JPS5913985A - Control rod drive hydraulic device - Google Patents

Control rod drive hydraulic device

Info

Publication number
JPS5913985A
JPS5913985A JP57123661A JP12366182A JPS5913985A JP S5913985 A JPS5913985 A JP S5913985A JP 57123661 A JP57123661 A JP 57123661A JP 12366182 A JP12366182 A JP 12366182A JP S5913985 A JPS5913985 A JP S5913985A
Authority
JP
Japan
Prior art keywords
control rod
valve
pressure
rod drive
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57123661A
Other languages
Japanese (ja)
Inventor
七田 亮二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57123661A priority Critical patent/JPS5913985A/en
Publication of JPS5913985A publication Critical patent/JPS5913985A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Servomotors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明d°、原子炉内の圧力が定格運転時より低圧のと
きの流量制御弁の流入側と流出側との間の差圧を緩和し
た制御棒駆動水圧装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control rod drive hydraulic system that alleviates the differential pressure between the inflow side and the outflow side of a flow control valve when the pressure inside the reactor is lower than during rated operation. .

〔発明の技術的背景〕[Technical background of the invention]

第1図は制御棒駆動水圧装置を示すもので、図中1は水
源となる復水貯蔵タンク、2はこのタンク1よυ駆動水
を引出す駆動水供給ポンプである。ポンプ2の下流側で
は制御棒駆動配管4とスクラム水充填配管6に分岐して
いる。
FIG. 1 shows a control rod drive hydraulic system. In the figure, 1 is a condensate storage tank that serves as a water source, and 2 is a drive water supply pump that draws υ drive water from this tank 1. On the downstream side of the pump 2, it branches into a control rod drive pipe 4 and a scram water filling pipe 6.

制御棒駆動配管4中には流量制御弁8が介挿されている
。壕だ図中10は方向制御弁ユニットで、この方向制御
弁ユニyトroは各1対の挿入用電磁弁12に、12B
及び引抜用電磁弁141.14Bを交互に環状に接続し
て構成されている。そして前記制御棒駆動配管4け、逆
止弁15を介して方向制御ユニット1θの、挿入用電磁
弁12Aと引抜用電磁弁14にとの間に接続さねている
。捷た方向制御弁コーニット10の挿入用電磁弁12A
と引抜用電磁弁14Bとの間にり挿入配管16が接続さ
iするとともに、挿入用電磁弁12Bと引抜用電磁弁1
4にとの間に目、引抜配管18が接続されている。そし
7て挿入配管16及び引抜配管18はいずれも制御棒駆
動機構20のシリンダ22内に連通しているカ、挿入配
管I6はピストン24の下面側へ駆動水を供給してピス
トン24を上昇させ、引抜配管18目、ピストン24の
上部側へ駆動水を供給してピストン24を下降させるよ
うに構成さねている。なお、上記ピストン24は原子炉
圧力容器26内の制御棒28に連結され、制御棒28を
炉心に対して挿入文1、引抜動作させるように構成され
ている。
A flow control valve 8 is inserted into the control rod drive pipe 4 . 10 in the trench diagram is a directional control valve unit, and this directional control valve unit ytro has a pair of insertion solenoid valves 12 and 12B.
and extraction solenoid valves 141.14B are alternately connected in a ring shape. The four control rod drive pipes are connected via the check valve 15 between the insertion solenoid valve 12A and the withdrawal solenoid valve 14 of the direction control unit 1θ. Solenoid valve 12A for inserting the broken directional control valve Kornit 10
The insertion pipe 16 is connected between the solenoid valve for insertion 12B and the solenoid valve for withdrawal 1.
A drawn-out pipe 18 is connected between 4 and 4. 7. Both the insertion pipe 16 and the withdrawal pipe 18 communicate with the inside of the cylinder 22 of the control rod drive mechanism 20, and the insertion pipe I6 supplies driving water to the lower surface of the piston 24 to raise the piston 24. , the drawing pipe 18 is configured to supply driving water to the upper side of the piston 24 to lower the piston 24. The piston 24 is connected to a control rod 28 in the reactor pressure vessel 26, and is configured to pull out the control rod 28 from the reactor core.

