JPS59139991A - Colored water disposal - Google Patents

Colored water disposal

Info

Publication number
JPS59139991A
JPS59139991A JP58014396A JP1439683A JPS59139991A JP S59139991 A JPS59139991 A JP S59139991A JP 58014396 A JP58014396 A JP 58014396A JP 1439683 A JP1439683 A JP 1439683A JP S59139991 A JPS59139991 A JP S59139991A
Authority
JP
Japan
Prior art keywords
water
treatment
chromaticity
ozone
trihalomethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58014396A
Other languages
Japanese (ja)
Other versions
JPH0330440B2 (en
Inventor
Yasushi Muraki
村木 安司
Masaru Kato
勝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suido Kiko Kaisha Ltd
Original Assignee
Suido Kiko Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suido Kiko Kaisha Ltd filed Critical Suido Kiko Kaisha Ltd
Priority to JP58014396A priority Critical patent/JPS59139991A/en
Publication of JPS59139991A publication Critical patent/JPS59139991A/en
Publication of JPH0330440B2 publication Critical patent/JPH0330440B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To remove chromaticity, etc. in water, while inhibiting the formation of trihalomethane, by adding coagulating treatment and treatment using a catalyst to a method for treating colored water having chromaticity derived from putrid substance such as humic acid with O3. CONSTITUTION:Colored water inside a raw water tank 1 is introduced into an O3 reaction column 3 by a pump 2, catalytically reacted with O3 from a generator 6, introduced into a filtering column 4 packed with Mn sand and filtered therein with a filtering bed 4a having the coating film of an activated MnO2 catalyst. By this filtration, the decomposition of residual O3 in the water is concurrently performed, while suppressing the total amount of trihalomethane. Treated water is obtained in a tank 5. Hereon, the mixing of aluminum sulfate from a tank 7 and coagulation are performed in the bed 4a to remove chromaticity and dissolved Mn and iron from the water.

Description

【発明の詳細な説明】 この発明は着色水処理力ン′に関し、特に着色水をオゾ
ンとの接触反応処理を行った後に凝集処理及び二酸化マ
ンカン触媒被膜をイ」−)る接触濾過層で濾過すること
によりトリハロメタンの生成を抑止しつつ小中の色度等
を除去【桂能な着色水処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to colored water treatment, and in particular, colored water is subjected to a contact reaction treatment with ozone and then filtered through a contact filtration layer that undergoes coagulation treatment and a manganese dioxide catalyst coating. By doing so, the production of trihalomethanes is suppressed while the chromaticity of small and medium particles is removed.

上水道は水道の普及率の向上と共に水質の向上が要求さ
れてきたがこれに加えて原水水源の枯渇と水質悪化によ
って飲料水等の高度な処理方法が問題となりつつある。
As the penetration rate of water supply increases, there has been a demand for improved water quality, but in addition to this, the depletion of raw water sources and deterioration of water quality are causing problems in advanced treatment methods for drinking water, etc.

特に近年水道水の塩素処理に伴なう発ガン性物質トリ・
・ロメタン生成は在来の水質基準項目が濃度規制値にお
いてppm単位で、f;)−ッだものがppl) 中位
の微量成分の水質管理をも要求される時代になりそして
水源の枯渇に対応して開削゛、Nれ、7−深井戸水はフ
ミン酸、フルホ骸等の腐植物質にデー・因りZ)着色水
が多くなってさており、更に該腐植物質は色度ばかりで
なくトリノ・ロメタン生成の前駆物質であるので、その
処理工程の見直しを迫られている。
Especially in recent years, carcinogens associated with chlorination of tap water.
・For lomethane production, the conventional water quality standard item is the concentration regulation value in ppm units, f; Correspondingly, water from open-cut and deep wells has a large amount of colored water due to humic substances such as humic acid and fluorocarbons, and furthermore, these humic substances have not only chromaticity but also Turin water. Since it is a precursor for lomethane production, there is a need to review the treatment process.

