JPS59141209A - Vacuum deposition device - Google Patents

Vacuum deposition device

Info

Publication number
JPS59141209A
JPS59141209A JP1513883A JP1513883A JPS59141209A JP S59141209 A JPS59141209 A JP S59141209A JP 1513883 A JP1513883 A JP 1513883A JP 1513883 A JP1513883 A JP 1513883A JP S59141209 A JPS59141209 A JP S59141209A
Authority
JP
Japan
Prior art keywords
molten metal
support
metal
electron beam
evaporation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1513883A
Other languages
Japanese (ja)
Inventor
Tatsuji Kitamoto
北本 達治
Ryuji Shirahata
龍司 白幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP1513883A priority Critical patent/JPS59141209A/en
Publication of JPS59141209A publication Critical patent/JPS59141209A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To enhance metal deposition efficiency to the surface of a supporter, and to reduce cost of the whole of a magnetic recording medium by a method wherein cooling members extending to the width direction of the supporter are provided at both the sides interposing the beam irradiating position of a metal evaporation source between them. CONSTITUTION:An electron beam 7 is scanned on an evaporating material 6 in the width direction A of a film base 1, accordingly the evaporating material 6 is made to be in the molten metal condition, and especially the beam irradiating part is heated up to the boiling point to generate a vapor current 8 extending in the width direction A of the film base 1. Accordingly, the evaporating material 6 at the irradiating part of the electron beam 7 is reduced to form a recessed part on the molten metal surface of the evaporating material 6. While, when cooling members 10 are water-cooled, the molten metal adjoining to the irradiating part of the electron beam 7 is cooled to enhance viscosity, and replenishment of the molten metal to the recess part is delayed. Consequently, in the steady state that the evaporating quantity and the replenishing quantity of the evaporating material are equalized, the molten metal surface of the irradiating part of the electron beam 7 becomes to form a recessed surface.

Description

【発明の詳細な説明】 本発明は真空蒸着等に使用する蒸着装置、特に電子ビー
ム等のエネルギービームによって蒸発源を加熱蒸発させ
る蒸着装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a vapor deposition apparatus used for vacuum vapor deposition, and particularly in a vapor deposition apparatus that heats and evaporates an evaporation source using an energy beam such as an electron beam.

近年、記録すべき情報量の増加に伴い高密度磁気記録に
対する要求が一段と強まるに至り、従来のバインダー型
磁性液を可撓性支持体上に塗布、乾燥させる塗布型製造
方式に代わり、真空蒸着、スパッタリング、イオンブレ
ーティング、等の方法によりバインダーを使用せずに前
記支持体上に強磁性金属薄膜を層設する所謂非塗布型の
製造装置が、種々研究され、実用化のための諸提案がな
されつつある。
In recent years, as the amount of information to be recorded has increased, the demand for high-density magnetic recording has become even stronger, and vacuum evaporation has replaced the conventional coating-type production method in which a binder-type magnetic liquid is coated on a flexible support and dried. Various studies have been conducted on so-called non-coating manufacturing equipment that deposits a ferromagnetic metal thin film on the support without using a binder using methods such as sputtering, ion blating, etc., and various proposals have been made for practical application. is being done.

これら非塗布型製造装置の内でも磁性金属の蒸発ビーム
を支持体表面に対し斜めに入射させて蒸着させる斜方入
射真空蒸着装置は、処理工程なども比較的コンパクトで
あると同時に、良好な磁気特性を有した薄膜が得られる
ため実用的である。
Among these non-coating type manufacturing equipment, oblique incidence vacuum evaporation equipment, in which the evaporation beam of magnetic metal is incident obliquely on the support surface, has a relatively compact processing process and has good magnetic properties. It is practical because a thin film with specific characteristics can be obtained.