図中30は制御棒駆動配管4の流量制御棒8下流側よ多
分岐して設けられた冷却水配管で、この線動水配管30
は前記挿入配管16に接続されている。そして上記冷却
水配管30中には上流側より圧力調整弁32及び逆止弁
34が順次介挿されている。また前記方向制御弁ユニッ
トIOの挿入用電磁弁12Bと引抜用電磁弁12にとの
間には、制御棒駆動機構20のシリンダ22より排出さ
れた駆動水を、冷却材と1−で原子炉圧力容器26内へ
戻まための戻し配管36が接続されている。この戻し配
管36には逆止弁37が介挿され、逆止弁37の下流側
は分岐管38を介して前記冷却水配管30の、圧力調整
弁32と逆止弁34との間に接続され、分岐管38には
別の圧力調整弁39が介挿されている。
In the figure, reference numeral 30 denotes a cooling water pipe that is branched into multiple branches from the downstream side of the flow control rod 8 of the control rod drive pipe 4, and this linear water pipe 30
is connected to the insertion pipe 16. A pressure regulating valve 32 and a check valve 34 are sequentially inserted into the cooling water pipe 30 from the upstream side. Further, between the insertion solenoid valve 12B and the withdrawal solenoid valve 12 of the directional control valve unit IO, the driving water discharged from the cylinder 22 of the control rod drive mechanism 20 is supplied to the nuclear reactor with coolant. A return pipe 36 for returning into the pressure vessel 26 is connected. A check valve 37 is inserted into the return pipe 36, and the downstream side of the check valve 37 is connected between the pressure regulating valve 32 and the check valve 34 of the cooling water pipe 30 via a branch pipe 38. Another pressure regulating valve 39 is inserted into the branch pipe 38.

一方、前記スクラム水充填配管6は挿入配管16に接続
されている。そしてこの配管6中ににけ上流側よジオリ
フイス40、逆止弁41及びスクラム人口弁42が順次
介挿され、逆止弁4ノとスクラム人口弁42との間よ多
分岐して設けられた分岐管44を介してアキュムレータ
46が接続されている。このアキュムレータ46にはス
クラム動作に使用するスクラム水が充填されるとともに
、そのスクラム水を、加圧するだめの高圧ガス(例えは
高圧窒素ガス)が供給されるように構成されている。
On the other hand, the scram water filling pipe 6 is connected to the insertion pipe 16. A georift 40, a check valve 41, and a scram valve 42 are sequentially inserted into this pipe 6 on the upstream side, and are provided in multiple branches between the check valve 4 and the scram valve 42. An accumulator 46 is connected via a branch pipe 44 . This accumulator 46 is filled with scram water used for scram operations, and is also configured to be supplied with high-pressure gas (for example, high-pressure nitrogen gas) for pressurizing the scram water.

また、前記引抜配管18にはスクラム排出管48を介し
てスクラム出目弁50が接続されている。
Further, a scram outlet valve 50 is connected to the drawn-out pipe 18 via a scram discharge pipe 48.

次に、以上の如く構成された制御棒駆動水圧装置の作用
を散明する。
Next, the operation of the control rod drive hydraulic system constructed as described above will be explained in detail.

まず、原子炉定格運転時の制御棒挿入を行なう場合は、
方向制御弁ユニット10の挿入用電磁弁121.12B
を同時に開弁する。そして復水貯蔵タンク1内の復水を
駆動水供給ポンプ2により引出し、所要の圧力に加圧し
たのち、流l制御弁8で一足流量に調整する。また圧力
5− 調整弁32により圧力調整が行なわれ、挿入用電磁弁1
2k及び挿入配管16を介して制御棒駆動機構20のシ
リンダ22内に流し、ピストン24の下m+側を加圧す
る。これによってピストン24が上昇し、このピストン
24に連結された制御棒28を炉心に装荷された態別集
合体間に挿入させる。一方、ピストン24の上面側の水
は引抜配管18を通して排出され、挿入用電磁弁12B
及び戻し配管36を介して原子炉圧力容器26へ戻され
る。
First, when inserting control rods during rated reactor operation,
Solenoid valve 121.12B for insertion of directional control valve unit 10
open the valves at the same time. Then, the condensate in the condensate storage tank 1 is drawn out by the drive water supply pump 2, pressurized to a required pressure, and then adjusted to a constant flow rate by the flow control valve 8. In addition, the pressure is adjusted by the pressure 5-regulating valve 32, and the insertion solenoid valve 1
2k and the insertion pipe 16 into the cylinder 22 of the control rod drive mechanism 20, and pressurizes the lower m+ side of the piston 24. This causes the piston 24 to rise, and the control rod 28 connected to the piston 24 to be inserted between the type assemblies loaded in the reactor core. On the other hand, the water on the upper surface side of the piston 24 is discharged through the withdrawal pipe 18, and
and is returned to the reactor pressure vessel 26 via the return pipe 36.

