JPS59140107A - Wheel suspension mechanism for unmanned car - Google Patents

Wheel suspension mechanism for unmanned car

Info

Publication number
JPS59140107A
JPS59140107A JP1522783A JP1522783A JPS59140107A JP S59140107 A JPS59140107 A JP S59140107A JP 1522783 A JP1522783 A JP 1522783A JP 1522783 A JP1522783 A JP 1522783A JP S59140107 A JPS59140107 A JP S59140107A
Authority
JP
Japan
Prior art keywords
load
unmanned vehicle
wheels
onto
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1522783A
Other languages
Japanese (ja)
Other versions
JPH0417821B2 (en
Inventor
Miki Tanaka
田中 幹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP1522783A priority Critical patent/JPS59140107A/en
Publication of JPS59140107A publication Critical patent/JPS59140107A/en
Publication of JPH0417821B2 publication Critical patent/JPH0417821B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/027Mechanical springs regulated by fluid means
    • B60G17/0272Mechanical springs regulated by fluid means the mechanical spring being a coil spring

Abstract

PURPOSE:To prevent an unmanned car from joggling, by supporting two driving wheels onto a chassis by using an elastic body and always keeping a proper driving wheel pressure, in an unmanned car in which at least two driving wheels and two idle wheels are installed and steering is performed by the difference of speeds between two driving wheels. CONSTITUTION:When a load is loaded onto a bed 11, a limit switch 14 is closed, and a controller 15 gives instruction to a hydraulic pressure generator 12, and the hydraulic pressure acts onto a hydraulic cylinder 7 through a solenoid valve 13, and then a piston 8 is lowered. Therefore, a plate body 8b is lowered to compress a spring 10, and the pressure applied onto a driving wheel 3 installed onto a supporting member 6 through a frame 4 increases uniformly. When the load is taken-out from the bed 11, the limit switch 14 is opened, and the controller 15 releases the solenoid valve 13. Therefore, the hydraulic pressure applied onto the piston 8 is eliminated, and the plate body 8b is pushed-up by the spring 10, and a proper pressure is applied onto the driving wheel 3.

Description

【発明の詳細な説明】 この発明は無人車の車輪の懸架機構に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a suspension mechanism for wheels of an unmanned vehicle.

従来、駆動輪を2輪、遊輪を2輪又はそれ以上備えて2
駆動輪の速度差によりステアリ゛ングを行なう無人車に
於ては、該無人車の駆動輪及び遊輪の懸架方法は上記駆
動輪を車体に直接固定し、上記遊輪をバネ支持にして車
体に取り付けた構造が一般に用いられている。上記構造
の場合積荷の大小、路面の凹凸、及び坂道にさしかかっ
た時等、駆動輪がスリップすることなく走行を続けてい
くためには上記駆動輪の圧力が常にある設定値以上なけ
ればならない。これは無人車に積まれた全荷重を駆動輪
及び遊輪で支えているため、遊輪バネのバネ定数が大き
すぎると車両が無負荷であったり、路面が凹凸であった
り、坂道等では、駆動輪の路面に対する圧力が小さくな
りすぎることによって上記駆動輪がスリップしてしまう
からである。
Conventionally, two driving wheels and two or more idle wheels are provided.
In an unmanned vehicle that performs steering based on the speed difference between the drive wheels, the suspension method for the drive wheels and idle wheels of the unmanned vehicle is such that the drive wheels are directly fixed to the vehicle body, and the idle wheels are attached to the vehicle body with spring support. A similar structure is commonly used. In the case of the above structure, the pressure of the drive wheels must always exceed a certain set value in order to continue driving without slipping due to the size of the load, unevenness of the road surface, or when approaching a slope. This is because the entire load loaded on an unmanned vehicle is supported by the drive wheels and idle wheels, so if the spring constant of the idler springs is too large, the vehicle may be under no load, the road may be uneven, or the drive wheels may This is because the pressure of the wheels against the road surface becomes too small, causing the drive wheels to slip.