この斜方入射真空蒸着装置は一般に、前記支持体を前記
蒸発源上方で直線状あるいはシリンダー状キャンの外周
面に治って曲線状に移動せしめ、前記蒸発源における極
めて限られた斜方入射角の蒸発金属流によって前記支持
体表面に強磁性金属薄膜を一度に指定厚さまで蒸着する
ことを特徴とするものであるが、前記支持体表面と蒸発
金属流が相対的に斜めに位置しているので、前記入射角
が零(支持体表面に対し直角に入射するもの。)である
ものと比較しその蒸着膜厚は余弦(Co51ne )倍
となり、前記入射角が大きくなるに従って蒸着効率が著
しく低下することは避けられず、又、前記支持体と蒸発
源との幾何学的配置からその入射角が犬になると、前記
支持体と蒸発源間の距離が大となるので、蒸着効率は一
層低下するものであった。又、蒸着膜の磁気特性、特に
抗磁力などは入射角に依存(参考文献: 5chued
e :J、 A、 P、 35 25583− (1964,))するので、入射角はできるだけ狭い範
囲で一定に保つことが必要とされていた。このため、通
常は前記支持体と蒸発源の間にシールド板などを設け、
所望の入射角以外の蒸気流を排除しているが、このシー
ルド板を設けたことにより蒸着効率はさらに低下する。
This oblique incidence vacuum evaporation apparatus generally moves the support above the evaporation source in a straight line or in a curved manner over the outer circumferential surface of a cylindrical can, and has a very limited oblique incidence angle at the evaporation source. The method is characterized in that a ferromagnetic metal thin film is deposited on the support surface to a specified thickness at one time by an evaporated metal flow, but since the support surface and the evaporated metal flow are located obliquely relative to each other, , compared to the case where the incident angle is zero (incidence perpendicular to the support surface), the deposited film thickness is a cosine (Co51ne) times as large, and the vapor deposition efficiency decreases significantly as the incident angle increases. This is unavoidable, and if the angle of incidence becomes narrow due to the geometric arrangement of the support and the evaporation source, the distance between the support and the evaporation source becomes large, and the deposition efficiency further decreases. It was something. In addition, the magnetic properties of the deposited film, especially the coercive force, depend on the angle of incidence (Reference: 5chued
e: J, A, P, 35 25583- (1964,)), it was necessary to keep the incident angle constant within as narrow a range as possible. For this reason, a shield plate or the like is usually provided between the support and the evaporation source.
Although vapor flows at angles of incidence other than the desired are excluded, the provision of this shield plate further reduces the vapor deposition efficiency.

この蒸着効率の低下は、比較的高価な非鉄金属例えばC
o、Co−Ni、Co−Ni −Cr等を使用する場合
、大幅なコストダウンを図ることに支障を来たし、実用
化上解決すべき重要な課題であった。
This decrease in vapor deposition efficiency is caused by relatively expensive non-ferrous metals such as C.
When using O, Co-Ni, Co-Ni-Cr, etc., it is difficult to achieve significant cost reduction, and this is an important problem to be solved for practical use.

このように従来装置における低い蒸着効率を改善するた
めに、蒸発源の容器であるルツボの側壁を高くして蒸気
流の分布を規制した装置が提案されているが、この装置
ではルツボの内側壁の上部に冷却された金属が堆積し、
蒸着の継続が困難となる。
In order to improve the low vapor deposition efficiency of conventional devices, a device has been proposed in which the side wall of the crucible, which is the container for the evaporation source, is raised to regulate the distribution of vapor flow. The cooled metal is deposited on top of the
It becomes difficult to continue vapor deposition.

又、蒸着材料の融点以上の高温に加熱した反射壁をルツ
ボの上方に設け、不要の蒸気流 4− をこの反射壁により反射させて所望の入射角にして、蒸
着効率を上げる装置も提案されている(特開昭57−1
55368号)が、この装置によっては広い面積にわた
り高温部分が形成されるため、この高温部分からの輻射
熱が装置内の他部材を加熱し、悪影響を及ぼすという問
題がある。
Additionally, a device has been proposed in which a reflective wall heated to a high temperature higher than the melting point of the vapor deposition material is provided above the crucible, and unnecessary vapor flow is reflected by the reflective wall to a desired angle of incidence, thereby increasing the vapor deposition efficiency. (Unexamined Japanese Patent Publication No. 57-1
No. 55368), but this device has a high temperature portion over a wide area, so there is a problem that radiant heat from this high temperature portion heats other members in the device and has an adverse effect.