次に、制御棒引抜を行なう場合は、方向制御弁ユニット
lOの挿入用電磁弁12A、12Bを閉弁すると同時に
引抜用電磁弁14.に、14Bを開弁する。これによっ
て、駆動水供給ポンプ2で加圧された駆動水が流量制御
弁8及び制御棒駆動配管4を通って方向制御弁ユニット
lθへ供給される。そして引抜配管14B及び引抜配管
18を介して制御棒駆動機構20のシリンダ22内に流
入し、ピストン24の上面側を加圧する。これによって
ピストン24が下降し、6− このピストン24に連結された制御棒28を炉心に装荷
された態別集合体間よシ引抜動作させる。一方、ピスト
ン24の下面側の水は挿入配管16を通して排出され、
引抜用電磁弁14A及び戻し配管36を介して原子炉圧
力容器26へ戻される。
Next, when withdrawing the control rod, the insertion solenoid valves 12A and 12B of the directional control valve unit IO are closed, and at the same time the withdrawal solenoid valve 14. Then, open valve 14B. As a result, the drive water pressurized by the drive water supply pump 2 is supplied to the direction control valve unit lθ through the flow control valve 8 and the control rod drive pipe 4. Then, it flows into the cylinder 22 of the control rod drive mechanism 20 via the drawn pipe 14B and the drawn pipe 18, and pressurizes the upper surface side of the piston 24. As a result, the piston 24 is lowered, and the control rod 28 connected to the piston 24 is pulled out between the type assemblies loaded in the reactor core. On the other hand, water on the lower surface side of the piston 24 is discharged through the insertion pipe 16,
It is returned to the reactor pressure vessel 26 via the extraction solenoid valve 14A and the return pipe 36.

次に原子炉停止時よシスクラム信号が発生すると、この
信号を受けてスクラム人口弁42及びスクラム出口弁5
0が開弁する。そしてスクラム出口弁50を通してピス
トン24の上面側か大気に開放され、−1:たピストン
24の下面側には、スクラム人口弁42を通して、アキ
ュムレータ46内で高度に加圧されたスクラム水が供給
される。そこで、ピストン24は上下面間の冒差圧によ
って急速に上昇し、制御棒28を炉心に対して高速挿入
させることになる。
Next, when a system scram signal is generated during reactor shutdown, the scram population valve 42 and the scram outlet valve 5 receive this signal.
0 opens. The top side of the piston 24 is opened to the atmosphere through the scram outlet valve 50, and highly pressurized scram water in the accumulator 46 is supplied to the bottom side of the piston 24 through the scram population valve 42. Ru. Therefore, the piston 24 rises rapidly due to the differential pressure between the upper and lower surfaces, and the control rod 28 is inserted into the reactor core at high speed.

また、制御棒28の挿入、引抜、スクラムのいずれも行
なわれていないときは、制御棒駆動配管4、冷却水配管
30及び挿入配管16を通して少1“、低圧の駆動水を
冷却水として制御棒駆動機構20のシリンダ22内に通
流させ、制御棒駆動機構20の機能保持が図られている
In addition, when the control rod 28 is not inserted, withdrawn, or scrammed, a small amount of low-pressure drive water is used as cooling water through the control rod drive piping 4, the cooling water piping 30, and the insertion piping 16 to control the control rod. A current is passed through the cylinder 22 of the drive mechanism 20 to maintain the function of the control rod drive mechanism 20.