そこで駆動輪圧がいつでも設定値以上になっているよう
に遊輪懸架バネの定数が決定されている。
Therefore, the constant of the idle wheel suspension spring is determined so that the drive wheel pressure is always above the set value.

こうすることによって、駆動輪にはいつもスリップを起
こす限界以上の圧力がかかっているため無人車両はスリ
ップを起こすことなく走行できる。
By doing this, the unmanned vehicle can run without slipping because the drive wheels are always under pressure that is above the limit that would cause slippage.

しかし以上述べたような従来の方法を用埴ると、遊輪部
が受は持つ荷重はバネ設定により決り、積荷の有無に関
係なく一定であり、積荷による増加する車重は全て駆動
輪が受は持っているため、荷重が大きくなりすぎると、
駆動輪の受は持つ荷重割合に比べ遊輪の受は持つ荷重割
合が小ざくなりすぎる。このため荷重が増加すると無人
車士部ガ該無人車の走行と共に駆動輪下部を中心として
前後に揺れ、また該無人車走行時のわずかな路面の凹凸
により揺れ、該無人車の急停止時にも揺れが生しる。こ
の揺れは荷重が大きくなればなるほど大きくなる。この
揺れのため無人車が背の高い荷を積んでいたりすると上
記前の荷姿が変ったり、上記前が上記無人車から落ちた
りする。又無人車の荷を移載台又はコンベヤ等にS載す
る際該無人車のL面1ノベルが該無人車の動輪下部を中
心として変化するため1手動で該無人車の荷を移載する
時は移載しに<<、又自動で上記前を移載する時は上記
移載台等の前面に上記前をぶつける等信頼性に欠けるな
どの欠点を生しる。、 この発明の目的は無人車の2個の駆動輪をバネ支持にし
、遊輪を車体に固定し、上記駆動輪の圧力を上記無人車
に積む荷の重さによって変化させ、常に適当な駆動輪圧
を保つことによって、上記無人車の走行中、停止時、停
止中共に上記無人車の揺れを維<シ、上記従来の欠点を
除くことにある。
However, when using the conventional method as described above, the load carried by the idler wheel is determined by the spring setting and is constant regardless of whether there is a load, and all of the increased vehicle weight due to the load is supported by the drive wheels. has, so if the load becomes too large,
The load ratio of the idler wheel support is too small compared to the load ratio of the drive wheel support. For this reason, when the load increases, the unmanned vehicle driver section will sway back and forth around the lower part of the drive wheels as the unmanned vehicle moves, and will also sway due to slight irregularities on the road surface when the unmanned vehicle is running, and will also shake when the unmanned vehicle suddenly stops. There is a tremor. This shaking becomes larger as the load becomes larger. Because of this shaking, if the unmanned vehicle is loaded with a tall load, the front of the load may change shape, or the front may fall off the unmanned vehicle. In addition, when loading the load of an unmanned vehicle onto a transfer table or conveyor, etc., the L side 1 novel of the unmanned vehicle changes centering around the lower part of the driving wheels of the unmanned vehicle, so the load of the unmanned vehicle must be transferred manually. In addition, when the front is transferred automatically, the front hits the front of the transfer table etc., resulting in unreliable problems. The purpose of this invention is to make the two drive wheels of an unmanned vehicle spring-supported, fix the idler wheels to the vehicle body, and change the pressure of the drive wheels depending on the weight of the load loaded on the unmanned vehicle, so that the drive wheels are always properly adjusted. By maintaining the pressure, the vibration of the unmanned vehicle can be maintained both when the unmanned vehicle is running, when it is stopped, and when the unmanned vehicle is stopped, thereby eliminating the drawbacks of the prior art.

以下図面に基づいてこの発明の詳細な説明する。The present invention will be described in detail below based on the drawings.

