JPS59139927A - Formation of membrane - Google Patents

Formation of membrane

Info

Publication number
JPS59139927A
JPS59139927A JP1368383A JP1368383A JPS59139927A JP S59139927 A JPS59139927 A JP S59139927A JP 1368383 A JP1368383 A JP 1368383A JP 1368383 A JP1368383 A JP 1368383A JP S59139927 A JPS59139927 A JP S59139927A
Authority
JP
Japan
Prior art keywords
substrate
electron beam
beam generator
thin film
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1368383A
Other languages
Japanese (ja)
Inventor
Isao Myokan
明官 功
Masanari Shindo
新藤 昌成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP1368383A priority Critical patent/JPS59139927A/en
Publication of JPS59139927A publication Critical patent/JPS59139927A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To form a uniform membrane free from contamination by vapor deposition, in vapor depositing a hydrogen-containing amorphous Si-membrane on the surface of a substrate in a hydrogen atmosphere, by making the acceleration voltage of an electron beam generator negatively larger than the negative voltage of the substrate while directing an electron emitting orifice in parallel to the substrate surface. CONSTITUTION:A substrate 2 to be vapor deposited and an Si-evaporation source 3 are provided in opposed relation to each other within a vapor deposition tank 1 while a pressure reduced hydrogen atmosphere is formed in the tank 1. The substrate 2 is heated to 350-450 deg.C by a heater 6 and negative bias voltage of 0--10kV is applied thereto by a DC power source 7. Electron beam is emitted in parallel to the surface of the substrate 2 from an electron beam generator 8 provided to a position shifted from the region directly under the substrate 2 and Si in the evaporation source 3 is heated and evaporated by an electron beam heater 9 to form a hydrogen-containing amorphous Si-membrane on the surface of the substrate 2. In this case, acceleration voltage applied to the filament of the electron beam generator 8 is made negatively larger than the voltage to be applied to the substrate 2 and, by this method, an Si-membrane free from contamination due to the filament substance of the electron beam generator 8 can be formed.

Description

【発明の詳細な説明】 本発明は、蒸着によって薄膜を形成する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming thin films by vapor deposition.

最近において、太陽電池や電子写真感光体等の構成材料
としてアモルファスシリコン(以下[a−8iJと記す
。)が非常に有用視されてきている。
BACKGROUND ART Recently, amorphous silicon (hereinafter referred to as [a-8iJ)] has been viewed as very useful as a constituent material for solar cells, electrophotographic photoreceptors, and the like.

このa−8iは椎々の方法により薄膜として形成するこ
とができるが、このa−8,iには水素原子を導入して
ダングリングボンドを封鎖することが必要であって、こ
れによシ初めて大きい暗抵抗や光導電性を有する水素含
有a−8,i(以下「a−8i:HJと記す。)が得ら
れ、実用化が可能となる。
This a-8i can be formed as a thin film by the vertebral method, but it is necessary to introduce hydrogen atoms into this a-8,i to seal the dangling bonds. For the first time, hydrogen-containing a-8,i (hereinafter referred to as "a-8i:HJ") having large dark resistance and photoconductivity is obtained, making it possible to put it into practical use.

a −8i 、” Hの薄膜を形成する方法として、従
来、高周波イオンブレーティング法、直流イオンブレー
ティング法、イオン化または活性化された水素を導入し
て蒸着を行なう方法などが知られているが、形成される
薄膜が汚染され易く、或いは薄膜形成条件が不安定で安
定した均質の薄膜の形成が困難でろシ、または薄膜に対
する水素原子の導入が不均一で良好な特性の薄膜が形成
されない等の欠点を有する。
a-8i," Conventionally known methods for forming a thin film of H include a high frequency ion blating method, a direct current ion blating method, and a method of vapor deposition by introducing ionized or activated hydrogen. The formed thin film is easily contaminated, or the thin film forming conditions are unstable and it is difficult to form a stable and homogeneous thin film, or the introduction of hydrogen atoms into the thin film is uneven and a thin film with good characteristics cannot be formed. It has the following disadvantages.