〔背景技術の問題点〕[Problems with background technology]

緊急事態発生時にスクラム動作が確実に行なわれるよう
にするために、アギ−ムレ−タイ6内の充填水は常時、
120〜130Kg/−に加圧しておく必要がある。従
って、流量制御弁8の上流側にはアキームレータ46に
スクラム水を供給するために要する高圧が作用する。
In order to ensure scram operation in the event of an emergency, the filling water in the Agi Mullet tie 6 is kept at all times.
It is necessary to pressurize it to 120 to 130 kg/-. Therefore, a high pressure required for supplying scram water to the achievement unit 46 acts on the upstream side of the flow rate control valve 8 .

一方、原子炉圧力容器26内の圧力に打ち勝って制御棒
28を挿入又は引抜操作するためには原子炉圧力容器2
6の内部より20 Kg/ or!程度高い圧力が必要
であり、との圧力が流量制御弁8の下IX側の圧力とな
る。また、制御棒駆動機構20に冷却水を通流させるた
め、圧力調整弁32の下流側圧力を原子炉圧力容器26
の内部よ’)2Ky/ct/を程度高くしておく必要が
ある。
On the other hand, in order to overcome the pressure inside the reactor pressure vessel 26 and insert or withdraw the control rod 28, the reactor pressure vessel 2
20 Kg/or from inside of 6! A fairly high pressure is required, and this pressure is the pressure on the lower IX side of the flow control valve 8. In addition, in order to cause cooling water to flow through the control rod drive mechanism 20, the pressure on the downstream side of the pressure regulating valve 32 is applied to the reactor pressure vessel 26.
It is necessary to keep the internal value of 2Ky/ct/ high.

ところで原子炉圧力容器26内の圧力は、一般に、O〜
70句/ crit の間を変化し、原子炉停止時(又
はスクラム完了時)は低く、定格運転時は高くなってい
る。従って、例えばスクラム完了後にアキュムレータ4
6ヘスクラム水を充填する時、又は原子炉停止若しくは
起動時等の原子炉圧力容器26内の圧力が低い時は、流
量制御弁8の上流側と下流側との間に40〜110 K
f/−の差圧が生じ、このような高差圧によって流1制
御弁8の弁体や弁座にはエローゾョンが発生するおそれ
があった。そしてこのような事態が生じると流量制御弁
8が制御動作不能となり、その結果、制御棒28を挿入
・引抜操作するための駆動圧及び制御棒駆動水圧装置の
ための冷却水の流量、圧力を確保できなくなるおそれが
あった。
By the way, the pressure inside the reactor pressure vessel 26 is generally O~
It varies between 70 phrases/crit, and is low when the reactor is shut down (or when the scram is completed) and high during rated operation. Therefore, for example, after the scrum is completed, the accumulator 4
6 When the pressure inside the reactor pressure vessel 26 is low, such as when filling with Hescram water or when the reactor is shut down or started, a temperature of 40 to 110 K is applied between the upstream and downstream sides of the flow control valve 8.
A differential pressure of f/- is generated, and such a high differential pressure may cause erosion in the valve body and valve seat of the flow 1 control valve 8. When such a situation occurs, the flow rate control valve 8 becomes unable to perform control operations, and as a result, the drive pressure for inserting and withdrawing the control rod 28 and the flow rate and pressure of the cooling water for the control rod drive hydraulic device are reduced. There was a risk that it would not be possible to secure it.

〔発明の目的〕 本発明はこのような事情にもとづいてなされたもので、
その目的は、スクラム完了時、原子炉停止中又は原子炉
停止時婢の、原子炉圧力容器内の圧力が低い時、流1制
御弁の上流側と下流側との間に高差圧が生じることを防
止し、流量制御弁の弁体や弁座におけるエロージョンの
9− 発生を防止し、制御棒の挿入・引抜操作に要する駆動圧
及び制御棒駆動水圧装置のための冷却水の流量、圧力を
確保することができる制御棒駆動水圧装置を提供するこ
とにある。
[Object of the invention] The present invention was made based on the above circumstances, and
Its purpose is to create a high differential pressure between the upstream and downstream sides of the flow 1 control valve when the pressure in the reactor pressure vessel is low, at the completion of a scram, during reactor shutdown, or during reactor shutdown. This prevents the occurrence of erosion in the valve body and valve seat of the flow control valve, and reduces the drive pressure required for control rod insertion/extraction operations and the flow rate and pressure of cooling water for the control rod drive hydraulic system. The object of the present invention is to provide a control rod-driven hydraulic device that can ensure the following.

