JPS59139995A - Water disposal - Google Patents

Water disposal

Info

Publication number
JPS59139995A
JPS59139995A JP58012344A JP1234483A JPS59139995A JP S59139995 A JPS59139995 A JP S59139995A JP 58012344 A JP58012344 A JP 58012344A JP 1234483 A JP1234483 A JP 1234483A JP S59139995 A JPS59139995 A JP S59139995A
Authority
JP
Japan
Prior art keywords
tank
treated
raw water
water
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58012344A
Other languages
Japanese (ja)
Other versions
JPH0312954B2 (en
Inventor
Akira Iwata
岩田 昭
Kazuhiko Nakamura
一彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LION ENG KK
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
LION ENG KK
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LION ENG KK, Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical LION ENG KK
Priority to JP58012344A priority Critical patent/JPS59139995A/en
Publication of JPS59139995A publication Critical patent/JPS59139995A/en
Publication of JPH0312954B2 publication Critical patent/JPH0312954B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To increase the amount of O2 dissolved in raw water to be treated for enhancing the power of treating BOD, in a method for bringing a liquid into countercurrent contact with gas in a fluidized bed process, by hermetically sealing a tank and holding the inner pressure of said tank at a high level. CONSTITUTION:Raw water to be treated is supplied through a water supply pipe 11 to the interior of a hermetically sealed tank 10 and circulated therein as a downward stream through a fluidized bed 13 formed from a carrier 14 having specific gravity smaller than that of water. At the same time, air is injected through a sparger pipe 15 into the raw water to be treated and brought into countercurrent contact with the raw water to be treated. Hereon, the inner pressure of the tank 10 is raised above ordinary pressure in a range below about 5kg/cm<2> by a booster. Hence, the dissolution of O2 into the raw water to be treated is acceleratd, and the dissolution ratio of O2 is held at a high level corresponding to the inner pressure and temp. of the tank 10.

Description

【発明の詳細な説明】 本発明は、有機物を含む下水や工場廃水等を処理するた
めの水処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water treatment method for treating sewage, industrial wastewater, etc. containing organic substances.

この種の水処理方法として従来より知られているものに
、活性汚泥法、散水炉床法、流動床法などがある。それ
らの中でも、流動床法は、活性汚泥法や散水炉床法に比
較してBOD負荷を大きくできる点、即ち処理能力が大
きいという点で優れている。これは,流動床を構成する
担体の流動によりその表面に生育する微生物の量を10
倍以上にすることが可能なためであるが、このように微
生物量を増大させるためにはBOD量に対して重量で0
.5〜1.0倍以上の溶存酸素を与えることが必要であ
り、そのために従来より各種の王夫がなされている・ 即ち、第1図に示すものは、比重の大きい粒状の担体2
を充填した槽1内にその下部より処理原水を」−向流と
して流入させるようにしたもので、その際、入r+3の
手tiijに気液混合装置4を設け、この気液混合装置
4で予め処理原水Wに対する酸mAの溶解を行うように
している(特開昭54−81660吋公報参り,)。こ
れは、担体2の流動状態を損うために空気を直接槽l内
に供給することが困卸なためであるが、このように単に
空気と処理原水とを槽1内に供給したのでは、気・液の
進行方向が回しであるためそれらの接触時間が短く、酸
素の十分な溶解が期待できない。しかも、気掖混合装置
4を必要とするため全体の構造が複雑化する。
Conventionally known water treatment methods of this type include an activated sludge method, a sprinkler hearth method, and a fluidized bed method. Among them, the fluidized bed method is superior to the activated sludge method and the sprinkled hearth method in that it can increase the BOD load, that is, it has a large processing capacity. This means that the amount of microorganisms growing on the surface of the carrier constituting the fluidized bed can be reduced by 10%.
This is because it is possible to more than double the amount of microorganisms, but in order to increase the amount of microorganisms in this way, the amount of BOD must be 0% by weight.
.. It is necessary to provide 5 to 1.0 times more dissolved oxygen, and for this purpose, various types of oxygen have been conventionally used. In other words, the one shown in Figure 1 is a granular carrier 2 with a large specific gravity.
The raw water to be treated is made to flow in countercurrent from the lower part into the tank 1 filled with The acid mA is dissolved in the treated raw water W in advance (see Japanese Patent Application Laid-Open No. 81660/1983). This is because it is difficult to directly supply air into tank 1 because it would impair the flow state of carrier 2, but it is not possible to simply supply air and treated raw water into tank 1 in this way. Since the direction of travel of the gas and liquid is circular, the contact time between them is short, and sufficient dissolution of oxygen cannot be expected. Moreover, since the air mixing device 4 is required, the overall structure becomes complicated.