第1図は本発明による無人車の車輪配置図、第2図は第
1図におけるA−A断面図である。第1図及び第2図に
おいて1は遊輪で、上記無人車の車体2下部の前後の箇
所に2輪またはそれ以上1μ接固定されている。3は駆
動輪で、フレー斉合して上記車体2下部の□中央付近の
箇所に独立に2輪配置され、上記フレーム4に取り付け
た図示しないモータによって駆動し、またこのモータの
速度差により上記無人車のステアリングを行なっている
。5け外筒で、上記フレーム4の上面部に取り付けた支
持部材6に契合して上記車体2底部に上記駆動輪3の配
置に合わせて2組取り付けである。7は油圧シリンダー
で、内部にピストン8を持っていて上記ピストン8の軸
8a、  を上記車体2底部の上記外筒5の中心にあブ
ζる場所にあけた穴9を通すことができる位置の上記車
体2内に2ケ所設置されている。1o  はバネで、上
記外筒6内に入っており、一端を上記支持部材6、もう
一端を上記ピストン8の軸8aの端部に固定した板体8
bに接合している。なお、このバネ8は上記無人車の荷
台11  に荷が無い状態で上記板体8bを押し上げ、
また適当な圧力を上記駆動輪3に与えられるようなバネ
定数を持っている。12は油圧発生器で、上記車体2内
に設置され、上記車体2内に設置はれた電磁バルブ13
を介して上記油圧シリンダ7に接続している。]4はリ
ミットスイッチで、上記荷台に荷が乗るbプイツ述像閉
じるように上記荷台の中央付近に1個所設けである。1
5はコントローラーで、上記無人車の全般の制御を行な
っている。16はバッテリーで、上記無人車の電源であ
る。
FIG. 1 is a wheel arrangement diagram of an unmanned vehicle according to the present invention, and FIG. 2 is a sectional view taken along line AA in FIG. In FIGS. 1 and 2, reference numeral 1 indicates idle wheels, and two or more wheels are fixed to the front and rear portions of the lower portion of the vehicle body 2 of the unmanned vehicle in a 1μ contact. Reference numeral 3 denotes drive wheels, which are arranged independently at a location near the center of the lower part of the vehicle body 2 in unison, and are driven by a motor (not shown) attached to the frame 4, and due to the speed difference between these motors, the Steering an unmanned car. Two sets of five outer cylinders are attached to the support member 6 attached to the upper surface of the frame 4 and attached to the bottom of the vehicle body 2 in accordance with the arrangement of the drive wheels 3. Reference numeral 7 denotes a hydraulic cylinder, which has a piston 8 inside, and is located in a position where the shaft 8a of the piston 8 can be passed through a hole 9 drilled in the center of the outer cylinder 5 at the bottom of the vehicle body 2. They are installed at two locations inside the vehicle body 2. Reference numeral 1o denotes a spring, which is housed in the outer cylinder 6, and has one end fixed to the support member 6 and the other end fixed to the end of the shaft 8a of the piston 8.
It is joined to b. Note that this spring 8 pushes up the plate 8b when there is no load on the loading platform 11 of the unmanned vehicle,
It also has a spring constant that allows suitable pressure to be applied to the drive wheels 3. Reference numeral 12 denotes a hydraulic pressure generator, which is installed inside the vehicle body 2, and a solenoid valve 13 installed inside the vehicle body 2.
It is connected to the hydraulic cylinder 7 via. ] 4 is a limit switch, which is installed at one location near the center of the loading platform so as to close the limit switch when a load is placed on the loading platform. 1
A controller 5 performs general control of the unmanned vehicle. A battery 16 is a power source for the unmanned vehicle.

上記構成において、荷台11に荷が無い状態ではバネ1
0の復元力で板体8bを押し上げ、また駆動輪3に適当
な圧力を与えているた椋、一定の路面状態の通路ならば
安定に問題なく走行する。
In the above configuration, when there is no load on the loading platform 11, the spring 1
If the restoring force of 0 pushes up the plate 8b and applies appropriate pressure to the drive wheels 3, the vehicle will run stably and without any problems if it is on a passage with constant road surface conditions.