概して着色地下水は高アルカリ度、高pH値を示し、こ
れに溶存性マンガン、鉄、アンモニア性窒素を含んでい
るので、現状では高濃度の前塩素処理、硫酸ぽんと等を
用いた凝集沈殿処理、又マンガン砂を用いた接触酸化処
理を併用して処理しているが、色度成分の凝集最適pi
−1値は5〜6と低く、アルカリ度が高いことも加わっ
て酸によるpHコントロールなしで凝集処理を行なうと
硫酸ばんどの使用量は大量になるばかりでなく、濁度成
分も殆んどないこともあって、生成したフロックは脆弱
で沈殿性も極めて悪く著しく処理困難である。
In general, colored groundwater has high alkalinity and high pH value, and contains dissolved manganese, iron, and ammonia nitrogen, so currently, it is treated with high-concentration pre-chlorination, coagulation-sedimentation treatment using sulfuric acid, etc. In addition, catalytic oxidation treatment using manganese sand is also used, but the optimum pi for aggregation of chromaticity components
-1 value is low at 5 to 6, and in addition to the high alkalinity, if flocculation treatment is performed without pH control with acid, not only will a large amount of sulfuric acid be used, but there will be almost no turbidity component. For this reason, the flocs produced are brittle and have extremely poor settling properties, making treatment extremely difficult.

そこで本発明はさきにこれ等の問題点を解決するために
フミン酸起因の着色水の脱色にはオゾン処理が極めて有
効であること、及び人工フミン酸着色水についての実験
でオゾンと過酸化水素併用処理をした処理水が塩素処理
に対して化学的に安定でクロロホルムの生成が大幅に低
減されることを提言したが、更にこれに凝集処理及び接
触触媒による処理をも加味して一貫工程により着色水を
処理しようとするものである。
Therefore, in order to solve these problems, the present invention has first demonstrated that ozone treatment is extremely effective for decolorizing colored water caused by humic acid, and that ozone and hydrogen peroxide were used in experiments on artificial humic acid colored water. It was proposed that the treated water treated in combination would be chemically stable against chlorine treatment and the production of chloroform would be significantly reduced, but it was also proposed that coagulation treatment and treatment with a contact catalyst would be added to this, resulting in an integrated process. This is intended to treat colored water.

次に実施例に基づいて本発明の詳細な説明する。Next, the present invention will be explained in detail based on examples.

実験に供したのは倒れも深井戸を水源とじフミン質に起
因する色度を有する3個所の浄水場の原水A、B、0で
あり、その水質は第1表の如ぐである。
The raw water A, B, and 0 from three water purification plants whose water source was a deep well and whose chromaticity was caused by humic substances were used in the experiment, and the water quality was as shown in Table 1.

第1表 NF−一未濾過sample 1・゛・・・045μミリホアフイルク一濾過水第1表
によれば、何れも色度、アルシカ11度も高<pl(緩
衝性が大きく、又鉄、マンガン、アンモニアも存在して
塩素要求量の犬@〜・水である。
Table 1: NF-1 unfiltered sample 1・゛...045 μm filtered water Ammonia is also present and the water has a high chlorine demand.

本発明方法を実施するに当り、予試験として処理法の単
独効果を見るため、先ず前言己の3種の原水に塩素を添
加したときトリノ・ロメタンカー如何に生成するかを検
査した。経過をプロットした図面(第2図〜第12図)
中の記号としてQマ総トリハロメタン量をTTI−IM
、生成トリノhロメタンのウチ、クロロホルムをTOM
、フ゛ロモジク口口メタンヲBDOM 、ジブロモクロ
ロメタンをDOBM。
In carrying out the method of the present invention, as a preliminary test, in order to see the independent effects of the treatment method, we first examined how much chlorine was produced in Torino-Rome tankers when chlorine was added to the three types of raw water mentioned above. Drawings plotting the progress (Figures 2 to 12)
The symbol inside is Qma total trihalomethane amount TTI-IM
, the produced torinomethane, chloroform to TOM
, Fromozik mouth methane BDOM, dibromochloromethane DOBM.