また、第2図においては,見掛け比重が水より小さい粒
状の担体6を槽5内に充填し、これによって形成される
流動床内に槽5の上部より処理原水Wを下向流として流
通させると共に、槽5の下部より+,l=気Aを直接供
給するようにしている(特開閉54−108464号公
報参照)。この方法でt±,−4−述したような気液混
合装置を必要としなし)ばかりでなく,気・液が向流的
に接触するためそれらの接触時間が長いという利点があ
るが、常圧で酸素の溶解を行っているので40〜50m
gl文の酸素溶解度(空気のみでは酸素溶解度は10m
g/文程度)を得るのが限度であり、このため微生物の
生育できる粒状担体の表面積が大きいにも拘らず生育す
る微生物の量が抑制されてBOD処理能力に限界が生じ
る。
In addition, in FIG. 2, a granular carrier 6 with an apparent specific gravity smaller than that of water is filled in the tank 5, and the treated raw water W is passed in a downward flow from the upper part of the tank 5 into the fluidized bed thus formed. At the same time, +, l=air A is directly supplied from the lower part of the tank 5 (see Japanese Patent Laid-Open No. 54-108464). This method not only eliminates the need for a gas-liquid mixing device as described above, but also has the advantage that the contact time between the gas and liquid is long because they contact each other countercurrently. Since oxygen is dissolved by pressure, the length is 40 to 50 m.
Oxygen solubility in gl statement (oxygen solubility in air alone is 10 m
Therefore, even though the surface area of the granular carrier on which microorganisms can grow is large, the amount of microorganisms that can grow is suppressed, and there is a limit to the BOD treatment capacity.

本発明は、気・液を向流的に接触させる後者の方法にお
いて、処理原氷中への酸素溶解量を増大させてBOD処
理能力を高めることを目的とするものである。
The purpose of the present invention is to increase the amount of oxygen dissolved in treated raw ice in the latter method of bringing gas and liquid into countercurrent contact, thereby increasing the BOD treatment capacity.

而して、本発明は、見掛け比重が水より小さい粒状の担
体に微生物を付着させこの担体を密閉{7た槽内に充填
することにより流動床を形成し、この流動床内に槽の上
部から処理原水を[向流として流通させると共に、槽内
圧力を高い状態に保って槽の下部から上記処理原水中に
空気を吹き込み、処理原水中への酸素溶M星を増大させ
て水処理を行うことを4’[とするものである。
Accordingly, the present invention forms a fluidized bed by attaching microorganisms to a granular carrier whose apparent specific gravity is smaller than that of water and filling this carrier in a sealed tank, and in which the upper part of the tank is placed inside the fluidized bed. The treated raw water is circulated as a countercurrent, and air is blown into the treated raw water from the lower part of the tank while keeping the pressure inside the tank high to increase the amount of oxygen dissolved in the treated raw water and carry out water treatment. What is done is 4'[.

以下、木発明の水処理方法について図面を参照しながら
詳細に説明する。
Hereinafter, the water treatment method of the Wood invention will be explained in detail with reference to the drawings.

第3図は本発明の方法の実施に使用して好適な装置の一
例を示すもので、10は密閉型の槽であって、該槽lO
の内部上方には処理原水奢供給するだめの給水管11が
設けられ、槽1oの下端には処理済水のりi木管12が
設けられている。また、−1一記槽1oの内部には、見
掛け比重が水より小さい粒状の担体14が多数充填され
、微生物を表面に伺着せしめられたこれらの担体14に
よって処理原木を処理するための流動床13が形成され
る。そして、槽1oの内部下方には処理原水中に富酸素
空気を供給するだめの故気管l5が配設され、この散気
管l5は酸素富化装置l6を介して火気等の空気源l7
に接続され−Cいる。この酸素富化装置16は、多孔質
支持膜に酸素の透過係数を高めたシリコン系高分子膜か
らなる酸素選択膜を張付けた酸素富化膜を備え,この酸
素富化膜で空気中の窒素や炭酸カス等を除去することに
より酸素濃度を増大させるようにしたもので、還流管1
8を介して槽10の上部と連結され、槽10内で回収し
た気体をも再生利用できるように構成されている。
FIG. 3 shows an example of an apparatus suitable for carrying out the method of the present invention, in which 10 is a closed type tank, and the tank 10 is
A water supply pipe 11 for supplying treated raw water is provided inside and above the tank 1o, and a wood pipe 12 for treated water is provided at the lower end of the tank 1o. In addition, the inside of the -1 tank 1o is filled with a large number of granular carriers 14 having an apparent specific gravity smaller than that of water, and these carriers 14 with microorganisms attached to their surfaces create a fluid flow for treating the treated logs. A floor 13 is formed. A waste air pipe l5 for supplying oxygen-enriched air into the raw water to be treated is arranged in the lower part of the inside of the tank 1o, and this air diffuser pipe l5 is connected to an air source l7 such as fire through an oxygen enrichment device l6.
-C is connected to -C. This oxygen enrichment device 16 is equipped with an oxygen enrichment membrane in which an oxygen selective membrane made of a silicon-based polymer membrane with a high oxygen permeability coefficient is attached to a porous support membrane. The reflux tube 1 is designed to increase the oxygen concentration by removing carbon dioxide, carbon dioxide, etc.
It is connected to the upper part of the tank 10 via the tank 8, and is configured so that the gas recovered within the tank 10 can also be recycled.