荷台11vc荷が乗ると顔前の重きでリミットスイッチ
14が閉じ、これをコントローラー15 が検知して油
圧発生器12に指示を与え、この油圧発生器で油圧が発
生し、開放された状態の電磁バルブ13を介してこの油
圧か均等に2つの油圧ンリ) ンダー7に働き、ピストン8がバネ1oと上記油圧が平
衡になる位置までバネIOの復元力に抗して移動する。
When a load is placed on the loading platform 11vc, the limit switch 14 closes due to the weight in front of it, and the controller 15 detects this and gives an instruction to the hydraulic pressure generator 12, which generates hydraulic pressure and switches the open electromagnetic This oil pressure equally acts on two oil pressure cylinders 7 through the valve 13, and the piston 8 moves against the restoring force of the spring IO to a position where the spring 1o and the above oil pressure are in equilibrium.

これに伴って板体8bが下方へ移動し、上記バネ10が
圧縮される。よってそれぞれの駆動輪3にかかる圧力が
均等に高まる。なお上記ピストン8の移動量は上記前の
重量上上記バネ10のバネ定数の関係から、上記バネ1
0が上記駆動輪3に適当な圧力を加えられるように定め
である。
Along with this, the plate 8b moves downward and the spring 10 is compressed. Therefore, the pressure applied to each drive wheel 3 increases equally. Note that the amount of movement of the piston 8 is determined by the relationship between the previous weight and the spring constant of the spring 10.
0 is determined so that an appropriate pressure can be applied to the drive wheel 3.

上記駆動輪3に適当な圧力が加わる七電磁バルブ13が
閉じ、上記油圧発生装置12の動作は停止する。しかし
電磁バルブ13が閉じているため、上記駆動輪3には常
に一定の圧力が与えられている。
The seven electromagnetic valves 13 that apply appropriate pressure to the drive wheels 3 are closed, and the operation of the hydraulic pressure generator 12 is stopped. However, since the electromagnetic valve 13 is closed, a constant pressure is always applied to the drive wheel 3.

次に荷台11 上の荷が無くなるとリミットスイッチ1
4は開き、これをコントローラー5が検知し、電磁バル
ブ】3に指示を与え、この電磁バルブ13は開く。電磁
バルブ13が開くと、ピストン8に加えられていた油圧
が無くなり、バネ1゜の復元力で板体8bを押し上げ、
駆動輪3へ力けえられる圧力は元の状態にもどる。
Next, when the load on the loading platform 11 is gone, the limit switch 1
4 opens, the controller 5 detects this, gives an instruction to the electromagnetic valve 3, and this electromagnetic valve 13 opens. When the electromagnetic valve 13 opens, the hydraulic pressure applied to the piston 8 disappears, and the restoring force of the spring 1° pushes up the plate 8b.
The pressure applied to the drive wheels 3 returns to its original state.

なおこの発明は上記実施例に限られることなくたとえば
リミットスイッチは必要に応し複数個にしてもよく、ま
た上記荷台11  に積む予定の荷の重量がいろいろあ
る場合はコントローラ15  に前もって荷の重量を入
力、又はその都度性に(−1けられた重量を示すバーコ
ード等を読み取り、荷の重量を入力、又は地上側から荷
の重量を教えて入力し、上記コントローラ15  から
油圧発生装置12に荷台11 上の荷の重量に応じグこ
電流を流し、この電流に比例して上記油圧発生装置12
は油圧を発生させてもよい。また路面状態、無人車の荷
の重ざなと、状況に応じてはまったく油圧を用いず、バ
ネの駆動輪に与える圧力を常に一定にしておいてもよい
Note that the present invention is not limited to the above-mentioned embodiment, and for example, a plurality of limit switches may be used as necessary. Also, if there are various weights of loads to be loaded on the loading platform 11, the weight of the loads can be set in advance in the controller 15. or read the barcode, etc. indicating the weight that has been digitized by (-1) each time, input the weight of the load, or input the weight of the load from the ground side, and then input it from the controller 15 to the hydraulic pressure generator 12. A current is applied to the loading platform 11 according to the weight of the load on the loading platform 11, and the hydraulic pressure generator 12 is activated in proportion to this current.
may generate hydraulic pressure. Further, depending on the road surface condition, the load of the unmanned vehicle, and other circumstances, hydraulic pressure may not be used at all, and the pressure applied to the drive wheels by the spring may be kept constant.