本発明は上記事情に鑑みてなされたものであり、斜方入
射真空蒸着装置において、磁性材料の支持体への蒸着効
率の改善を目的とするものである。
The present invention has been made in view of the above circumstances, and aims at improving the efficiency of vapor deposition of a magnetic material onto a support in an oblique incidence vacuum evaporation apparatus.

本発明の真空蒸着装置は、電子ビーム等のエネルギービ
ーム照射による加熱によって金属蒸気流をフィルム等の
支持体に蒸着せしめる金属蒸発源の前記ビーム照射位置
をはさんで両側に、前記支持体の幅方向に延びる少なく
とも2条の冷却部材を設けて成ることを特徴とするもの
である。
The vacuum evaporation apparatus of the present invention has a metal evaporation source that deposits a metal vapor flow onto a support such as a film by heating by irradiation with an energy beam such as an electron beam. It is characterized by providing at least two cooling members extending in the direction.

本発明の真空蒸着装置によって蒸発源へのエネルギービ
ーム照射を開始するとこのピーム照射位置のみ強く加熱
され、この部分の蒸発源が蒸発してこの部分の溶湯面が
低下する。
When the vacuum evaporation apparatus of the present invention starts irradiating the evaporation source with an energy beam, only this beam irradiation position is strongly heated, the evaporation source in this area evaporates, and the molten metal level in this area lowers.

このとき、蒸発源全体が粘度の低い溶湯であれば、この
照射位置に隣接する部分の溶湯が溶湯面の低下したビー
ム照射部分に流入するから溶湯面は常にほぼ水平に保た
れるが、本発明の装置によれば照射位置を間にはさんで
溶湯内に冷却部材を配設し、照射位置に隣接する溶湯を
冷却して粘度を高くしているため、この照射位置に隣接
する部分の溶湯が溶湯面の低下したビーム照射部分に容
易に流入せず、したがって照射位置の溶湯面が低下した
状態で保持される。また、エネルギービームは支持体の
幅方向に蒸発源上を走査しており、結局溶湯面は支持体
の幅方向に延びた凹面を呈する。これにより、蒸気流の
分布は曲面の曲率の中心方向に集中し支持体上への蒸着
効率を高めることができる。
At this time, if the entire evaporation source is a molten metal with low viscosity, the molten metal in the area adjacent to this irradiation position will flow into the beam irradiated area where the molten metal surface has fallen, so the molten metal surface will always be kept almost horizontal. According to the device of the invention, a cooling member is placed in the molten metal with the irradiation position in between, and the molten metal adjacent to the irradiation position is cooled to increase its viscosity. The molten metal does not easily flow into the beam irradiated portion where the molten metal level has been lowered, and therefore the molten metal level at the irradiation position is maintained in a lowered state. Further, the energy beam scans the evaporation source in the width direction of the support, and the molten metal surface eventually has a concave surface extending in the width direction of the support. Thereby, the distribution of the vapor flow is concentrated toward the center of the curvature of the curved surface, and the efficiency of vapor deposition onto the support can be increased.

なお、本発明の装置によって磁気記録媒体を製造する場
合、磁性薄膜を形成させるための強磁性金属としてはP
e、Co、Ni等の金属あるいはFe−Co、 Fe−
Ni、 Co−Ni、 Fe −Co−Ni、 Fe 
−R,h、 Fe−Cu、 Co−Cu、 C。
In addition, when manufacturing a magnetic recording medium using the apparatus of the present invention, P is used as the ferromagnetic metal for forming the magnetic thin film.
Metals such as e, Co, Ni or Fe-Co, Fe-
Ni, Co-Ni, Fe-Co-Ni, Fe
-R, h, Fe-Cu, Co-Cu, C.