ブロモホルムをTBMと称スル。Bromoform is called TBM.

今前記3種の原水300 m7!をとりそれぞれに次亜
塩素酸ソーダを添加し、20℃の恒温槽中で24時間静
置した時の水値変化を示したものカー第2図〜第4図で
ある。これによると、塩素添加量を増加してゆくと遊離
塩素の出現によって急激にTTIIMの量は増えそれ以
降は遊離塩素の増加に対して安定してしまい、反応時間
が光分であれば微量の遊離塩素の存在によってもTTH
Mは確実に生成することがわかる。
300 m7 of raw water from the three types mentioned above! Figures 2 to 4 show the changes in water value when the samples were taken and sodium hypochlorite was added to each sample, and the samples were allowed to stand for 24 hours in a constant temperature bath at 20°C. According to this, as the amount of chlorine added increases, the amount of TTIIM rapidly increases due to the appearance of free chlorine, and after that it becomes stable against the increase in free chlorine. The presence of free chlorine also causes TTH
It can be seen that M is reliably generated.

次にオゾン処理については3種の原水をオゾン注入率s
 rq / t、接触時間10分で脱色処理した結果を
第5図に示す。又オゾン処理をしても水道水には残留塩
素の存在が義務づけられるので塩素添加が行われなけれ
ばならず、その結果をみるためオゾン処理水に次亜塩素
酸ノーズを添加してその反応をみたものが第6図及び第
7図であり、各試水はアンモニア、鉄、マンガンの存在
喧が違うのでそれぞれ塩素要求量も異り、アンモニアの
多い試水Aは塩素注入量を1.FILj/lと犬キくシ
である。結果としてTTI−(Δ4の生成能については
各試水ともオゾン注入率、オゾン接触時間を増加させて
もせいぜい無処理時の20%程度の低減効果しか示さな
かった。また第77図にみられる如くこの時のTTI−
TMの各組成のトリフ10メタンの増減をみると、TO
M 、 BDCM 、のように塩素分の多い成分につい
てはオゾン処理によって減少しているが、  TBM、
DBC!Mのように臭素分の多い成分については逆に増
加している傾向がみられる。
Next, regarding ozone treatment, three types of raw water are treated at ozone injection rate s.
The results of decolorization treatment at rq/t and contact time of 10 minutes are shown in FIG. In addition, even after ozonation treatment, tap water must still contain residual chlorine, so chlorine must be added, and in order to see the results, hypochlorous acid nose was added to ozonation-treated water and the reaction was observed. The results shown in Figures 6 and 7 show that each sample water has a different amount of ammonia, iron, and manganese, so the amount of chlorine required is also different.For sample water A, which has a lot of ammonia, the amount of chlorine added was 1. FILj/l and Inukishi. As a result, regarding the production ability of TTI-(Δ4), even if the ozone injection rate and ozone contact time were increased for each sample water, the reduction effect was only about 20% compared to that without treatment. TTI at this time-
Looking at the increase and decrease in truffle 10 methane for each composition of TM, it is found that TO
Components with high chlorine content, such as M, BDCM, are reduced by ozone treatment, but TBM,
DBC! On the contrary, for components with a high bromine content such as M, there is a tendency to increase.