以上説明したようにこの発明によれば、無人車の2個の
駆動輪をバネ支持にし、道幅を車体に固定し、上記駆動
輪の圧力を上記無人車に積む荷の重さによって変化させ
、常に適当な駆動輪圧を保つようにしたため、無人車の
荷重が増加しても無人車が揺れることはなくなり、無人
車の走行路面の凹凸等の悪条件において(無人車の揺れ
がなくなり、無人車へ積んだ荷の荷姿の変化がなくなり
、上記荷を傷付けることなく物品運搬の信頼性が向上す
る。また無人車へ積んだ荷の重心が上記無人車の車体の
中心とずれていても上記無人車停止時の該無人車の上面
レベルが変化するこ七なく、上記荷の自動移戦時に相手
側の移載機器との位置関係が良好淀保て、自動移載ひい
ては自動搬送システムの信頼性を向上さすことができる
As explained above, according to the present invention, the two drive wheels of the unmanned vehicle are supported by springs, the road width is fixed to the vehicle body, and the pressure of the drive wheels is varied depending on the weight of the load loaded on the unmanned vehicle, Since the drive wheel pressure is always maintained at an appropriate level, the unmanned vehicle no longer shakes even when its load increases, and even under adverse conditions such as uneven road surfaces (the unmanned vehicle no longer shakes and the unmanned vehicle This eliminates changes in the appearance of the load loaded onto the vehicle, improving the reliability of transporting goods without damaging the load.Furthermore, even if the center of gravity of the load loaded onto the unmanned vehicle is shifted from the center of the unmanned vehicle's body, The top surface level of the unmanned vehicle does not change when the unmanned vehicle is stopped, and the positional relationship with the other party's transfer equipment is maintained at a good level during the automatic transfer of the load. Reliability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による無人車の車輪配置図、第2図は第
1図におけるA−A断面図である。 1・・・・・・・・・道幅 3・・・・・・・・・駆動輪 10  ・・・・・・バネ 出願人 神m電機株式会社 代理人 弁理士 斎藤春弥
FIG. 1 is a wheel arrangement diagram of an unmanned vehicle according to the present invention, and FIG. 2 is a sectional view taken along line AA in FIG. 1... Road width 3... Drive wheel 10... Spring applicant Kami Denki Co., Ltd. agent Patent attorney Haruya Saito

Claims (1)

【特許請求の範囲】[Claims] 車両両側中央部に駆動輪を独立に2輪、当該車両前後に
遊輪を2輪以上設け、上記2駆動輪の速度差により舵取
りを行なう無人車において、上記2駆動輪を弾性体を用
いて上記無人車の車体に支持し、上記遊輪を上記車体に
直接固定支持した無人車の車輪懸架機構。
In an unmanned vehicle that has two independent drive wheels in the central part of both sides of the vehicle, two or more idle wheels at the front and rear of the vehicle, and that steers based on the speed difference between the two drive wheels, the two drive wheels are connected to the drive wheel using an elastic body. A wheel suspension mechanism for an unmanned vehicle, which is supported on the vehicle body of the unmanned vehicle, and the idler wheels are fixedly supported directly to the vehicle body.
JP1522783A 1983-01-31 1983-01-31 Wheel suspension mechanism for unmanned car Granted JPS59140107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1522783A JPS59140107A (en) 1983-01-31 1983-01-31 Wheel suspension mechanism for unmanned car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1522783A JPS59140107A (en) 1983-01-31 1983-01-31 Wheel suspension mechanism for unmanned car