=Au、 Co −Y、 Co−La、 Co−Pr、
 Co −Gd。
=Au, Co-Y, Co-La, Co-Pr,
Co-Gd.

Co −8m、 Co −P t、 N i −Cu、
 Mn −B i、 Mn−8b、 Mn−AA!、 
Fe−Cr、 Co−Cr、 Ni −Cr、Fe−C
o−Cr、Fe−Co−Ni−Cr 等のような強磁性
合金が用いられる。磁性膜の厚さは、磁気記録媒体とし
て充分な出力を与え得る厚さおよび高密度記録の充分性
なえる薄さを必要とすることから一般には約0.02μ
mから5.0μm、好ましくは0.05μmから2.0
 p mである。
Co-8m, Co-Pt, Ni-Cu,
Mn-B i, Mn-8b, Mn-AA! ,
Fe-Cr, Co-Cr, Ni-Cr, Fe-C
Ferromagnetic alloys such as o-Cr, Fe-Co-Ni-Cr, etc. are used. The thickness of the magnetic film is generally about 0.02μ because it needs to be thick enough to provide sufficient output as a magnetic recording medium and thin enough to be sufficient for high-density recording.
m to 5.0 μm, preferably 0.05 μm to 2.0
It is p m.

又、前記支持体としては、ポリエチレンテレフタレート
、ポリイミド、ポリアミド、ポリ塩化ビニル、三酢酸セ
ルロース、ポリカーボネート、ポリエチレンナフタレー
トのようなプラスチックペース、のようなものが使用で
きる。
Further, as the support, plastic pastes such as polyethylene terephthalate, polyimide, polyamide, polyvinyl chloride, cellulose triacetate, polycarbonate, and polyethylene naphthalate can be used.

以下、本発明の実施例について、図面を用いて詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の1実施例を示す側断面図である。例え
ば磁気テープ用の長尺〃フィルムベース1が送出され、
ロール2からクーリングキャ/3を経て巻取りロール4
に連続的に送られる。ルツボ5の中には例えばC0−N
i合金等の蒸発材料6が収容され、この蒸発材料6は上
方からの電子ビーム7により加熱されて蒸気流8となり
クーリングキャン3上のフィルムベース1に達して蒸着
され、このフィルムベース1上に蒸着膜を形成する。
FIG. 1 is a side sectional view showing one embodiment of the present invention. For example, a long film base 1 for magnetic tape is sent out,
From roll 2 to winding roll 4 via cooling carrier/3
are sent continuously. For example, the crucible 5 contains C0-N
An evaporation material 6 such as i-alloy is accommodated, and this evaporation material 6 is heated by an electron beam 7 from above and becomes a vapor flow 8 that reaches the film base 1 on the cooling can 3 and is deposited on the film base 1. Form a vapor deposited film.

また、蒸発材料6とフィルムベース1との間にシールド
板9を設けて不要の蒸気流8′を排除している。
Further, a shield plate 9 is provided between the evaporation material 6 and the film base 1 to eliminate unnecessary vapor flow 8'.

本実施例では、蒸発材料6の溶湯面下で電子ビーム7の
照射位置を間にはさむように冷却部材10.10が配設
されている。第2図は、この冷却部材10.10を配設
したルツボ5の概略図である。このルツボ5はセラミッ
ク製でフィルムベース1の幅方向(矢印入方向)に長い
形状をなしている。また冷却部材10.10はCOと合
金を作らないCu製で、このルツボ5の底面とフィルム
ベース1の長さ方向に対向する壁面に配設され、フィル
ムベース1の幅方向(矢印入方向)に延び、外部から水
を流すことのできる管状部材である。
In this embodiment, a cooling member 10.10 is disposed below the surface of the molten material 6 to sandwich the irradiation position of the electron beam 7 therebetween. FIG. 2 is a schematic diagram of the crucible 5 in which this cooling member 10.10 is arranged. The crucible 5 is made of ceramic and has a long shape in the width direction of the film base 1 (in the direction of the arrow). The cooling member 10.10 is made of Cu, which does not form an alloy with CO, and is disposed on the wall facing the bottom of the crucible 5 and the length of the film base 1 in the width direction of the film base 1 (in the direction of the arrow). It is a tubular member that extends from the outside and allows water to flow from the outside.