〔発明の概要〕[Summary of the invention]

本発明に係る制御棒駆動水圧装置は、駆動水供給ポンプ
と、このポンプより制御棒駆動機構ットと前記ポンプと
の間で流量調節を行なう流量制御弁と、この流量制御弁
と前記ポンプとの間より分岐して設けられたスクラム水
充填配管と、この充填配管を介してスクラム水を充填さ
れるとともに加圧されたスクラム水をスクラム弁を介し
て制御棒駆動機構へ供給し制御棒を高速挿入動作させる
アキームレータと、前記ポンプよりスクラム水充填配管
へ至る分岐点と前記流量制御弁との間に設けられ原子炉
内の圧力が定格運転時より低圧のときの前記流1′制御
弁の流入側と流出側との間の差圧を緩和する減圧装10
− 肴とを具備したことを特徴とするものであり、流量制御
弁の上流側に設けられた減圧装置により流1制御弁の上
流側の圧力を低減でき、これによって流量制御弁の上流
側と下流側との間の差Hを緩和できるものである。
The control rod drive hydraulic device according to the present invention includes a drive water supply pump, a flow control valve that adjusts the flow rate between the pump and the control rod drive unit, and a flow control valve that adjusts the flow rate between the control rod drive unit and the pump. The scram water filling piping is branched from between the scram water filling piping and the pressurized scram water is filled with scram water through this filling piping and is supplied to the control rod drive mechanism via the scram valve to drive the control rods. an akeemulator for high-speed insertion operation; and the flow 1' control valve, which is provided between the branch point leading from the pump to the scram water filling pipe and the flow control valve, and is used when the pressure inside the reactor is lower than during rated operation. A pressure reducing device 10 that relieves the differential pressure between the inflow side and the outflow side of
- A pressure reducing device installed upstream of the flow control valve can reduce the pressure upstream of the flow 1 control valve, thereby reducing the pressure on the upstream side of the flow control valve and This can alleviate the difference H between the downstream side and the downstream side.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一夾施例を示すもので、前記第1図と
同一部分に一同一符号を付しである。
FIG. 2 shows one embodiment of the present invention, and the same parts as in FIG. 1 are given the same reference numerals.

第1図の制御棒駆動水圧装置との差異は、制御棒駆動配
管4中に減圧装置としてのオリフィス52を介挿1−て
いる点にある。このオリフィス52目、駆動水供給ポン
プ2よりスクラム水充填配管6へ至る分岐点と流I゛制
御弁8との間に設けられているものである。
The difference from the control rod drive hydraulic system shown in FIG. 1 is that an orifice 52 as a pressure reducing device is inserted in the control rod drive piping 4. This orifice 52 is provided between the branch point from the driving water supply pump 2 to the scram water filling pipe 6 and the flow I' control valve 8.

す、上のような構成であると、制御棒駆動配管4中には
、(Ilt、iA−制御弁8の上流側にオリフィス52
が介挿されているので、このオリフィス52の−に流側
と下流側との間に差圧が生じ、その分たけ、流1制御弁
8の上流側圧力が低下する。
With the above configuration, there is an orifice 52 in the control rod drive piping 4 on the upstream side of the (Ilt, iA-control valve 8).
is inserted, a differential pressure is generated between the flow side and the downstream side of the orifice 52, and the upstream pressure of the flow 1 control valve 8 is reduced by that amount.

従って、例えばスクラム完了時、原子炉停止中又は原子
炉起動時的には原子炉圧力容器2゜内の圧力が低下し、
これに伴なって流量制御弁8の下流側片方が低下するが
、このような場合でも流量制御弁8の上流側圧力がオリ
フィス52により低下しているため、流1制御弁8の上
流側と下流側との間の差圧はさtミど上昇しない。
Therefore, for example, at the completion of a scram, during reactor shutdown, or at reactor startup, the pressure within the reactor pressure vessel 2° decreases,
Along with this, one side of the downstream side of the flow rate control valve 8 decreases, but even in such a case, the upstream side pressure of the flow rate control valve 8 is decreased by the orifice 52, so the pressure on the upstream side of the flow rate control valve 8 and the other side of the flow rate control valve 8 decrease. The differential pressure with the downstream side does not increase at all.