次に凝集沈殿処理によっての色度除去効果をしらべると
第8図及び第9南のような結果が得られた。これによれ
ば色度除去のための凝集゛最適pi(値は5〜6付近で
あり、硫酸ばんどの注入率は前記pH値では10〜20
■/lで色度を水質基準値であるところの5度以下に落
とすことができた。しかし、pII 7−8では1oO
〜120m1iI/lも必要とし、試水Cについては注
入率を増やしても8度以下には落ちなかった。これらフ
ロックの状態を肉眼で観察すると色度除去効率の高い酸
性域凝集法では確認が困難な極微細な、いわゆるマイク
ロフロックで・あり、又中性域での凝集法についてはフ
ロックは脆弱で沈降性は極めて悪い。実験では0.45
μのミリボーアフィルターによって濾過しているが、実
際の沈殿分離操作による場合はフロック分離は困難であ
ろう。
Next, when the effect of removing chromaticity by coagulation and precipitation treatment was investigated, the results shown in Figures 8 and 9 were obtained. According to this, the optimum pi (value is around 5 to 6) for coagulation for removing chromaticity, and the injection rate of sulfuric acid band is 10 to 20 at the above pH value.
■/l The chromaticity could be lowered to 5 degrees or less, which is the water quality standard value. However, in pII 7-8, 1oO
~120 m1iI/l was required, and sample water C did not fall below 8 degrees even if the injection rate was increased. When observing the state of these flocs with the naked eye, they are extremely fine, so-called micro-flocs, which are difficult to identify using the acidic range flocculation method, which has high color removal efficiency, and when using the neutral range flocculation method, the flocs are brittle and settle. Sex is extremely bad. 0.45 in the experiment
Although filtration is carried out using a μ millibore filter, it would be difficult to separate the flocs using an actual precipitation separation operation.

第10図は原水及び濾過水の色度と’I’TIIM生成
能の関係を示すものであり、色度とTTIIM生成量と
の間には略直線的な関係が生じている。この図より判断
するとトリ・・ロメタシを厚生省の指導目標値100μ
y/L以下を達成するには色度を5度以下に落さなけれ
ばならな℃・ことカーわ力・る。
FIG. 10 shows the relationship between the chromaticity of raw water and filtrate water and the ability to produce 'I'TIIM, and there is a substantially linear relationship between the chromaticity and the amount of TTIIM produced. Judging from this figure, the Ministry of Health and Welfare's guidance target value for bird lometasi is 100μ.
To achieve y/L or less, the chromaticity must be reduced to 5 degrees or less.

第11図は0.45μミリホーアフイルり濾過水を未濾
過水とを混合した時のTTlfMの生BX 眩を示した
もので、この図より凝沈、濾過処理が不充分であれば後
塩素処理によるトリノ・ロメタンの生成をさけることは
できないし、濾過層中に抑留されたフロックからも塩素
の存在によってト1ノハロメタンが生成することが予想
される。
Figure 11 shows the raw BX glare of TTlfM when 0.45 μm pore filtered water is mixed with unfiltered water. From this figure, if the coagulation and filtration treatment is insufficient, post-chlorination treatment is necessary. The production of torinohalomethane cannot be avoided, and it is expected that torinohalomethane will be produced from the flocs retained in the filtration layer due to the presence of chlorine.

以上からオゾン処理は脱色には極めて効果、うζあるが
、その後に塩素処理を実施する際にT’l’l1M生成
に対する抜本的な抑制策とはならず又mi: ’1’=
沈殿処理はフロック分離が確実であれば優〕またT’l
用M生成抑制効果を発挿りるが、もし分角田力t不充分
であれば大幅に抑制効果か低下することが判明した。寸
だ、水中に鉄、マンツー1ン、過マンガン酸カリ消費物
質が存在するときにこれを除去するには、普通塩素注入
を行なりのであるが、色度が存在するときの塩素注入は
とりもなおさずトリハロメタンの生成につながるので、
これの除去もままならないのが現状である。
From the above, ozone treatment is extremely effective in decolorizing, but it is not a drastic suppression measure against T'l'l1M generation when chlorine treatment is carried out afterwards, and mi: '1' =
Precipitation treatment is preferable if floc separation is ensured] Also, T'l
It has been found that the inhibitory effect on M production is significantly reduced if the amount of hydrogen is insufficient. In order to remove iron, iron, potassium permanganate, and other consumable substances in the water, chlorine injection is usually carried out, but chlorine injection is not recommended when chromaticity is present. This will lead to the production of trihalomethanes,
At present, it is difficult to remove this.