電子ビーム7は蒸発材料6上をフィルムベース1の幅方
向(矢印入方向)に走査され、これによりこの蒸発材料
6は溶湯状態となり、特にビーム照射部分は沸点まで加
熱されてフィルムベース1の幅方向(矢印入方向)に延
びる蒸気流8を発生する。これにより電子ビーム7の照
射部分の蒸発材料6が減少し蒸発材料6の溶湯面が四部
を形成する。一方、冷却部材10が水冷されると、電子
ビーム7の照射部分に隣接する溶湯が冷却されて粘度が
高まり、前記凹部への溶湯の補給が遅れる。
The electron beam 7 scans the evaporation material 6 in the width direction of the film base 1 (in the direction of the arrow), thereby turning the evaporation material 6 into a molten state, and the beam irradiated area in particular is heated to the boiling point and spreads across the width of the film base 1. A steam flow 8 is generated extending in the direction (in the direction of the arrow). As a result, the evaporated material 6 in the portion irradiated with the electron beam 7 is reduced, and the molten surface of the evaporated material 6 forms four parts. On the other hand, when the cooling member 10 is water-cooled, the molten metal adjacent to the portion irradiated with the electron beam 7 is cooled and its viscosity increases, which delays the replenishment of the molten metal into the recess.

したがって、蒸発材料の蒸発量と補給量が等しくなる定
常状態においては、電子ビーム7の照射部分の溶湯面が
凹面を形成するようになる。
Therefore, in a steady state where the amount of evaporation material is equal to the amount of replenishment, the surface of the molten metal in the portion irradiated with the electron beam 7 forms a concave surface.

なお、溶湯面から真空中へ放出される蒸気流の分布はc
osθ・cosψ(θは蒸気流と溶湯面の法線との角度
、ψは蒸気流と支持体の垂線との角度)に比例すること
が知られている。このため凹面から放出される蒸気流は
凹面の曲率の中心方向に集中するような分布となる。と
ころで、斜方入射真空蒸着装置においては、支持体に対
する入射角と磁気特性、特に抗磁力は密接な関係があり
、特に入射角の小さい成分が混入すると磁性膜の抗磁力
を下げることになるためシールド板9により所望の入射
角以外の蒸気流8′を遮蔽している。
The distribution of the vapor flow released from the molten metal surface into the vacuum is c
It is known that it is proportional to osθ·cosψ (θ is the angle between the vapor flow and the normal to the molten metal surface, and ψ is the angle between the vapor flow and the normal to the support). For this reason, the vapor flow emitted from the concave surface has a distribution that is concentrated toward the center of the curvature of the concave surface. By the way, in oblique incidence vacuum evaporation equipment, there is a close relationship between the angle of incidence on the support and the magnetic properties, especially the coercive force, and if a component with a small angle of incidence is mixed in, the coercive force of the magnetic film will be lowered. A shield plate 9 blocks vapor flows 8' at angles of incidence other than the desired one.

このためルツボ5より蒸発させた金属蒸発流のうち支持
体上に有効に蒸着されろ割合、すなわち蒸着効率が非常
に低下する。ちなみに、本発明者等の実験によれば、コ
バルト80%、ニッケル20%のCo−Ni合金を蒸発
材料として使用し、15μm厚さのポリエステルベース
フィルムを支持体として使用し、蒸発流の入射角を30
0に規制して蒸着を行ない、磁性層厚さ1500 A、
抗磁力1−0500e、BHカーブの角型比0.93の
磁性薄膜を得る時の蒸着効率は5%であった。
For this reason, the proportion of the metal evaporated stream evaporated from the crucible 5 that is not effectively deposited on the support, that is, the deposition efficiency is extremely reduced. Incidentally, according to experiments conducted by the present inventors, a Co-Ni alloy containing 80% cobalt and 20% nickel was used as the evaporation material, a 15 μm thick polyester base film was used as the support, and the incident angle of the evaporation flow was 30
The magnetic layer thickness was 1500 A,
The deposition efficiency was 5% when obtaining a magnetic thin film with a coercive force of 1-0500e and a BH curve squareness ratio of 0.93.