このため流量制御弁8の弁体や弁座にエロージョンが発
生するとともなく、流量制御弁8の健全性は維持される
。従って、制御棒28の挿入・引抜操作に要する駆動圧
及び制御棒駆動機構20を保瞳するための冷却水の流l
・、圧力を確保することができる。
Therefore, the integrity of the flow control valve 8 is maintained even though erosion occurs in the valve body and valve seat of the flow control valve 8. Therefore, the driving pressure required for inserting and withdrawing the control rod 28 and the flow of cooling water for maintaining the control rod drive mechanism 20 are
・It is possible to secure pressure.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えは上記実施例では減圧装置としてオリフィス52を
使用しだが、減圧装置f!′はオリフィスに限るもので
はない。
For example, in the above embodiment, the orifice 52 is used as a pressure reducing device, but the pressure reducing device f! ′ is not limited to orifices.

第3図は本発明の別の実施例を示すもので、減圧装置と
して減圧弁54を使用したものである。なお、減圧弁5
4以外の構成については前記実施例と同様である。また
上記減圧弁54は、その上流側り力と流I制御弁8の下
流側圧力との間の差圧に応じて絞り1を変化させ、流1
制御弁8の上流側と下流側との間の差圧変化を抑λるも
のとしてもよい。
FIG. 3 shows another embodiment of the present invention, in which a pressure reducing valve 54 is used as the pressure reducing device. In addition, the pressure reducing valve 5
The configurations other than 4 are the same as those in the previous embodiment. Further, the pressure reducing valve 54 changes the throttle 1 according to the differential pressure between the upstream force and the downstream pressure of the flow I control valve 8.
The pressure difference between the upstream side and the downstream side of the control valve 8 may be suppressed.

」゛)上のような構成であっても原子炉圧力容器20内
が低圧となった場合の流1制御弁8に作用フる差圧を減
圧弁54により緩和することができるので、流1制御弁
8の弁体、弁座尋にエロージヨンが発生するおそれはな
く、流1制御弁8の健全性が維持さtする。従って制御
棒の挿入・引抜操作に要する駆動水の駆動圧及び制御棒
駆動機構20を通流させる冷却水の流量、圧力を確保す
ることができる。
'') Even with the above configuration, the differential pressure that acts on the flow 1 control valve 8 when the pressure inside the reactor pressure vessel 20 becomes low can be alleviated by the pressure reducing valve 54, so that the flow 1 There is no risk of erosion occurring on the valve body and valve seat of the control valve 8, and the integrity of the flow 1 control valve 8 is maintained. Therefore, the driving pressure of the driving water required for inserting and withdrawing the control rods and the flow rate and pressure of the cooling water flowing through the control rod drive mechanism 20 can be ensured.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明に係る制御棒駆動水圧装@
は、駆動水供給ポンプと、このポンプより制御棒駆動機
構へ至る駆動水の流路を切換えて制御棒を炉心に対して
挿入又は引抜動作略せる方向制御弁ユニットと、この方
向制御弁ユニットと前記ポンプとの間で流量p1節を行
な13− う流量制御弁と、この流量制御弁と前記ポンプとの間よ
り分岐して設けられたスクラム水充填配管と、この充填
配管を介してスクラム水を充填きれるとともに加圧され
たスクラム水をスクラム弁を介して制御棒駆動機構へ供
給し制御棒を高速挿入動作させるアキームレータと、前
記ポンプよ郵スクラム水充填配管へ至る分岐点と前記流
1制御弁との間に設けられ原子炉内の圧力が定格運転時
より低圧のときの前記流量制御弁の流入側と流出側との
間の差圧を緩和する減圧装置とを具備したことを特徴と
するものであシ、原子炉圧力容器内の圧力が低い場合(
スクラム完了時、原子炉停止中、原子炉起動時等)でも
流量制御弁の上流側と下流側との間に高差圧が生じると
とを防止でき、流量制御弁の弁体や弁座におけるエロー
ジョンの発生を防止できる。従って流量制御弁の健全性
を維持することができ、制御棒の挿入・引抜操作に要す
る駆動水の駆動圧及び制御棒駆動機構に通流させる冷却
水の圧力を確保することができ、制御棒駆動−14= 機構の健全性を維持し、その信頼性を向上することがで
きる。
As detailed above, the control rod drive hydraulic system according to the present invention @
comprises a drive water supply pump, a directional control valve unit that switches the flow path of drive water from the pump to the control rod drive mechanism to omit insertion or withdrawal of control rods from the core, and this directional control valve unit. 13- A flow rate control valve that performs a flow rate p1 with the pump, a scram water filling pipe branched from between this flow rate control valve and the pump, and a scram water filling pipe provided through the filling pipe. An akeemulator that supplies pressurized scram water filled with water to the control rod drive mechanism via a scram valve and inserts the control rods at high speed; a branch point from the pump to the scram water filling piping; 1 control valve, and a pressure reducing device that relieves the differential pressure between the inflow side and the outflow side of the flow rate control valve when the pressure inside the reactor is lower than during rated operation. If the pressure inside the reactor pressure vessel is low (
This prevents high differential pressure from occurring between the upstream and downstream sides of the flow control valve even at the completion of a scram, during reactor shutdown, during reactor startup, etc. Erosion can be prevented from occurring. Therefore, the integrity of the flow control valve can be maintained, the driving pressure of the driving water required for inserting and withdrawing the control rod, and the pressure of the cooling water flowing through the control rod drive mechanism can be secured, and the control rod Drive-14= The integrity of the mechanism can be maintained and its reliability can be improved.