ここにおいて、本発明は、前記問題点を解決するためこ
れら着色水の溶存物質の除去をオゾンの酸化力によって
行ないかつ残留オゾンの除去を兼ねて活性二酸化マンカ
ン触媒被膜を有する濾材、例えばマンカン砂或は電解二
酸化マンガン粒子の部層を利用することによって’f’
T)IMの抑制を行ないながらその目的を達する方法を
提・供するものである。
In order to solve the above-mentioned problems, the present invention removes dissolved substances in colored water using the oxidizing power of ozone, and also removes residual ozone by using a filter material having an active mankane dioxide catalyst coating, such as mankane sand or mankane. 'f' by utilizing the sublayer of electrolytic manganese dioxide particles
T) It provides a method to achieve the objective while suppressing IM.

この処理実験装置は第1図に見られる如く原水槽1.原
水ポンプ2.オンン反応塔3.マンガン砂濾過塔4.処
理水槽5及びこれに附随−するオゾン発生装置6.硫酸
ばんど注入装置7を設けてなるものである。また、8は
03メーター、9は排03塔、10はガスメーター、1
1は除湿器、12はコンプレッサーである。このうちマ
ンガン砂濾過塔4は本例では上向流濾過方法とすること
により硫酸ばんどの混和及び凝集を濾塔下部の粗粒子濾
材層4aで行なわせ、攪拌凝集装置等を節約しているが
、これ等を設けて通常の下向流濾過を杓なってもよい。
As shown in Figure 1, this processing experimental equipment consists of two raw water tanks: 1. Raw water pump 2. Onn reaction tower 3. Manganese sand filter tower4. Treated water tank 5 and accompanying ozone generator 6. A sulfuric acid band injection device 7 is provided. Also, 8 is 03 meter, 9 is exhaust 03 tower, 10 is gas meter, 1
1 is a dehumidifier, and 12 is a compressor. In this example, the manganese sand filtration tower 4 uses an upward flow filtration method, so that the mixing and agglomeration of sulfuric acid is performed in the coarse particle filter layer 4a at the bottom of the filter tower, thereby saving on stirring and aggregation equipment. , etc. may be provided to perform normal downward flow filtration.

なお、濾材としていわゆる電解二酸化マンカンの如きγ
型二酸化マンガン触媒濾材を用いるとびは、過剰オゾン
によりマンカンのば化が運みターさ′て7価の溶解性マ
ンガンとなることは抑止できるのでオゾン注入率の制御
が容易である。
In addition, γ such as so-called electrolytic mankan dioxide can be used as a filter material.
When using a type manganese dioxide catalyst filter medium, the ozone injection rate can be easily controlled since it is possible to prevent manganese from becoming agglomerated by excess ozone and turning into heptavalent soluble manganese.

なおこの試験原水はABCの3試水を均等。こ混合しか
つ溶存マンカン量を増加せしめるため塩化マンガンを混
入している。
The raw water for this test was equal parts of the three ABC test waters. Manganese chloride is mixed in to increase the amount of dissolved mankan.

処理仕様は、処理水敏311 b、オゾン反応塔3滞留
時間10分、オゾン注入率12my/l、注入オゾン空
気濃度19■/1.マンカン砂濾過槽通化条件SV= 
6’/ h、LV= 6 m / h、層高80 cm
 sなお処理水に対する後塩素注入量は1 mg −Q
z /lである(図示せず)。
The treatment specifications were: treatment water concentration 311b, ozone reaction tower 3 residence time 10 minutes, ozone injection rate 12 my/l, and ozone air concentration 19/1. Mankan sand filter tank passivation conditions SV=
6'/h, LV=6 m/h, layer height 80 cm
sThe amount of post-chlorine injection into the treated water is 1 mg -Q
z/l (not shown).

そして、この処理結果は第12図に示す如くである。こ
れによれば、 TTIIM 、鉄、マンカン、色度、過
マンガンポカリ消費鼠等すべでが水道水の水′#基準内
に瑯合せしめることができるばがりでなく、非酸化物質
の酸化、原水の殺菌等も優れた能力があるオゾンで行な
っているため残留位塩素を残すための塩素注入は、岐化
反応の弱いクロラミンの使用がb」能となり従って浄水
場から給水栓に至る長い反応時間の存在によってもトリ
ハロメタン生成の抑制に大きな効果がある。
The results of this processing are shown in FIG. According to this, not only can TTIIM, iron, mankan, chromaticity, permanganate consumption level, etc. be brought within the standard of tap water, but also the oxidation of non-oxidizing substances, raw water Because ozone is used for sterilization, it is possible to use chloramine, which has a weak branching reaction, when injecting chlorine to leave a residual chlorine residue, and therefore requires a long reaction time from the water treatment plant to the water tap. The presence of trihalomethane also has a great effect on suppressing trihalomethane production.