ところが本実施例においてはビーム照射部分の溶湯面を
上述したように凹面に形成しており、しかもこの凹面の
曲率の中心付近にフィルムベース1を配設しているから
、従来よりも大幅に蒸着効率を向−ヒさせることができ
る。上述した実験と同様の条件で本実施例を使用して行
なった実験によれば蒸着効率を8%に向上させることが
できた。ところで、磁気記録材料として好適なコバルト
を主成分とする合金(Co、Co−Ni、Co−Ni−
Cr等)は非常に高価であるため、磁気記録媒体、例え
ば蒸着型ビデオテープのコスト全体のうちコバルト合金
のコストが占める割合が大きい。
However, in this example, the molten metal surface in the beam irradiation area is formed into a concave surface as described above, and the film base 1 is placed near the center of the curvature of this concave surface, so that the evaporation rate is significantly greater than in the past. Efficiency can be improved. According to an experiment conducted using this example under the same conditions as the experiment described above, it was possible to improve the vapor deposition efficiency to 8%. By the way, alloys mainly composed of cobalt (Co, Co-Ni, Co-Ni-
Cr, etc.) are very expensive, so the cost of cobalt alloys accounts for a large proportion of the total cost of a magnetic recording medium, such as a vapor-deposited video tape.

ところが、本実施例によれば上述したように蒸着効率を
大幅に向上させることができるので、磁気記録媒体全体
のコストを大幅に引下げることができる。
However, according to this embodiment, the vapor deposition efficiency can be significantly improved as described above, and therefore the cost of the entire magnetic recording medium can be significantly reduced.

第3図は他の実施例を示すルツボおよび冷却部材の側断
面図である。この実施例の冷却部材10a、]、Oaは
電子ビーム7の照射位置をはさんで両側に、フィルムベ
ースなどの支持体の長さ方向に対向するルツボ5の側壁
、および底壁に内蔵されている。なお、この冷却部材1
0 a、  10 aはその表面の一部が蒸着材料と接
触するように配されることが望ましい。
FIG. 3 is a side sectional view of a crucible and a cooling member showing another embodiment. In this embodiment, the cooling members 10a,], Oa are built in on both sides of the irradiation position of the electron beam 7, and in the side walls and bottom wall of the crucible 5, which face each other in the length direction of a support such as a film base. There is. Note that this cooling member 1
It is desirable that 0 a and 10 a be arranged so that a part of their surfaces are in contact with the vapor deposition material.

第4図に示す別の実施例は、冷却部材10b。Another embodiment shown in FIG. 4 is a cooling member 10b.

10bを電子ビーム7の照射位置をはさんで両側に、フ
ィルムベースなどの支持体の長さ方向に対向するルツボ
5の側壁、および底壁から間隔をおいて、しかも溶湯面
下に位置するように設けることにより、部材10b。
10b on both sides of the irradiation position of the electron beam 7, spaced apart from the side walls and bottom wall of the crucible 5 facing in the length direction of a support such as a film base, and positioned below the surface of the molten metal. By providing the member 10b.

Jobの全表面が蒸着材料と接触するようにしたもので
ある。
The entire surface of the job is in contact with the vapor deposition material.

第3図および第4図に示す実施例によっても第2図に示
す実施例と同様の効果を得ることができる。
The embodiments shown in FIGS. 3 and 4 can also provide the same effects as the embodiment shown in FIG. 2.