なお、図中18は空気中から除去した窒素や炭酸ガス等
を排出するだめの排気管である。
Note that 18 in the figure is an exhaust pipe for discharging nitrogen, carbon dioxide, etc. removed from the air.

上記処理装置によって水処理を行う場合には、給水竹1
1を通じて処理原水を槽10内に供給し、この処理原水
を見掛け比重の小さい担体14で形成された流動床13
内に下向流として流通させ、同時に、酸素富化装置l6
により酸素濃度を高められた富醇素空気を散気管l5を
通じて処理原水中に吹き込み、これらの処理原水と富酸
素空気とを自流的に接触させる。このとき、槽10内の
圧力は図示しない’il圧装j買によって約5Kg/c
m’以下の範囲内において常圧以上に上げておく。これ
によって、処理原水中への酸素の溶解が促進し、酸素溶
解度は槽内圧力及び槽内温度に応じた高いものとなる。
When water treatment is performed using the above treatment equipment, water supply bamboo 1
The treated raw water is supplied into the tank 10 through the fluidized bed 13 formed of a carrier 14 having a small apparent specific gravity.
At the same time, the oxygen enrichment device l6
Oxygen-rich air with an increased oxygen concentration is blown into the treated raw water through the aeration pipe 15, and the treated raw water and the oxygen-rich air are brought into contact with each other in a self-flowing manner. At this time, the pressure inside the tank 10 is approximately 5 kg/c due to the pressure equipment (not shown).
The pressure is raised to above normal pressure within the range of m' or less. This promotes the dissolution of oxygen into the raw water to be treated, and the oxygen solubility becomes high depending on the tank internal pressure and tank internal temperature.

実験によれば,槽内温度を20゜C.槽内圧力を2Kg
/cm’とした場合に、當圧の約3倍程度の酸素溶解が
可能であった。
According to experiments, the temperature inside the tank was set at 20°C. The pressure inside the tank is 2Kg.
/cm', it was possible to dissolve oxygen at about three times the pressure.

酸素溶M度の高められた処理原水中では枦体14の表面
において微生物が十分に生育するため、この微生物と処
理原水とが接触することによって有機物の分解が促進さ
れて処理原水の処理が行われ、処理済水が排水管12を
通じて排出される。
Since microorganisms grow sufficiently on the surface of the rod 14 in the treated raw water with an increased degree of dissolved M, the decomposition of organic matter is promoted by contact between these microorganisms and the treated raw water, and the treatment of the treated raw water is carried out. The treated water is then discharged through the drain pipe 12.

槽lOの」二部において回収された気体は還流悄18を
通して酸素富化装置l6に送られ、ここで外部空気と1
71せてそれに含まれている窒素や炭酎カス等か除去さ
れて酸素濃度が高められた後、再び散気着15を通して
槽内に吹き込まれる。
The gas recovered in the second part of tank 10 is sent through reflux 18 to oxygen enrichment device 16, where it is mixed with outside air.
After the nitrogen and charcoal liquor scum contained therein are removed and the oxygen concentration is increased, it is again blown into the tank through the diffuser 15.

以上に詳述したように、本発明によれば、処理原木と空
気とを向流的に接触させると共に、槽内圧力を高めた状
態で空気を供飴するようにしたので、処埋原水中への酸
素溶解晴を増大させて処理能力奢著しく高めることがで
きる。
As described in detail above, according to the present invention, the treated raw wood and air are brought into contact with each other in a countercurrent manner, and the air is supplied with the pressure inside the tank increased, so that By increasing the amount of oxygen dissolved into the liquid, processing capacity can be significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の処理力法の実施に使用される
装置の構成図、第3図は本発明の処理方法の実施に使用
される装置の構成図である。 10・・・槽、l3・・・流動床、 14・・・担体。
1 and 2 are block diagrams of an apparatus used to implement the conventional processing method, and FIG. 3 is a block diagram of an apparatus used to implement the processing method of the present invention. 10... Tank, l3... Fluidized bed, 14... Carrier.