なお、マンガン砂部層の人口4bで残留オゾンが2.8
my/lであったものが、鏡層出口4Cでは完全に処理
され残留オゾンの触媒分解効果も確認できた。また、こ
の実験でマンガン砂層に捕捉された鉄、マンガンの量は
逆洗時に部層より排出される逆洗水中のそれと一致し、
鉄、マンガンがオゾンの暇化によって不溶性の形にかえ
られ部層で捕捉されることも確認できた。なお、実験で
は硫酸ばんど注入を省略して直接濾過も行ってみたが、
通水時1…が8時間程度ということもあって、マイクロ
フロック方法との間に差はみられなかった。
In addition, residual ozone was 2.8 in the population 4b of the manganese sand layer.
my/l was completely treated at the mirror layer outlet 4C, and the effect of catalytic decomposition of residual ozone was also confirmed. In addition, the amount of iron and manganese captured in the manganese sand layer in this experiment is consistent with that in the backwash water discharged from the sublayer during backwashing.
It was also confirmed that iron and manganese were converted into insoluble forms by ozone oxidation and captured in the substrata. In addition, in the experiment, we omitted the sulfuric acid band injection and performed direct filtration, but
There was no difference between this method and the microfloc method, partly because water flow time 1 was about 8 hours.

第2表に従来法である凝集沈殿濾過法と本発明であるオ
ゾン、マイクロフロックによる方法とのランニングコス
トの比較を示したが、本発明方法の方が従来法の約−程
度であり、前オゾジ処理とマンガン砂によるマイクロフ
ロック絢過に加えて結合塩素使用可能による後塩素処理
法の併用が脱色、除鉄、除マンガン、トリ・・ロメタン
生成抑制の点で優れかつ発生汚泥量も少く、沈殿池も省
略できて経済的であるばかりでなく、シかも工程が単純
で維持%理の点でも医れており、その利用価値は顕著で
ある。
Table 2 shows a comparison of running costs between the conventional coagulation sedimentation filtration method and the ozone and microfloc method of the present invention. In addition to ozodi treatment and microfloc filtration using manganese sand, the combination of post-chlorination treatment that allows the use of combined chlorine is superior in terms of decolorization, iron removal, manganese removal, and suppression of tri-lomethane production, and the amount of sludge generated is small. Not only is it economical because a settling tank can be omitted, but the process is simple and maintenance efficient, and its utility value is remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための一実験装置を示す回路
図、第2図〜第11図はそれぞれの条件におけるトリハ
ロメタンの増加減少量又は色度の減少量を示す折線図、
第12図は本発明方法を実施した際の結果を示す折線図
である。 なお図面において、 1   原水槽 2   原水ポンプ 3   オゾン反応塔 4   マンカン砂濾過塔 5   処理水槽 6   オゾン発生装置 7   硫酸ばんど注入装置 である。 第1図 第2図 第4図 オソン注入率〔m9/)] 第6図 オゾン接触時間(min) 第7図 オシ/汗入率(〒) 凝 集PH 第9図 A112 (504)318820 (7−)第10図 色  度(度) 第11図 :水 手続補正帯(自発) 昭和58年3月5日 特許庁長官 若 杉 和 夫 殿 ■、事件の表示 昭和58年特許願第14396号 2、発明の名称 着色水処理方法 3、補正をする者 事件との関係  特許出願人 名 称  水道機工株式会社 4、代理人 5、補正の対象 明細書の特許請求の範囲の欄 6、補正の内容 (別紙のとおり) (6,補正の内容) 明細書中 特許請求範囲(第1頁第5行ないし第13行)を次の通
り訂正する
FIG. 1 is a circuit diagram showing an experimental device for implementing the present invention, FIGS. 2 to 11 are line diagrams showing the amount of increase and decrease in trihalomethane or the amount of decrease in chromaticity under each condition,
FIG. 12 is a line diagram showing the results when the method of the present invention is implemented. In addition, in the drawing, 1 raw water tank 2 raw water pump 3 ozone reaction tower 4 mankan sand filter tower 5 treated water tank 6 ozone generator 7 sulfuric acid band injection device. Fig. 1 Fig. 2 Fig. 4 Ozone injection rate [m9/)] Fig. 6 Ozone contact time (min) Fig. 7 Ozone/sweat entry rate (〒) Aggregation PH Fig. 9 A112 (504) 318820 (7 -) Figure 10 Chromaticity (degrees) Figure 11: Water procedure correction band (spontaneous) March 5, 1980 Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office■, Indication of the case 1988 Patent Application No. 14396 2 , Name of the invention Colored water treatment method 3, Relationship with the person making the amendment Patent applicant name Suido Kiko Co., Ltd. 4, Agent 5, Claims column 6 of the specification to be amended, Contents of the amendment ( (As shown in the attached sheet) (6. Contents of amendment) The claims in the specification (page 1, lines 5 to 13) are corrected as follows.

