girth joints, which is characterized by performing arc welding from the outside side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1439383A JPS59141380A (en) | 1983-01-31 | 1983-01-31 | Automatic one side welding method of girth joint of pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1439383A JPS59141380A (en) | 1983-01-31 | 1983-01-31 | Automatic one side welding method of girth joint of pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59141380A true JPS59141380A (en) | 1984-08-14 |
Family
ID=11859809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1439383A Pending JPS59141380A (en) | 1983-01-31 | 1983-01-31 | Automatic one side welding method of girth joint of pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59141380A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110695563A (en) * | 2019-10-12 | 2020-01-17 | 中石化河南油建工程有限公司 | Welding method for tank wall plate of soil covering tank |
-
1983
- 1983-01-31 JP JP1439383A patent/JPS59141380A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110695563A (en) * | 2019-10-12 | 2020-01-17 | 中石化河南油建工程有限公司 | Welding method for tank wall plate of soil covering tank |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8610031B2 (en) | Method of arc welding root pass | |
JP5318543B2 (en) | Laser-arc combined welding method | |
US7550692B2 (en) | Consumable guide tube | |
US4019018A (en) | Process for narrow gap welding of aluminum alloy thick plates | |
JP5416422B2 (en) | Laser-arc combined welding method | |
JPH08243754A (en) | Inner face welding method of clad steel tube | |
US20190358725A1 (en) | Single-sided submerged arc welding method and single-sided submerged arc welding device | |
US5750955A (en) | High efficiency, variable position plasma welding process | |
JPS59141380A (en) | Automatic one side welding method of girth joint of pipe | |
JP2007196266A (en) | Both-side welding method and weld structure thereby | |
JP2007090386A (en) | Two-sided welding process and welded structure formed thereby | |
JP3182672B2 (en) | Internal welding method of clad steel pipe | |
JP7230606B2 (en) | Composite welding method for galvanized steel sheets | |
JP4871747B2 (en) | Double-side welding method | |
RU2684735C1 (en) | Method for hybrid laser-arc welding of steel pipes with outer layer of plating | |
JPH0994658A (en) | One side butt welding method | |
JP5483553B2 (en) | Laser-arc combined welding method | |
JPS607580B2 (en) | One-sided automatic welding method for pipeline girth joints | |
KR100327751B1 (en) | A method for butt joint one-side welding | |
JP7560002B1 (en) | Narrow gap gas shielded arc welding method | |
JPH0353068B2 (en) | ||
JPS61209769A (en) | Composite groove in tig welding | |
JPS6340634B2 (en) | ||
EP0824987A1 (en) | Plasma welding process | |
JPH0484676A (en) | One-side submerged arc welding method at high speed |