Claims (1)

【特許請求の範囲】 l.見掛け比重が水より小さい粒状の担体に微生物を伺
着させ、この担体を密閉した槽内に充填することにより
流動床を形成し、この流動床内に槽の」二部から処理原
水を下向流として流通させると共に、槽内圧力を高い状
態に保って槽のF部から上記処理原水中に空気を吹き込
み、処理原水中への酸素溶解屡を増大させて水処理を行
うことを特徴とする水処理方法。 2,酎素富化装置で窒素、炭酸カス等を除去することに
より空気中の酸素を富化せしめた後、この富酎素空気を
処理原水中に吹き込むことを特徴とする特許請求の範囲
第1項記載の水処理方法。 3.槽内より回収した気体を酸素富化装置に還流させ、
外部空気と4)1せて酸素富化装置1こおいて酸素濃度
を高めて槽内に再供給することを特徴とする特許請求の
範囲第2項記載の水処理方法。
[Claims] l. Microorganisms are attached to a granular carrier with an apparent specific gravity smaller than that of water, and this carrier is filled in a sealed tank to form a fluidized bed. The treated raw water is poured downward into this fluidized bed from the second part of the tank. Water treatment is carried out by circulating the water as a stream and blowing air into the raw water to be treated from the F part of the tank while keeping the pressure inside the tank high to increase the amount of oxygen dissolved in the raw water to be treated. Water treatment methods. 2. After enriching the oxygen in the air by removing nitrogen, carbon dioxide, etc. with a chuan enrichment device, the chuan enriched air is blown into the treated raw water. The water treatment method according to item 1. 3. The gas recovered from the tank is refluxed to the oxygen enrichment device,
3. The water treatment method according to claim 2, wherein the oxygen concentration is increased in the oxygen enrichment device 1 together with external air and 4) is resupplied into the tank.
JP58012344A 1983-01-28 1983-01-28 Water disposal Granted JPS59139995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58012344A JPS59139995A (en) 1983-01-28 1983-01-28 Water disposal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58012344A JPS59139995A (en) 1983-01-28 1983-01-28 Water disposal

Publications (2)

Publication Number Publication Date
JPS59139995A true JPS59139995A (en) 1984-08-11
JPH0312954B2 JPH0312954B2 (en) 1991-02-21

Family

ID=11802662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58012344A Granted JPS59139995A (en) 1983-01-28 1983-01-28 Water disposal

Country Status (1)

Country Link
JP (1) JPS59139995A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284897A (en) * 1991-03-14 1992-10-09 Nanyou Kyokai Gas-liquid contacting method
JP2010158647A (en) * 2009-01-09 2010-07-22 Tohzai Chemical Industry Co Ltd Apparatus for treating organic wastewater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58297A (en) * 1981-06-25 1983-01-05 Mitsubishi Kakoki Kaisha Ltd Flowing bed type contact oxidation device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58297A (en) * 1981-06-25 1983-01-05 Mitsubishi Kakoki Kaisha Ltd Flowing bed type contact oxidation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284897A (en) * 1991-03-14 1992-10-09 Nanyou Kyokai Gas-liquid contacting method
JP2010158647A (en) * 2009-01-09 2010-07-22 Tohzai Chemical Industry Co Ltd Apparatus for treating organic wastewater

Also Published As

Publication number Publication date
JPH0312954B2 (en) 1991-02-21

Similar Documents

Publication Publication Date Title
JPH025478B2 (en)
ZA888737B (en) Two-stage wastewater treatment
JPH0137992B2 (en)
WO2019159667A1 (en) Aerobic biological treatment device
JPS60187396A (en) Apparatus for biologically removing nitrogen in waste water
JPH0376198B2 (en)
KR20190085916A (en) Bio activated carbon treatment device
JPS59139995A (en) Water disposal
JPS61136490A (en) Aeration type waste water treatment apparatus
JPS637895A (en) Ozone treatment apparatus
JPH09262429A (en) Desulfurizer for sulfide containing gas
WO2019163429A1 (en) Operating method for aerobic organism treatment device
JP2759308B2 (en) Method and apparatus for treating organic wastewater
JPS54135448A (en) Biological nitrification and denitrating process of sewage
JPS59139997A (en) Apparatus for water disposal
JP2006075784A (en) Biological purifying and circulating system tray
JP2003170189A (en) Treatment equipment
JPS63123496A (en) Treatment of sewage
JPS6039120Y2 (en) Fluidized bed sewage treatment equipment
JP2952125B2 (en) Surfactant-containing water treatment equipment
JPH06154792A (en) Biomembrane filter
JPH0135716B2 (en)
JPH01111492A (en) Deep-type waste water processing device
JPH02233199A (en) Fixed bed deep tank wastewater treatment method
KR0124039B1 (en) Activated sludge process using ultrafiltration and concentrated oxygen