Claims (1)

【特許請求の範囲】[Claims] フミン酸等腐植物質に起因した色度を有する着色水を処
理するに当り先ずオゾンとの接触反応処理を行って後、
凝集剤を添加し凝集処理をしてから二酸化マンガン触媒
被膜を有する接触濾材層で濾過することにより小中の色
度、溶存マンガン及び鉄の除去を行なうと共にトリハロ
メタンの生成を抑止しかつ小中の残留オゾンの分解処理
も同時に行なうことを特徴とする着色水処理力法。
When treating colored water with chromaticity caused by humic substances such as humic acid, first a contact reaction treatment with ozone is carried out, and then
By adding a flocculant and performing flocculation treatment, and then filtering with a contact filter layer having a manganese dioxide catalyst film, the chromaticity of small and medium-sized particles, dissolved manganese and iron are removed, and the formation of trihalomethane is suppressed, and the formation of trihalomethane is suppressed. A colored water treatment method that is characterized by simultaneously decomposing residual ozone.
JP58014396A 1983-01-31 1983-01-31 Colored water disposal Granted JPS59139991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58014396A JPS59139991A (en) 1983-01-31 1983-01-31 Colored water disposal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58014396A JPS59139991A (en) 1983-01-31 1983-01-31 Colored water disposal

Publications (2)

Publication Number Publication Date
JPS59139991A true JPS59139991A (en) 1984-08-11
JPH0330440B2 JPH0330440B2 (en) 1991-04-30

Family

ID=11859885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58014396A Granted JPS59139991A (en) 1983-01-31 1983-01-31 Colored water disposal

Country Status (1)