斯かる欠点を解消した方法として、基体と蒸発源とを設
けた槽内に水素ガスをそのまま導入し、これに電子線を
照射して水素を活性化若しくはイオン化させながら、蒸
発源よシのシリコンを基体に蒸着せしめる方法が開発さ
れた。この方法によれば、形成されるa−8iの薄膜中
に均一に水素原子を導入することが容易であり、併せて
薄膜の汚染を大幅に減少させることができる利点がある
As a method to overcome these drawbacks, hydrogen gas is directly introduced into a tank equipped with a substrate and an evaporation source, and while the hydrogen gas is activated or ionized by irradiating it with an electron beam, the silicon gas is removed from the evaporation source. A method has been developed to deposit it onto a substrate. This method has the advantage that it is easy to uniformly introduce hydrogen atoms into the a-8i thin film that is formed, and that contamination of the thin film can be significantly reduced.

しかしながら、この電子線を利用する方法ケこおいては
、次のような問題点が含まれることが判明した。
However, it has been found that this method using electron beams has the following problems.

即ち、この方法においては、電子線を得るために通常タ
ングステンフィラメントを有する電子線発生器を用い、
フィラメントに通電して発熱せしめることにより熱電子
を放出せしめ、とi″Lを加速電極により加速して電子
線出射口よシビームとして出射せしめることが行なわれ
、電子線の作用効果を大きなものとするためには電子線
発生器の電子線出射口な基体の直下に位置せしめること
が好ましいが、この場合において、タングステンフィラ
メントが直接基体と対向するときは形成される薄膜中に
フィラメントよシのタングステン原子力5混入して膜が
汚染されたものと々る。
That is, in this method, an electron beam generator usually having a tungsten filament is used to obtain the electron beam,
Thermionic electrons are emitted by energizing the filament to generate heat, and i''L is accelerated by an accelerating electrode and emitted as a beam from the electron beam exit, thereby increasing the effect of the electron beam. In order to achieve this, it is preferable to place the tungsten filament directly under the substrate, which is the electron beam exit port of the electron beam generator. 5. If the membrane is contaminated by contamination.

このため、電子線発生器として、電子線出射口を介して
フィラメントを見ることのできない例えば270度偏向
電子銃を用いることが必要となる。
For this reason, it is necessary to use, for example, a 270-degree deflection electron gun as the electron beam generator, in which the filament cannot be seen through the electron beam exit.

しかしこのような電子線発生器においては出射する電子
線を走査させ得る領域が狭く、従って基体の表面領域全
体に一様に電子線を走査させることができず、その結果
、形成される薄膜が不均質なものとなり、結局電子線を
利用することの利点が失われることとなる。
However, in such an electron beam generator, the area in which the emitted electron beam can be scanned is narrow, and therefore the electron beam cannot be scanned uniformly over the entire surface area of the substrate, and as a result, the formed thin film is This results in non-uniformity, and the advantage of using an electron beam is eventually lost.

本発明は以上の如き事情に基いてなされたものであシ、
その目的は、少なくとも水素ガスが存在する蒸着槽内に
おいて、電子線を照射しながら蒸着を行なう方法であっ
て、電子線発生器のフィラメント物質による汚染がなり
、シかも走査可能領域が広くて均質な薄膜を形成するこ
とのできる方法を提供するにある。
The present invention was made based on the above circumstances, and
The purpose of this method is to perform deposition while irradiating an electron beam in a deposition tank where at least hydrogen gas is present. The object of the present invention is to provide a method capable of forming a thin film with a high quality.

本発明の特徴とするところは、基体と蒸発源とを設けた
槽内に少なくとも水素ガスを存在させ、電子線出射口が
前記基体と直接対向しないよう設けた電子線発生器より
の電子線を基体の近傍に照射しながら、前記基体に蒸発
源よシの蒸発物質を蒸着せしめ、以って薄膜を形成する
点にある。
The present invention is characterized in that at least hydrogen gas is present in a tank provided with a substrate and an evaporation source, and an electron beam is emitted from an electron beam generator provided such that the electron beam exit port is not directly opposed to the substrate. The method consists in depositing an evaporation substance from an evaporation source onto the substrate while irradiating the vicinity of the substrate, thereby forming a thin film.