Publications (2)

Publication Number Publication Date
JPS59140107A true JPS59140107A (en) 1984-08-11
JPH0417821B2 JPH0417821B2 (en) 1992-03-26

Family

ID=11882972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1522783A Granted JPS59140107A (en) 1983-01-31 1983-01-31 Wheel suspension mechanism for unmanned car

Country Status (1)

Country Link
JP (1) JPS59140107A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128884A (en) * 1985-11-28 1987-06-11 Usac Electronics Ind Co Ltd Traveling mechanism for unmanned transport vehicle
JPH03291960A (en) * 1990-04-09 1991-12-24 Hitachi Ltd Substrate for semiconductor-device lamination and laminated semiconductor device
JPH0450505U (en) * 1990-09-04 1992-04-28
JP2003118568A (en) * 2001-10-15 2003-04-23 Matsushita Electric Ind Co Ltd Automatic guided vehicle and its running control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515723A (en) * 1974-07-05 1976-01-17 Hitachi Ltd MUJIN UNPANSHA
JPS5599465A (en) * 1979-01-17 1980-07-29 Murata Machinery Ltd Truck for carrying article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515723A (en) * 1974-07-05 1976-01-17 Hitachi Ltd MUJIN UNPANSHA
JPS5599465A (en) * 1979-01-17 1980-07-29 Murata Machinery Ltd Truck for carrying article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128884A (en) * 1985-11-28 1987-06-11 Usac Electronics Ind Co Ltd Traveling mechanism for unmanned transport vehicle
JPH0358950B2 (en) * 1985-11-28 1991-09-09 Pfu Ltd
JPH03291960A (en) * 1990-04-09 1991-12-24 Hitachi Ltd Substrate for semiconductor-device lamination and laminated semiconductor device
JPH0450505U (en) * 1990-09-04 1992-04-28
JP2003118568A (en) * 2001-10-15 2003-04-23 Matsushita Electric Ind Co Ltd Automatic guided vehicle and its running control method

Also Published As

Publication number Publication date
JPH0417821B2 (en) 1992-03-26

Similar Documents

Publication Publication Date Title
US6615478B2 (en) Process for assembling a vehicle chassis by inversion
US8701965B2 (en) Vehicle floor production system
JP2605460B2 (en) Unmanned bogie traveling equipment
US5131802A (en) Vehicle equipped with balancing device
JPS59140107A (en) Wheel suspension mechanism for unmanned car
FR2606711A1 (en) Air spring arrangement for double axled vehicles
US4116300A (en) Vibrator tilt control system for vehicle mounted seismic vibrators
US20060151255A1 (en) Vertical reciprocating conveyor
JPH04306181A (en) Moving truck for rough terrain
CN214295446U (en) Suspension assembly
JP3246868B2 (en) Transfer device
JP2596665B2 (en) Loading platform structure for trucks, etc.
JP2640823B2 (en) Suspension positioning device
CN219193508U (en) Roller AGV convenient for goods taking and placing
JPH09104534A (en) Boom oscillation stop mechanism for container loader/ unloader
JPS59140111A (en) Driving-wheel pressure adjusting mechanism of unmanned car
JPS58218437A (en) Device for controlling operation of lift provided on damp truck
JP3901407B2 (en) Automated transport system
JPH0215026Y2 (en)
CN111377365A (en) Automobile hoisting machine
JPH07149133A (en) Axle load distributing method and device used for rear suspension of rear biaxial vehicle
JPH03120118A (en) Transfer method for vehicle
JPS613441U (en) Chassis dynamometer for four-wheel drive vehicles
JPH03239686A (en) Suspension installing method
JPH0522470Y2 (en)