Country Link
JP (1) JPS59139991A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198598U (en) * 1984-12-03 1986-06-24
EP0223563A2 (en) * 1985-11-13 1987-05-27 BARR & WRAY LIMITED Swimming pool water treatment
JPS6490092A (en) * 1987-09-30 1989-04-05 Suido Kiko Kk Method for removing trihalomethane precursor in water
JPH0199689A (en) * 1987-10-09 1989-04-18 Suido Kiko Kk Method for removing organic matter in water
JPH03151095A (en) * 1989-11-02 1991-06-27 Yokohama Metsukin Kogyo Kk Filtering device for manganese
JPH04267829A (en) * 1991-02-25 1992-09-24 Sumitomo Precision Prod Co Ltd Purification of water in water tank for fishes
US5192452A (en) * 1988-07-12 1993-03-09 Nippon Shokubai Kagaku Kogyo, Co., Ltd. Catalyst for water treatment
JP2018183746A (en) * 2017-04-26 2018-11-22 オルガノ株式会社 Method for reducing chromaticity of water to be treated and device for reducing chromaticity of water to be treated
CN113149154A (en) * 2021-05-13 2021-07-23 重庆大学 Method for oxidizing pollutants in water by coupling electricity/ozone/permanganate
WO2022168948A1 (en) * 2021-02-08 2022-08-11 栗田工業株式会社 Water treatment device and method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0128864Y2 (en) * 1984-12-03 1989-09-01
JPS6198598U (en) * 1984-12-03 1986-06-24
EP0223563A2 (en) * 1985-11-13 1987-05-27 BARR & WRAY LIMITED Swimming pool water treatment
EP0223563A3 (en) * 1985-11-13 1989-11-29 BARR & WRAY LIMITED Swimming pool water treatment
JPS6490092A (en) * 1987-09-30 1989-04-05 Suido Kiko Kk Method for removing trihalomethane precursor in water
JPH0199689A (en) * 1987-10-09 1989-04-18 Suido Kiko Kk Method for removing organic matter in water
US5192452A (en) * 1988-07-12 1993-03-09 Nippon Shokubai Kagaku Kogyo, Co., Ltd. Catalyst for water treatment
JPH03151095A (en) * 1989-11-02 1991-06-27 Yokohama Metsukin Kogyo Kk Filtering device for manganese
JPH04267829A (en) * 1991-02-25 1992-09-24 Sumitomo Precision Prod Co Ltd Purification of water in water tank for fishes
JP2542292B2 (en) * 1991-02-25 1996-10-09 住友精密工業株式会社 Purification method for fish tank water
JP2018183746A (en) * 2017-04-26 2018-11-22 オルガノ株式会社 Method for reducing chromaticity of water to be treated and device for reducing chromaticity of water to be treated
WO2022168948A1 (en) * 2021-02-08 2022-08-11 栗田工業株式会社 Water treatment device and method
JP2022121110A (en) * 2021-02-08 2022-08-19 栗田工業株式会社 Water treatment device and method
CN113149154A (en) * 2021-05-13 2021-07-23 重庆大学 Method for oxidizing pollutants in water by coupling electricity/ozone/permanganate

Also Published As

Publication number Publication date
JPH0330440B2 (en) 1991-04-30

Similar Documents

Publication Publication Date Title
CA1323943C (en) Process for the treatment of waste
US4392959A (en) Process for sterilization and removal of inorganic salts from a water stream
CA2031997C (en) Water treatment installation for a tangential filtration loop
US6716354B2 (en) Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
EP0639162B1 (en) Process and device for destroying free and complex cyanides, aox, mineral oil, complexing agents, csb, nitrite, chromate, and for separating metals from waste waters
KR20080078550A (en) Method for biological processing of water containing organic material
JPS59139991A (en) Colored water disposal
EP0738238A1 (en) Process for the wet-oxidising treatment of organic pollutants in waste water
JPH03249990A (en) High-degree treatment of service water
JP2003103275A (en) Cleaning treatment method for manganese-containing water
CN106242194A (en) A kind of pcb board printing ink wastewater purification process technique
JP2003088885A (en) Method and apparatus for treating organic waste water
JP2008043919A (en) Decolorization method of colored beverage drain
JP2552998B2 (en) Purification treatment sludge separation water treatment method and device
CN111977767B (en) Application method of xanthan gum and acacia gum mixed as water treatment coagulant aid
CN105174583B (en) A kind of recycling processing method of diluted alkaline waste water
JP3495420B2 (en) Treatment of colored wastewater
JPH0199689A (en) Method for removing organic matter in water
JP2001187391A (en) Method for removing manganese ion in iron(iii) salt aqueous solution
JPS62225294A (en) Biological denitrification device
JP4156820B2 (en) Organic wastewater treatment method and treatment apparatus
JPH11277060A (en) Apparatus for treating water containing manganese
WO2022168948A1 (en) Water treatment device and method
EP4296242A1 (en) Method for re-mineralization of water
Rice Rationales for multiple stage ozonation in drinking water treatment plants