以下図面によって本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

本発明の一実施例においては、第1図に示すように、蒸
着槽を形成するペルジャー1内に蒸着基板2とシリコン
を蒸発物質とする蒸発源3とを互に対向して設け、ペル
ジャー1内に連通ずるよう接続して設けた水素ガス導入
管4によジベルジャー1内に水素ガスを導入すると共に
排気路5を介して真空ポンプ(図示せず)によジベルジ
ャー1内を排気して当該ペルジャーl内を例えば1O−
4Torr 程度の減圧状態に保つ。基板2はヒーター
6によシ例えば350〜450℃の範囲内の温度に加熱
すると共に、直流電源7により0〜−IQI(Vの負の
バイアス電圧を基板2に印加する。そして、基板2の直
下領域より外れた領域の基板2のレベルより僅かに低い
レベル位置において、その電子線出射口が基板2の直下
領域を向くよう配置した電子線発生器8よシミ子線を出
射せしめて一様に走査せしめながら、蒸発源3を例えば
電子線加熱器9によυ加熱して蒸発物質であるシリコン
を蒸発せしめ、これによシ基板2の表面にa −8,、
i : Hより成る薄膜を形成する。
In one embodiment of the present invention, as shown in FIG. 1, a vapor deposition substrate 2 and an evaporation source 3 using silicon as an evaporation substance are provided facing each other in a Pelger 1 forming a vapor deposition tank. Hydrogen gas is introduced into the jiber jar 1 through a hydrogen gas introduction pipe 4 connected to the interior of the jiber jar 1, and the inside of the jiber jar 1 is evacuated via an exhaust passage 5 with a vacuum pump (not shown). For example, 1O-
Maintain a reduced pressure of approximately 4 Torr. The substrate 2 is heated to a temperature within the range of 350 to 450° C. by a heater 6, and a negative bias voltage of 0 to −IQI (V) is applied to the substrate 2 by a DC power source 7. At a level position slightly lower than the level of the substrate 2 in an area outside the area directly below the area, an electron beam generator 8 arranged so that its electron beam exit port faces the area directly below the substrate 2 uniformly emits a stain beam. While scanning, the evaporation source 3 is heated by, for example, an electron beam heater 9 to evaporate silicon, which is an evaporation substance, and thereby the surface of the substrate 2 is heated with a-8, .
i: A thin film made of H is formed.

以上において、電子線発生器8の熱電子放射フィラメン
トに印加する電圧は、負でしかも基板2の負電圧よシ絶
対値の大きいものとする。
In the above description, it is assumed that the voltage applied to the thermionic emission filament of the electron beam generator 8 is negative and has a larger absolute value than the negative voltage of the substrate 2.

本゛発明方法は以上の通電であるので、電子線発生器8
よシの電子線が基板2の直下の空間に照射されるからこ
の空間に存在する水素ガスが電子線の作用により活性化
され或いはイオン化され、一方当該空間は蒸発物質の蒸
気の飛翔空間であ)、従って基板2上には水素原子が高
い効率で導入された蒸着膜、即ちa −8,i : H
の薄膜が形成される。
Since the method of the present invention is energized as described above, the electron beam generator 8
Since a good electron beam is irradiated into the space directly below the substrate 2, the hydrogen gas existing in this space is activated or ionized by the action of the electron beam, and on the other hand, this space is a space in which the vapor of the evaporated substance flies. ), therefore, on the substrate 2 is a deposited film in which hydrogen atoms are introduced with high efficiency, that is, a −8,i : H
A thin film is formed.

而して本発明においては、電子線発生器8fcその電子
線出射口が基板2の方向を向いておらず、従って電子線
出射口から熱電子放射用フィラメントが見える場合であ
っても当該フィラメントが基板2と直接対向することが
ないため、基板2上に形成される薄膜中にフィラメント
の材質であるタングステン等の汚染物質が混入するおそ
れがなく、従って所期の良好な特性の薄膜を得ることが
できる。
In the present invention, the electron beam generator 8fc has its electron beam emission port not facing the direction of the substrate 2, so even if the filament for thermionic emission is visible from the electron beam emission port, the filament cannot be seen. Since it does not directly face the substrate 2, there is no risk of contaminants such as tungsten, which is the material of the filament, being mixed into the thin film formed on the substrate 2, and therefore a thin film with the desired good characteristics can be obtained. Can be done.