第5図は支持体がディスクであるときに使用するルツボ
および冷却部材を示す概略図である。冷却部材10Cは
円筒状で、円筒の壁面が電子ビーム照射部分を囲むよう
に、かつ部材10C全体が溶湯面下に位置するように配
されている。この実施例を使用して電子ビーム照射を開
始するとこの照射部分の溶湯面は椀状の凹面となり、こ
こからの金属蒸気流はこの凹面の曲率の中心方向に集中
した分布をなす。これによりこの曲率の中心付近に中心
を配したディスクへの蒸着効率を向上させることができ
る。なお、この場合ディスクはこの蒸気流に対して傾斜
して配されているので、蒸着期間中はこのディスク自体
を回転させてディスク表面の蒸着膜の厚さを均一にする
ことが望ましい。
FIG. 5 is a schematic diagram showing a crucible and a cooling member used when the support is a disk. The cooling member 10C has a cylindrical shape and is disposed so that the wall surface of the cylinder surrounds the electron beam irradiated portion and the entire member 10C is located below the surface of the molten metal. When electron beam irradiation is started using this embodiment, the molten metal surface of the irradiated portion becomes a bowl-shaped concave surface, and the metal vapor flow from here forms a distribution concentrated in the direction of the center of the curvature of this concave surface. This makes it possible to improve the efficiency of vapor deposition onto a disk centered near the center of this curvature. In this case, since the disk is arranged at an angle with respect to the vapor flow, it is desirable to rotate the disk itself during the vapor deposition period to make the thickness of the vapor deposited film on the surface of the disk uniform.

なお、この装置のチェンバー(真空室)はロータリーポ
ンプによって荒引きし、ブースターポンプなどにより1
0〜l Q  i’orr程度の圧力に保持しておく必
要がある。
The chamber (vacuum chamber) of this device is roughly pumped using a rotary pump, and once pumped using a booster pump, etc.
It is necessary to maintain the pressure at about 0 to l Q i'orr.

以上詳細に説明したように、本発明の真空蒸着装置は金
属蒸発源のビーム照射位置をはさんで両側に、支持体の
幅方向に延びる冷却部材を設けており、これによりビー
ム照射部分の溶湯面を凹面となるようにして金属蒸気流
が支持体の方向に集中するようにしているから、支持体
表面への金属蒸着効率を向上させることができる。また
、蒸着効率を向上させることにより磁気記録媒体全体の
コストを大幅に低減させることができ、実用的価値は極
めて高い。
As explained in detail above, the vacuum evaporation apparatus of the present invention is provided with cooling members extending in the width direction of the support on both sides of the beam irradiation position of the metal evaporation source, and this cools the molten metal in the beam irradiation area. Since the surface is concave so that the metal vapor flow is concentrated in the direction of the support, the efficiency of metal vapor deposition onto the support surface can be improved. Furthermore, by improving the deposition efficiency, the cost of the entire magnetic recording medium can be significantly reduced, and the practical value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す概略図、第2図は第1
図のルツボおよび冷却部材を示す拡大図、 第3図および第5図はルツボおよび冷却部材の別の実施
例を示す概略図、 第4図はルツボおよび冷却部材のさらに別の実施例を示
す側断面図である。 1・・・支持体(フィルムベース) 3・・・クーリングキャン 5・・・ルツボ 6・・・蒸発源 7・・・電子ビーム 8・・・金属蒸気流
FIG. 1 is a schematic diagram showing one embodiment of the present invention, and FIG. 2 is a schematic diagram showing one embodiment of the present invention.
3 and 5 are schematic views showing another embodiment of the crucible and the cooling member; FIG. 4 is a side view showing still another embodiment of the crucible and the cooling member. FIG. 1... Support (film base) 3... Cooling can 5... Crucible 6... Evaporation source 7... Electron beam 8... Metal vapor flow

Claims (4)