また流1制御弁の交換頻度が減少するため、交換作業に
従事する作業、員の被曝線量が減少するとともに、原子
炉プラントの稼動率も向上するなど、優れた効果が得ら
れる。
In addition, since the frequency of replacing the flow 1 control valve is reduced, the radiation exposure of workers and personnel involved in the replacement work is reduced, and the operating rate of the nuclear reactor plant is also improved, providing excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はケー来例を示す制御棒駆動水圧装置の概略構成
図、第2図は本発明の一実施例を示す制御棒駆動水H装
置の概略構成図、第3図は本発明の別の実施例におりる
制御棒駆動水圧装置の一部を示す概略構成図である。 2・・・駆動水供給ポンプ、4・・・制御棒駆動配管、
6・・・スクラム水充填配管、8・・・流l制御弁、1
0・・・方向制御弁ユニット、20・・・制御棒駆動機
構、46・・・アキコ、ムレータ、52・・オリフィス
(減汗装置)、54・・・減圧弁(減圧装置)。 出願人代理人  弁理士 鈴 江 武 彦15−
Figure 1 is a schematic configuration diagram of a control rod drive water pressure device showing an example of the present invention. Figure 2 is a schematic diagram of a control rod drive water pressure device showing an embodiment of the present invention. FIG. 2 is a schematic configuration diagram showing a part of a control rod drive hydraulic device according to an embodiment of the present invention. 2... Drive water supply pump, 4... Control rod drive piping,
6...Scram water filling pipe, 8...Flow control valve, 1
0... Directional control valve unit, 20... Control rod drive mechanism, 46... Akiko, mulator, 52... Orifice (sweat reduction device), 54... Pressure reducing valve (pressure reducing device). Applicant's agent Patent attorney Takehiko Suzue 15-

Claims (3)