また以上のように、電子線発生器8のフィラメント物質
による汚染のおそれがないことがら、電子線発生器8と
して走査可能領域の広い例えば】80°偏向電子銃を用
いることが可能となシ、従って電子線を広い領域に亘っ
て一様に走査せしめることによって大面積でしかも均質
な薄膜を形成することが可能となる。
Furthermore, as described above, since there is no risk of contamination of the electron beam generator 8 by the filament material, it is possible to use an 80° deflection electron gun, which has a wide scanning area, as the electron beam generator 8. Therefore, by uniformly scanning the electron beam over a wide area, it is possible to form a homogeneous thin film over a large area.

前記電子線発生器8におけるフィラメンHC印加する加
速電圧は、既述のように、直流電源7によシ印加される
基板2の負電圧より負に大きいことが望ましく、これK
より、基板2の直下の領域においても、基板2の負電圧
の影響を受けて電子線が基板2から遠ざがるように曲げ
られることがなく、上述の作用効果を確実に得ることが
できる。
As mentioned above, the accelerating voltage applied to the filament HC in the electron beam generator 8 is desirably larger than the negative voltage applied to the substrate 2 by the DC power supply 7, and this is K.
Therefore, even in the region directly under the substrate 2, the electron beam is not bent away from the substrate 2 due to the influence of the negative voltage of the substrate 2, and the above-mentioned effects can be reliably obtained. .

また、第1図に示したように、基板2の直下の領域を介
して電子線発生器8と対向するよう、直流電源10に接
続されて正の電位に保持された対向電極1]を配置した
場合においても、同様の効果が奏される。
Further, as shown in FIG. 1, a counter electrode 1 connected to a DC power supply 10 and held at a positive potential is arranged so as to face the electron beam generator 8 through an area directly under the substrate 2. Even in this case, the same effect can be achieved.

更に、電子線発生器8の電子線出射口が基板2の方向を
向かないので、基板2が電子線の照射を受けることがな
く、従って基板2が期せずして高温となることが防止さ
れ、高温にょるa−8,iの結晶化を招くことがない。
Further, since the electron beam exit port of the electron beam generator 8 does not face the substrate 2, the substrate 2 is not irradiated with the electron beam, and therefore the substrate 2 is prevented from becoming unexpectedly high temperature. Therefore, crystallization of a-8,i due to high temperature is not caused.

従って電子線発生器8における電子線発生量を多くする
ことが自由であシ、これによシ薄膜の形成速度を大きく
することができる。
Therefore, it is possible to freely increase the amount of electron beams generated by the electron beam generator 8, thereby increasing the rate of thin film formation.

本発明方法によって薄膜を形成させる蒸着用の基体とし
ては、基板に限らず、ドラム状或いは走行するフィルム
を用いることもできる。
The substrate for vapor deposition on which a thin film is formed by the method of the present invention is not limited to a substrate, but may also be a drum-shaped or running film.

また電子線発生器8としては種々のものを用いることが
でき、いわゆるポイント型のものに限らず、第2図に示
すように2次元に伸びる線型のもの、或いは第3図に示
すように3次元に展びる固型のものを用いることもでき
る。これらの図において、Fはフィラメント、Sはフィ
ラメント電源、Eは引出電極、Dは引出電極Eの直流電
源、Wは引出電極Eに形成された電子線透過窓、eは電
子線を示す。
Various types of electron beam generators can be used as the electron beam generator 8, and it is not limited to a so-called point type, but a linear type that extends in two dimensions as shown in FIG. 2, or a three-dimensional type as shown in FIG. A solid object that extends in dimensions can also be used. In these figures, F is a filament, S is a filament power source, E is an extraction electrode, D is a DC power source for extraction electrode E, W is an electron beam transmission window formed in extraction electrode E, and e is an electron beam.

不発明方法は、単なる蒸着による場合にはダン−ブリン
グボンドが生じてしまうような物質による薄Mを、グン
グリングボンドが封鎖された状態で形成することができ
、従って蒸発源3の蒸発物質を変えることにより、a−
8:l:H以外の薄膜、例tばアモルファスシリコンカ
ーバイド、アモルファス窒化シリコン、アモルファスシ
リコン・ゲルマニウム、アモルファスシリコン会スズ、
アモルファスゲルマニウム、その他の薄膜全形成するこ
とができる。
The uninvented method can form a thin layer M made of a substance that would cause damping bonds if it were simply vapor-deposited, with the gungling bonds sealed, and therefore the evaporation material of the evaporation source 3 can be formed. By changing a-
8:l:Thin films other than H, such as amorphous silicon carbide, amorphous silicon nitride, amorphous silicon germanium, amorphous silicon ditin,
Amorphous germanium and other thin films can be formed entirely.