【特許請求の範囲】[Claims] (1)減圧下で金属蒸発源にエネルギービームを照射し
てこの蒸発源を加熱することにより得られた金属蒸気流
を非磁性支持体の表面に蒸着して磁性金属薄膜を形成す
る真空蒸着装置において、 前記金属蒸発源の前記ビーム照射位置をはさんで両側に
、前記支持体の幅方向に延びる少な(とも2条の冷却部
材を設けて成ることを特徴とする真空蒸着装置。
(1) Vacuum deposition equipment that forms a magnetic metal thin film by evaporating the metal vapor flow obtained by irradiating a metal evaporation source with an energy beam under reduced pressure and heating the evaporation source on the surface of a non-magnetic support. A vacuum evaporation apparatus characterized in that two cooling members extending in the width direction of the support are provided on both sides of the beam irradiation position of the metal evaporation source.
(2)前記冷却部材が、前記容器の底部および前記支持
体の長さ方向に対向する側壁部に配設されて成ることを
特徴とする特許請求の範囲第1項記載の真空蒸着装置。
(2) The vacuum evaporation apparatus according to claim 1, wherein the cooling member is disposed on a bottom of the container and a side wall of the support body that faces each other in the length direction.
(3)前記冷却部材が、前記容器の底面および前記支持
体の長さ方向に対向する側壁面から間隔をおいて蒸発源
中に位置するように配されていることを特徴とする特許
請求の範囲第1項記載の真空蒸着装置。
(3) The cooling member is disposed in the evaporation source at a distance from the bottom surface of the container and the longitudinally opposing side wall surface of the support. The vacuum evaporation apparatus according to scope 1.
(4)前記冷却部材が、前記照射位置から深さ方向に延
びる線上の点を中心とする環状部材であって、前記蒸発
源の溶湯面下に位置するように配されていることを特徴
とする特許請求の範囲第1項記載の真空蒸着装置。
(4) The cooling member is an annular member centered at a point on a line extending in the depth direction from the irradiation position, and is arranged so as to be located below the surface of the molten metal of the evaporation source. A vacuum evaporation apparatus according to claim 1.
JP1513883A 1983-02-01 1983-02-01 Vacuum deposition device Pending JPS59141209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1513883A JPS59141209A (en) 1983-02-01 1983-02-01 Vacuum deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1513883A JPS59141209A (en) 1983-02-01 1983-02-01 Vacuum deposition device

Publications (1)

Publication Number Publication Date
JPS59141209A true JPS59141209A (en) 1984-08-13

Family

ID=11880455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1513883A Pending JPS59141209A (en) 1983-02-01 1983-02-01 Vacuum deposition device

Country Status (1)

Country Link
JP (1) JPS59141209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054150B2 (en) 2011-03-16 2018-08-21 Lee Nam Kim Dual protection cap for bolt and nut

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054150B2 (en) 2011-03-16 2018-08-21 Lee Nam Kim Dual protection cap for bolt and nut

Similar Documents

Publication Publication Date Title
US5679410A (en) Continuous fabrication of thin film magnetic recording medium with vacuum deposition
US5679166A (en) Magnetic recording media, magnetic recording media fabrication method, and fabrication equipment
JPS59141209A (en) Vacuum deposition device
JPS59141210A (en) Vacuum deposition device
JPS5961013A (en) Magnetic recording medium
JPS59141211A (en) Vacuum deposition device
JPH0546013B2 (en)
JPS6037529B2 (en) Method for manufacturing magnetic recording media
JP2605803B2 (en) Magnetic recording media
JPS5925975A (en) Production of thin alloy film
JP3041105B2 (en) Manufacturing method of magnetic recording medium and crucible for vapor deposition
JPH05128517A (en) Manufacture of magnetic recording medium
JPH0799581B2 (en) Method of manufacturing magnetic recording medium and manufacturing apparatus used therefor
JPH04328324A (en) Manufacture of magnetic recording medium
JPS61187127A (en) Manufacture of magnetic recording medium
JPH0334614B2 (en)
JPH0518178B2 (en)
JPH0562186A (en) Manufacture of magnetic recording medium
JPS598143A (en) Production of magnetic recording medium
JPS60201521A (en) Magnetic recording medium
JPH09128751A (en) Production of magnetic recording medium
JPS59148139A (en) Manufacture of vertical magnetic recording medium
JPH0656650B2 (en) Magnetic recording medium
JPH0366022A (en) Thin film-type magnetic recording medium
JPH05128516A (en) Manufacture of magnetic recording medium