【特許請求の範囲】[Claims] (1)駆動水供給ポンプと、このポンプより制御棒駆動
機構へ至る駆動水の流路を切換えて制御棒を炉心に対し
て挿入又は引抜動作させる方向制御弁ユニットと、この
方向制御弁ユニットと前記ポンプとの間で流量調節を行
なう流量制御弁と、この流量制御弁と前記ポンプとの間
より分岐して設けられたスクラム水充填配管と、この充
填配管を介してスクラム水を充填されるとともに加圧さ
れたスクラム水ゲスクラム弁を介して制御棒駆動機構へ
供給し制御棒を高速挿入動作させるアキームレータと、
前記ポンプよりスクラム水充填配管へ至る分岐点と前記
流量制御弁との間に設けられ原子炉内の圧力が定格運転
時より低圧のときの前記流量制御弁の流入側と流出側と
の間の差圧を緩和する減圧装置とを具備したことを特徴
とする制御棒駆動水圧装置。
(1) A driving water supply pump, a directional control valve unit that switches the flow path of driving water from the pump to the control rod drive mechanism to insert or withdraw the control rods from the core, and this directional control valve unit. A flow rate control valve that adjusts the flow rate between the pump and the pump, a scram water filling pipe branched from between the flow control valve and the pump, and scram water filled through the filling pipe. and an akeemulator that supplies pressurized scram water to the control rod drive mechanism via the scram valve and inserts the control rods at high speed;
Provided between the branch point leading from the pump to the scram water filling piping and the flow control valve, and between the inflow side and the outflow side of the flow control valve when the pressure inside the reactor is lower than during rated operation. A control rod drive hydraulic device characterized by comprising a pressure reducing device that relieves differential pressure.
(2)前記減圧装置をオリフィスとしたことを特徴とす
る特Ff話求の範囲第(1)項記載の制御棒駆動水圧装
置。
(2) The control rod drive hydraulic device according to item (1) of the special Ff request, characterized in that the pressure reducing device is an orifice.
(3)  前記減圧装置を減圧弁としたことを特徴とす
る特許請求の範囲第(1)項記10制御棒駆動水圧装置
(3) The control rod drive hydraulic device as set forth in claim (1), wherein the pressure reducing device is a pressure reducing valve.
JP57123661A 1982-07-15 1982-07-15 Control rod drive hydraulic device Pending JPS5913985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57123661A JPS5913985A (en) 1982-07-15 1982-07-15 Control rod drive hydraulic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123661A JPS5913985A (en) 1982-07-15 1982-07-15 Control rod drive hydraulic device

Publications (1)

Publication Number Publication Date
JPS5913985A true JPS5913985A (en) 1984-01-24

Family

ID=14866148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123661A Pending JPS5913985A (en) 1982-07-15 1982-07-15 Control rod drive hydraulic device

Country Status (1)

Country Link
JP (1) JPS5913985A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360338U (en) * 1986-10-03 1988-04-21
US4826649A (en) * 1986-06-13 1989-05-02 Siemens Aktiengesellschaft Hydraulic control for rod drive for water-cooled nuclear reactors, especially heating reactors
JPH04265897A (en) * 1991-02-21 1992-09-22 Toshiba Corp Control rod drive device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826649A (en) * 1986-06-13 1989-05-02 Siemens Aktiengesellschaft Hydraulic control for rod drive for water-cooled nuclear reactors, especially heating reactors
JPS6360338U (en) * 1986-10-03 1988-04-21
JPH0445893Y2 (en) * 1986-10-03 1992-10-28
JPH04265897A (en) * 1991-02-21 1992-09-22 Toshiba Corp Control rod drive device

Similar Documents

Publication Publication Date Title
JP5016066B2 (en) Nuclear power plants using nanoparticles in emergency systems and related methods
CN101720488B (en) Nuclear power plant using nanoparticles in closed circuits of emergency systems and related method
CN109903863B (en) Safe injection system and nuclear power system
KR101463441B1 (en) High concentration boron injection system and safety injection system having the same
CN110097982A (en) A kind of injection of npp safety and residual heat removal system
CN210956180U (en) Nuclear power safety injection system and nuclear power system
JPS5913985A (en) Control rod drive hydraulic device
US4767594A (en) Control of reactor coolant flow path during reactor decay heat removal
JP2899979B2 (en) High temperature gas furnace
JPS6375691A (en) Natural circulation type reactor
JPH058997B2 (en)
CN112750540A (en) Safe injection system and method and nuclear power system
CN220933769U (en) Nuclear power plant safety injection system
JPS63173997A (en) Emergency core cooling facility for pressurized water type reactor
JPS58174893A (en) Control rod drive hydraulic device
JPS6061683A (en) Drive for control rod
JPS61213792A (en) Hydraulic lock and nuclear reactor with said hydraulic lock
Lee et al. Study on Effect of Operator Action on Shin-Kori Unit 1 Total Loss of Feedwater Accident
JPS63261196A (en) Emergency core cooling device
Baranaev et al. Emergency heat removal in the integral water cooled ABV-6 reactor for the Volnolom floating nuclear power plant
CN112750539A (en) Nuclear power safety injection system, control method and nuclear power system
JPS60238786A (en) Control rod hydraulic drive
Henninger et al. Small-Break LOCA Recovery in B&W Plants
Jin et al. Achievement of Design Improvement by Use of PSA in the SMART
JPS58219491A (en) Control rod drive hydraulic device