蒸発源3の蒸発物質の加熱のためKは、図示の例におけ
るように電子線加熱手段のほか、抵抗加熱手段を利用す
ることができる。
In order to heat the evaporated substance of the evaporation source 3, K can use not only an electron beam heating means as in the illustrated example but also a resistance heating means.

以上のように、本発明によれば、電子線発生器のフィラ
メント物質による汚染がなく、シかも走査可能領域が広
く得られて均質な薄膜を形成することができる。
As described above, according to the present invention, there is no contamination by the filament material of the electron beam generator, a wide scannable area can be obtained, and a homogeneous thin film can be formed.

次に本発明の具体例について説明すると、対向電極11
及びその直流電源10を具備しない点を除けば第1図に
示した構成の蒸着装置を用い、次の条件下でシリコンの
蒸着を行なった。なお電子線発生器としては1800偏
向電子銃を用いた。
Next, a specific example of the present invention will be explained.
Silicon was deposited under the following conditions using a vapor deposition apparatus having the configuration shown in FIG. 1 except that the DC power supply 10 was not provided. Note that an 1800 deflection electron gun was used as the electron beam generator.

水素ガス流入速度    :200SCCMペルジャー
内真空度   : lXl0 ’Torr基板電圧  
      : −4KV基板温度        =
3oo℃ 蒸発源の電子線加熱器電圧: −6KV同エミツシヨン
電流   :200mA電子線発生器駆動電圧  : 
−6KV同エミツシヨン電流   :400mA同走査
周期       :20Hz 成膜速度        :10A/秒蒸着時間   
     : 1000秒間斯くして膜厚1μmの  
Hl:Hの薄膜を形成した。そしてこの薄膜について光
応答性テストを行なったところ、暗導電度りp=lQ−
9(Ω・cm )−1、波長550nm、  5 x 
1015ホトン/ Crn”秒の光照射による光導電度
σG=10−4(Ω・crn戸1であり、優れた光応答
性を有するものであることが認められた。
Hydrogen gas inflow rate: 200SCCM Vacuum degree inside Pelger: lXl0'Torr Substrate voltage
: -4KV board temperature =
3oooC Electron beam heater voltage of evaporation source: -6KV Emission current: 200mA Electron beam generator driving voltage:
-6KV Emission current: 400mA Scanning cycle: 20Hz Film forming rate: 10A/sec Vapor deposition time
: For 1000 seconds, a film thickness of 1 μm was formed.
A thin film of Hl:H was formed. When we conducted a photoresponsive test on this thin film, we found that the dark conductivity was p=lQ-
9 (Ω・cm)-1, wavelength 550 nm, 5 x
The photoconductivity when irradiated with light at 1015 photons/Crn'' seconds was σG = 10-4 (Ω·crn 1), and it was recognized that it had excellent photoresponsiveness.

これに対し、電子線発生器を基板の直下領域において電
子線出射口が基板と対向するよう設けたこと以外は、上
記と全く同様にしてa−8i:)(の薄膜を形成し、そ
の光応答性テストを行なったところ、σ、= 1O−6
(Ω・crn)−1、(jc:l: io ’(、Q・
z戸で光応答性を示さないものであった。これは、電子
線発生器のフィラメント物質による汚染が原因と考えら
れる。
On the other hand, a thin film of a-8i: When we conducted a responsiveness test, σ, = 1O-6
(Ω・crn)−1, (jc:l: io′(,Q・
It showed no photoresponsiveness in the z-door. This is thought to be caused by contamination by filament material in the electron beam generator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明薄膜形成方法の実施に用いることのでき
る装置の説明図、第2図及び第3図は電子線発生器の例
における要部の説明図である。 1・・・ペルジャー    2−・基板3・・・蒸発源
      4・−・水素ガス導入管5・−・排気路 
     6・・・ヒーター8・・・電子線発生器  
 9・・・電子線加熱器11・・・対向電極    F
・・・フィラメントE・−・引出電極     W・・
・電子線透過窓$2図 葦3図
FIG. 1 is an explanatory diagram of an apparatus that can be used to implement the thin film forming method of the present invention, and FIGS. 2 and 3 are explanatory diagrams of essential parts in an example of an electron beam generator. 1...Pelger 2--Substrate 3...Evaporation source 4--Hydrogen gas introduction pipe 5--Exhaust path
6... Heater 8... Electron beam generator
9...Electron beam heater 11...Counter electrode F
・・・Filament E・-・Extraction electrode W・・
・Electron beam transmission window $2 figure Reeds 3 figure

Claims (1)

【特許請求の範囲】 1)基体と蒸発源とを設けた槽内に少なくとも水素ガス
を存在させ、電子線出射口〃;前言己基体と直接対向し
ないよう設けた電子線発生器よシの電子線を基体の近傍
に照射しながら、^’11 m己基体に蒸発源よりの蒸
発物質を蒸着せしめ、以って薄膜を形成することを特徴
とする薄膜形成方法。 2)電子線発生器の加速電圧が、基体に印カロされた負
電圧より負に大きい特許請求の範囲第1項に記載の薄膜
形成方法。 3)電子線発生器の電子線出射口ii’ @M己基体の
表面と平行な方向を向いている特許請求の範囲第1項記
載の薄膜形成方法。
[Scope of Claims] 1) At least hydrogen gas is present in a tank provided with a substrate and an evaporation source, and an electron beam exit port; A method for forming a thin film, characterized in that a thin film is formed by evaporating an evaporated substance from an evaporation source onto a substrate for 11 m while irradiating the vicinity of the substrate with a beam. 2) The thin film forming method according to claim 1, wherein the accelerating voltage of the electron beam generator is more negative than the negative voltage applied to the substrate. 3) The thin film forming method according to claim 1, wherein the electron beam exit aperture ii' of the electron beam generator is oriented in a direction parallel to the surface of the substrate.
JP1368383A 1983-02-01 1983-02-01 Formation of membrane Pending JPS59139927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1368383A JPS59139927A (en) 1983-02-01 1983-02-01 Formation of membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1368383A JPS59139927A (en) 1983-02-01 1983-02-01 Formation of membrane

Publications (1)

Publication Number Publication Date
JPS59139927A true JPS59139927A (en) 1984-08-11

Family

ID=11839978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1368383A Pending JPS59139927A (en) 1983-02-01 1983-02-01 Formation of membrane

Country Status (1)

Country Link
JP (1) JPS59139927A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181901A (en) * 2008-04-22 2008-08-07 Polymatech Co Ltd Key sheet
JP4897809B2 (en) * 2005-08-04 2012-03-14 サムスン エレクトロニクス カンパニー リミテッド Image button input device and portable electronic device having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897809B2 (en) * 2005-08-04 2012-03-14 サムスン エレクトロニクス カンパニー リミテッド Image button input device and portable electronic device having the same
JP2008181901A (en) * 2008-04-22 2008-08-07 Polymatech Co Ltd Key sheet

Similar Documents

Publication Publication Date Title
US4416755A (en) Apparatus and method for producing semiconducting films
JPH0666307B2 (en) Plasma equipment
JPS63270458A (en) Device for forming compound thin film
JPS59139927A (en) Formation of membrane
KR900019219A (en) Beam deposition method and apparatus for performing the same
JPH0456761A (en) Thin film forming device
JPS59139928A (en) Formation of membrane
JP3503787B2 (en) Thin film formation method
JPS59139930A (en) Vapor deposition apparatus
JPS59145039A (en) Formation of membrane
JPS59144120A (en) Formation of thin film
JPH0214426B2 (en)
JPS5739169A (en) Preparation of thin film vapor deposited object
JPS6230315A (en) Electron gun apparatus
JPS59148324A (en) Method and device for thin film fabrication
JPS59141412A (en) Production of amorphous silicon
JPH04191364A (en) Method and device for ion plating
JPS6176662A (en) Method and device for forming thin film
JP2712687B2 (en) Thin film manufacturing method
JPS59147636A (en) Method and device for producing thin film
JP3102540B2 (en) Method for forming low hydrogen content amorphous silicon semiconductor thin film
JPH0721950A (en) X-ray generator and x-ray irradiation method
JPH0131289B2 (en)
JPS58119333A (en) Method and apparatus for vapor deposition
JPS59142840A (en) Vapor deposition device